Simon King
      
	 
	 
	 
      
    
      
    
        David J. Green
     
      
    
      Cohomology
        →Theory
        →Implementation
     
      
    
      Jena:
     
          
     
      Faculty
     
      
    
      External links:
     
       
     
    Singular
     
    Gap
      
     | 
    
            
       
          
         
      
  Cohomology of group number 12 of order 128
 
 
  General information on the group
  - The group has 2 minimal generators and exponent 8.
  
 
  -  It is non-abelian.
  
 
  -  It has p-Rank 4.
  
 
  -  Its center has rank 3.
  
 
  -  It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
  
 
 
 
  Structure of the cohomology ring
  General information
  -  The cohomology ring is of dimension 4 and depth 3.
  
 
  -  The depth coincides with the Duflot bound.
  
 
  -  The Poincaré series is    
| t3  +  t2  +  1 |        
  |  | (t  +  1)2 · (t  −  1)4 · (t2  +  1) |  
     
     -  The a-invariants are -∞,-∞,-∞,-4,-4.  They were obtained using the filter regular HSOP of the Benson test.
  
 
 
  
  
 
  Ring generators
 The cohomology ring has 15 minimal generators of maximal degree 5:
 
  -  a_1_0, a nilpotent element of degree 1
  
 
  -  a_1_1, a nilpotent element of degree 1
  
 
  -  a_2_0, a nilpotent element of degree 2
  
 
  -  a_2_1, a nilpotent element of degree 2
  
 
  -  b_2_2, an element of degree 2
  
 
  -  c_2_3, a Duflot regular element of degree 2
  
 
  -  c_2_4, a Duflot regular element of degree 2
  
 
  -  a_3_5, a nilpotent element of degree 3
  
 
  -  a_3_6, a nilpotent element of degree 3
  
 
  -  a_3_7, a nilpotent element of degree 3
  
 
  -  b_3_8, an element of degree 3
  
 
  -  a_4_5, a nilpotent element of degree 4
  
 
  -  a_4_13, a nilpotent element of degree 4
  
 
  -  c_4_14, a Duflot regular element of degree 4
  
 
  -  a_5_22, a nilpotent element of degree 5
  
 
 
  
 
  Ring relations
There are 65 minimal relations of maximal degree 10:
 
  -  a_1_02
  
 
  -  a_1_12
  
 
  -  a_1_0·a_1_1
  
 
  -  a_2_0·a_1_1
  
 
  -  a_2_0·a_1_0
  
 
  -  a_2_1·a_1_1
  
 
  -  a_2_1·a_1_0
  
 
  -  b_2_2·a_1_0
  
 
  -  a_2_02
  
 
  -  a_2_12
  
 
  -  a_1_1·a_3_5 + a_2_0·a_2_1
  
 
  -  a_1_0·a_3_5
  
 
  -  a_1_1·a_3_6
  
 
  -  a_1_0·a_3_6
  
 
  -  a_1_1·a_3_7
  
 
  -  a_1_0·a_3_7 + a_2_0·a_2_1
  
 
  -  a_1_1·b_3_8 + a_2_0·b_2_2
  
 
  -  a_1_0·b_3_8 + a_2_0·a_2_1
  
 
  -  a_2_0·a_3_5
  
 
  -  a_2_1·a_3_5
  
 
  -  a_2_0·a_3_6
  
 
  -  a_2_1·a_3_6
  
 
  -  a_2_0·a_3_7
  
 
  -  b_2_2·a_3_6 + b_2_2·a_3_5 + a_2_1·a_3_7
  
 
  -  b_2_22·a_1_1 + a_2_0·b_3_8
  
 
  -  b_2_2·a_3_5 + a_2_1·b_3_8
  
 
  -  a_4_5·a_1_1
  
 
  -  a_4_5·a_1_0
  
 
  -  b_2_2·a_3_6 + b_2_2·a_3_5 + a_4_13·a_1_1
  
 
  -  a_4_13·a_1_0
  
 
  -  a_3_52
  
 
  -  a_3_62
  
 
  -  a_3_5·a_3_6
  
 
  -  a_3_72
  
 
  -  a_3_6·a_3_7 + a_3_5·a_3_7
  
 
  -  a_3_6·b_3_8 + a_2_1·b_2_22 + a_3_6·a_3_7
  
 
  -  a_3_5·b_3_8 + a_2_1·b_2_22
  
 
  -  b_3_82 + b_2_23 + a_2_0·b_2_22
  
 
  -  a_3_7·b_3_8 + b_2_2·a_4_5
  
 
  -  a_2_0·a_4_5
  
 
  -  a_3_6·a_3_7 + a_2_1·a_4_5
  
 
  -  a_3_6·a_3_7 + a_2_0·a_4_13
  
 
  -  a_2_1·a_4_13
  
 
  -  a_3_6·a_3_7 + a_1_1·a_5_22 + a_2_0·a_2_1·c_2_4
  
 
  -  a_1_0·a_5_22
  
 
  -  a_4_5·a_3_7
  
 
  -  a_4_5·a_3_6 + a_2_1·b_2_2·a_3_7
  
 
  -  a_4_5·a_3_5 + a_2_1·b_2_2·a_3_7
  
 
  -  a_4_5·b_3_8 + b_2_22·a_3_7
  
 
  -  a_4_13·a_3_7 + a_2_1·b_2_2·a_3_7
  
 
  -  a_4_13·a_3_6
  
 
  -  a_4_13·a_3_5
  
 
  -  a_4_13·b_3_8 + b_2_2·a_5_22 + a_2_1·b_2_2·b_3_8 + a_2_1·c_2_4·b_3_8
  
 
  -  a_2_1·b_2_2·a_3_7 + a_2_0·a_5_22
  
 
  -  a_2_1·a_5_22
  
 
  -  a_4_52
  
 
  -  a_4_5·a_4_13 + a_2_0·b_2_2·a_4_13 + a_2_0·a_2_1·c_4_14
  
 
  -  a_4_132
  
 
  -  a_3_7·a_5_22 + a_2_0·c_2_4·a_4_13 + a_2_0·a_2_1·c_4_14
  
 
  -  a_3_6·a_5_22
  
 
  -  a_3_5·a_5_22
  
 
  -  b_3_8·a_5_22 + b_2_22·a_4_13 + a_2_1·b_2_23 + a_2_0·b_2_2·a_4_13
    + a_2_1·b_2_22·c_2_4
   
  -  a_4_13·a_5_22
  
 
  -  a_4_5·a_5_22 + a_2_0·c_2_4·a_5_22
  
 
  -  a_5_222
  
 
 
 
  
 
  Data used for Benson′s test
   
    -  Benson′s completion test succeeded in degree 10.
    
 
    -  The completion test was perfect: It applied in the last degree in which a generator or relation was found.
    
 
    -  The following is a filter regular homogeneous system of parameters:
    
      - c_2_3, a Duflot regular element of degree 2
      
 
      - c_2_4, a Duflot regular element of degree 2
      
 
      - c_4_14, a Duflot regular element of degree 4
      
 
      - b_2_2, an element of degree 2
      
 
     
         -  The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 4, 6].
    
 
    -  The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
    
 
   
  
 
  Restriction maps
  
    Restriction map to the greatest central el. ab. subgp., which is of rank 3
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  a_1_1 → 0, an element of degree 1
      
 
      -  a_2_0 → 0, an element of degree 2
      
 
      -  a_2_1 → 0, an element of degree 2
      
 
      -  b_2_2 → 0, an element of degree 2
      
 
      -  c_2_3 → c_1_02, an element of degree 2
      
 
      -  c_2_4 → c_1_22, an element of degree 2
      
 
      -  a_3_5 → 0, an element of degree 3
      
 
      -  a_3_6 → 0, an element of degree 3
      
 
      -  a_3_7 → 0, an element of degree 3
      
 
      -  b_3_8 → 0, an element of degree 3
      
 
      -  a_4_5 → 0, an element of degree 4
      
 
      -  a_4_13 → 0, an element of degree 4
      
 
      -  c_4_14 → c_1_14, an element of degree 4
      
 
      -  a_5_22 → 0, an element of degree 5
      
 
     
  
    Restriction map to a maximal el. ab. subgp. of rank 4
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  a_1_1 → 0, an element of degree 1
      
 
      -  a_2_0 → 0, an element of degree 2
      
 
      -  a_2_1 → 0, an element of degree 2
      
 
      -  b_2_2 → c_1_32, an element of degree 2
      
 
      -  c_2_3 → c_1_02, an element of degree 2
      
 
      -  c_2_4 → c_1_22, an element of degree 2
      
 
      -  a_3_5 → 0, an element of degree 3
      
 
      -  a_3_6 → 0, an element of degree 3
      
 
      -  a_3_7 → 0, an element of degree 3
      
 
      -  b_3_8 → c_1_33, an element of degree 3
      
 
      -  a_4_5 → 0, an element of degree 4
      
 
      -  a_4_13 → 0, an element of degree 4
      
 
      -  c_4_14 → c_1_12·c_1_32 + c_1_14, an element of degree 4
      
 
      -  a_5_22 → 0, an element of degree 5
      
 
     
 
 
               
              
              
                
               
               |