| Simon King       
     
 
        David J. Green
     
     
 
      Cohomology
      →Theory
 →Implementation
 
     
 
      Jena:
     
           
      Faculty
     
     
 
      External links:
     
        
    Singular
     
    Gap
     
 | 
         
 
 
  Cohomology of group number 1598 of order 128
 
 
  General information on the group
  The group has 4 minimal generators and exponent 4.
   It is non-abelian.
   It has p-Rank 4.
   Its center has rank 3.
   It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
   
 
  Structure of the cohomology ring
  General information
   The cohomology ring is of dimension 4 and depth 3.
   The depth coincides with the Duflot bound.
   The Poincaré series is    | ( − 2) · (t6  −  3/2·t5  +  2·t4  −  3/2·t3  −  1/2) |  | 
 |  | (t  −  1)4 · (t2  +  1)3 | 
 The a-invariants are -∞,-∞,-∞,-4,-4.  They were obtained using the filter regular HSOP of the Benson test.
   
 
  Ring generators
The cohomology ring has 14 minimal generators of maximal degree 5:
 
   a_1_1, a nilpotent element of degree 1
   a_1_2, a nilpotent element of degree 1
   a_1_3, a nilpotent element of degree 1
   b_1_0, an element of degree 1
   a_3_5, a nilpotent element of degree 3
   a_3_6, a nilpotent element of degree 3
   a_3_9, a nilpotent element of degree 3
   b_3_7, an element of degree 3
   b_3_8, an element of degree 3
   b_3_10, an element of degree 3
   c_4_16, a Duflot regular element of degree 4
   c_4_17, a Duflot regular element of degree 4
   c_4_18, a Duflot regular element of degree 4
   a_5_25, a nilpotent element of degree 5
   
 
  Ring relations
There are 45 minimal relations of maximal degree 10:
 
   a_1_1·b_1_0 + a_1_32 + a_1_22 + a_1_12
   a_1_3·b_1_0 + a_1_12
   a_1_2·b_1_0 + a_1_22 + a_1_12
   a_1_23 + a_1_12·a_1_2
   a_1_12·a_1_3
   a_1_1·a_1_32 + a_1_1·a_1_22 + a_1_13
   a_1_3·a_3_5 + a_1_2·a_3_6 + a_1_2·a_3_5 + a_1_1·a_3_9 + a_1_1·a_3_6 + a_1_1·a_3_5
   b_1_0·a_3_6 + a_1_1·b_3_7 + a_1_2·a_3_5 + a_1_1·a_3_5
   b_1_0·a_3_9 + b_1_0·a_3_6 + b_1_0·a_3_5 + a_1_3·b_3_7 + a_1_3·a_3_5 + a_1_2·a_3_9+ a_1_2·a_3_6 + a_1_2·a_3_5
 b_1_0·a_3_9 + b_1_0·a_3_6 + b_1_0·a_3_5 + a_1_2·b_3_7 + a_1_2·a_3_5
   b_1_0·a_3_5 + a_1_1·b_3_8 + a_1_2·a_3_5 + a_1_1·a_3_6
   b_1_0·a_3_9 + b_1_0·a_3_6 + b_1_0·a_3_5 + a_1_3·b_3_8 + a_1_3·a_3_6 + a_1_2·a_3_9+ a_1_2·a_3_6 + a_1_2·a_3_5 + a_1_1·a_3_6 + a_1_1·a_3_5
 a_1_2·b_3_8 + a_1_2·a_3_6 + a_1_1·a_3_5
   a_1_1·b_3_10 + a_1_3·a_3_6 + a_1_3·a_3_5 + a_1_2·a_3_5 + a_1_1·a_3_6
   b_1_0·a_3_6 + b_1_0·a_3_5 + a_1_3·b_3_10 + a_1_3·a_3_6 + a_1_2·a_3_9 + a_1_2·a_3_6+ a_1_2·a_3_5 + a_1_1·a_3_6 + a_1_1·a_3_5
 b_1_0·a_3_5 + a_1_2·b_3_10 + a_1_3·a_3_9 + a_1_3·a_3_6 + a_1_3·a_3_5 + a_1_2·a_3_6+ a_1_1·a_3_5
 a_1_2·a_1_3·a_3_9 + a_1_1·a_1_3·a_3_9 + a_1_12·a_3_9 + a_1_12·a_3_6 + a_1_12·a_3_5
   a_1_2·a_1_3·a_3_6 + a_1_22·a_3_6 + a_1_1·a_1_3·a_3_9 + a_1_1·a_1_2·a_3_9+ a_1_1·a_1_2·a_3_6 + a_1_1·a_1_2·a_3_5 + a_1_12·a_3_5
 a_1_32·a_3_6 + a_1_22·a_3_9 + a_1_22·a_3_5 + a_1_1·a_1_2·a_3_5 + a_1_12·a_3_9+ a_1_12·a_3_5
 a_3_9·b_3_10 + a_3_9·b_3_8 + a_1_13·a_3_9 + c_4_17·a_1_12 + c_4_16·a_1_2·a_1_3+ c_4_16·a_1_1·a_1_3
 b_3_102 + b_3_82 + a_1_13·a_3_9 + a_1_13·a_3_5 + c_4_17·b_1_02 + c_4_16·a_1_32
   b_3_82 + b_3_72 + a_3_6·b_3_10 + a_3_5·b_3_10 + a_3_5·a_3_9 + a_1_12·a_1_2·a_3_5+ c_4_16·b_1_02 + c_4_17·a_1_1·a_1_3 + c_4_16·a_1_1·a_1_3
 a_3_92 + a_1_12·a_1_2·a_3_5 + a_1_13·a_3_9 + c_4_17·a_1_32 + c_4_16·a_1_22+ c_4_16·a_1_12
 b_3_82 + b_3_72 + a_3_9·b_3_10 + a_3_6·b_3_8 + a_3_5·b_3_8 + a_3_6·a_3_9+ a_1_12·a_1_2·a_3_5 + a_1_13·a_3_5 + c_4_16·b_1_02 + c_4_17·a_1_2·a_1_3
 + c_4_16·a_1_2·a_1_3 + c_4_16·a_1_1·a_1_3
 a_3_9·b_3_10 + a_3_9·b_3_8 + a_3_5·b_3_10 + a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9+ a_3_5·a_3_6 + a_1_13·a_3_9 + a_1_13·a_3_5 + c_4_17·a_1_1·a_1_2 + c_4_16·a_1_2·a_1_3
 + c_4_16·a_1_1·a_1_3 + c_4_16·a_1_1·a_1_2
 a_3_9·b_3_10 + a_3_9·b_3_8 + a_3_5·b_3_10 + a_3_5·b_3_8 + a_3_92 + a_3_6·a_3_9+ a_3_5·a_3_9 + a_1_12·a_1_2·a_3_5 + c_4_17·a_1_22 + c_4_16·a_1_2·a_1_3
 + c_4_16·a_1_22 + c_4_16·a_1_1·a_1_3 + c_4_16·a_1_1·a_1_2
 b_3_82 + b_3_72 + a_3_62 + a_3_52 + a_1_12·a_1_2·a_3_5 + a_1_13·a_3_9+ a_1_13·a_3_5 + c_4_16·b_1_02 + c_4_18·a_1_12
 b_3_102 + a_3_5·b_3_10 + a_3_5·b_3_8 + a_3_92 + a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9+ a_3_52 + a_1_12·a_1_2·a_3_5 + c_4_18·b_1_02 + c_4_16·a_1_32 + c_4_16·a_1_22
 + c_4_16·a_1_1·a_1_2
 a_3_6·b_3_8 + a_3_6·b_3_7 + a_3_5·b_3_8 + a_3_5·b_3_7 + a_3_62 + a_3_52+ a_1_12·a_1_2·a_3_5 + a_1_13·a_3_5 + c_4_18·a_1_1·a_1_3 + c_4_16·a_1_32
 + c_4_16·a_1_22 + c_4_16·a_1_12
 a_3_62 + a_3_52 + a_1_12·a_1_2·a_3_5 + a_1_13·a_3_9 + a_1_13·a_3_5+ c_4_18·a_1_32 + c_4_16·a_1_12
 a_3_9·b_3_8 + a_3_9·b_3_7 + a_3_6·b_3_8 + a_3_6·b_3_7 + a_3_5·b_3_8 + a_3_5·b_3_7+ a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9 + a_3_5·a_3_6 + a_1_13·a_3_9 + a_1_13·a_3_5
 + c_4_18·a_1_2·a_1_3 + c_4_16·a_1_22 + c_4_16·a_1_12
 b_3_82 + b_3_72 + a_3_6·b_3_10 + a_3_6·b_3_8 + a_3_5·b_3_10 + a_3_5·b_3_7 + a_3_62+ a_3_5·a_3_6 + a_1_12·a_1_2·a_3_5 + a_1_13·a_3_9 + c_4_16·b_1_02
 + c_4_18·a_1_1·a_1_2 + c_4_16·a_1_1·a_1_3
 b_3_82 + b_3_72 + a_3_9·b_3_10 + a_3_9·b_3_8 + a_3_62 + a_1_12·a_1_2·a_3_5+ a_1_13·a_3_5 + c_4_16·b_1_02 + c_4_18·a_1_22 + c_4_16·a_1_2·a_1_3
 + c_4_16·a_1_1·a_1_3
 a_3_9·b_3_10 + a_3_9·b_3_7 + a_3_6·b_3_10 + a_3_6·b_3_7 + a_3_5·b_3_8 + a_1_1·a_5_25+ a_1_13·a_3_5 + c_4_16·a_1_2·a_1_3 + c_4_16·a_1_22 + c_4_16·a_1_1·a_1_2
 + c_4_16·a_1_12
 b_3_82 + b_3_72 + a_3_6·b_3_10 + a_3_6·b_3_8 + b_1_0·a_5_25 + a_3_92 + a_3_6·a_3_9+ a_3_5·a_3_9 + a_1_12·a_1_2·a_3_5 + c_4_16·b_1_02 + c_4_16·a_1_22
 + c_4_16·a_1_1·a_1_3 + c_4_16·a_1_1·a_1_2 + c_4_16·a_1_12
 b_3_82 + b_3_72 + a_3_9·b_3_10 + a_3_9·b_3_8 + a_3_9·b_3_7 + a_3_6·b_3_8 + a_3_5·b_3_8+ a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_6 + a_1_3·a_5_25 + a_1_12·a_1_2·a_3_5 + a_1_13·a_3_5
 + c_4_16·b_1_02 + c_4_16·a_1_32 + c_4_16·a_1_2·a_1_3 + c_4_16·a_1_1·a_1_3
 + c_4_16·a_1_1·a_1_2
 b_3_82 + b_3_72 + a_3_6·b_3_7 + a_3_5·b_3_10 + a_3_92 + a_3_6·a_3_9 + a_3_62+ a_3_5·a_3_9 + a_1_2·a_5_25 + c_4_16·b_1_02 + c_4_16·a_1_32 + c_4_16·a_1_1·a_1_2
 + c_4_16·a_1_12
 a_1_1·b_3_7·b_3_8 + a_1_22·a_5_25 + a_1_1·a_1_2·a_5_25 + c_4_18·a_1_1·a_1_2·a_1_3+ c_4_18·a_1_12·a_1_2 + c_4_18·a_1_13 + c_4_17·a_1_12·a_1_2 + c_4_17·a_1_13
 a_3_9·a_5_25 + a_1_12·a_1_2·a_5_25 + a_1_13·a_5_25 + c_4_18·a_1_3·a_3_9+ c_4_18·a_1_2·a_3_9 + c_4_18·a_1_1·a_3_9 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_2·a_3_9
 + c_4_17·a_1_2·a_3_6 + c_4_17·a_1_2·a_3_5 + c_4_17·a_1_1·a_3_9 + c_4_17·a_1_1·a_3_6
 + c_4_17·a_1_1·a_3_5 + c_4_16·a_1_2·a_3_5 + c_4_16·a_1_1·a_3_5 + c_4_18·a_1_13·a_1_2
 + c_4_17·a_1_13·a_1_2 + c_4_16·a_1_13·a_1_2
 b_3_10·a_5_25 + a_1_13·a_5_25 + c_4_18·a_1_2·b_3_7 + c_4_18·a_1_1·b_3_8+ c_4_17·a_1_1·b_3_8 + c_4_18·a_1_3·a_3_6 + c_4_18·a_1_2·a_3_9 + c_4_18·a_1_1·a_3_6
 + c_4_17·a_1_3·a_3_9 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_2·a_3_6 + c_4_17·a_1_2·a_3_5
 + c_4_17·a_1_1·a_3_9 + c_4_17·a_1_1·a_3_6 + c_4_17·a_1_1·a_3_5 + c_4_16·a_1_2·a_3_6
 + c_4_16·a_1_2·a_3_5 + c_4_16·a_1_1·a_3_9 + c_4_16·a_1_1·a_3_6 + c_4_18·a_1_13·a_1_2
 + c_4_17·a_1_13·a_1_2 + c_4_16·a_1_13·a_1_2
 a_3_9·a_5_25 + a_3_6·a_5_25 + a_1_1·a_1_22·a_5_25 + c_4_18·a_1_3·a_3_6+ c_4_18·a_1_2·a_3_6 + c_4_18·a_1_1·a_3_6 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_2·a_3_9
 + c_4_17·a_1_2·a_3_5 + c_4_17·a_1_1·a_3_9 + c_4_16·a_1_2·a_3_5 + c_4_18·a_1_13·a_1_2
 + c_4_16·a_1_13·a_1_2
 a_3_5·a_5_25 + a_1_1·a_1_22·a_5_25 + c_4_18·a_1_2·a_3_9 + c_4_18·a_1_2·a_3_6+ c_4_18·a_1_1·a_3_6 + c_4_17·a_1_2·a_3_5 + c_4_17·a_1_1·a_3_6 + c_4_17·a_1_1·a_3_5
 + c_4_18·a_1_13·a_1_2 + c_4_17·a_1_13·a_1_2
 b_3_7·a_5_25 + a_1_1·a_1_22·a_5_25 + c_4_18·a_1_2·b_3_7 + c_4_18·a_1_1·b_3_8+ c_4_17·a_1_2·b_3_7 + c_4_17·a_1_1·b_3_8 + c_4_17·a_1_1·b_3_7 + c_4_16·a_1_1·b_3_8
 + c_4_18·a_1_2·a_3_9 + c_4_17·a_1_2·a_3_6 + c_4_17·a_1_2·a_3_5 + c_4_16·a_1_2·a_3_5
 + c_4_16·a_1_1·a_3_6 + c_4_17·a_1_13·a_1_2
 b_3_8·a_5_25 + a_3_9·a_5_25 + a_1_13·a_5_25 + c_4_18·a_1_1·b_3_7 + c_4_17·a_1_1·b_3_8+ c_4_17·a_1_1·b_3_7 + c_4_18·a_1_3·a_3_6 + c_4_18·a_1_2·a_3_5 + c_4_18·a_1_1·a_3_9
 + c_4_18·a_1_1·a_3_5 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_2·a_3_9 + c_4_17·a_1_2·a_3_6
 + c_4_17·a_1_1·a_3_9 + c_4_17·a_1_1·a_3_6 + c_4_16·a_1_2·a_3_5 + c_4_17·a_1_13·a_1_2
 a_5_252 + c_4_18·a_1_12·a_1_2·a_3_5 + c_4_18·a_1_13·a_3_9+ c_4_17·a_1_12·a_1_2·a_3_5 + c_4_17·a_1_13·a_3_9 + c_4_17·a_1_13·a_3_5
 + c_4_182·a_1_32 + c_4_182·a_1_22 + c_4_182·a_1_12 + c_4_17·c_4_18·a_1_32
 + c_4_172·a_1_22 + c_4_16·c_4_18·a_1_22 + c_4_16·c_4_18·a_1_12
 + c_4_16·c_4_17·a_1_12
 
 
 
  Data used for Benson′s test
   
     Benson′s completion test succeeded in degree 10.
     The completion test was perfect: It applied in the last degree in which a generator or relation was found.
     The following is a filter regular homogeneous system of parameters:
    
      c_4_16, a Duflot regular element of degree 4
      c_4_17, a Duflot regular element of degree 4
      c_4_18, a Duflot regular element of degree 4
      b_1_02, an element of degree 2
       The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 8, 10].
     The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
     
 
 
  Restriction maps
    Restriction map to the greatest central el. ab. subgp., which is of rank 3
  
       a_1_1 → 0, an element of degree 1
       a_1_2 → 0, an element of degree 1
       a_1_3 → 0, an element of degree 1
       b_1_0 → 0, an element of degree 1
       a_3_5 → 0, an element of degree 3
       a_3_6 → 0, an element of degree 3
       a_3_9 → 0, an element of degree 3
       b_3_7 → 0, an element of degree 3
       b_3_8 → 0, an element of degree 3
       b_3_10 → 0, an element of degree 3
       c_4_16 → c_1_14, an element of degree 4
       c_4_17 → c_1_24 + c_1_14, an element of degree 4
       c_4_18 → c_1_14 + c_1_04, an element of degree 4
       a_5_25 → 0, an element of degree 5
       
    Restriction map to a maximal el. ab. subgp. of rank 4
  
       a_1_1 → 0, an element of degree 1
       a_1_2 → 0, an element of degree 1
       a_1_3 → 0, an element of degree 1
       b_1_0 → c_1_3, an element of degree 1
       a_3_5 → 0, an element of degree 3
       a_3_6 → 0, an element of degree 3
       a_3_9 → 0, an element of degree 3
       b_3_7 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32+ c_1_02·c_1_3, an element of degree 3
 b_3_8 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
       b_3_10 → c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
       c_4_16 → c_1_12·c_1_32 + c_1_14, an element of degree 4
       c_4_17 → c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_14, an element of degree 4
       c_4_18 → c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
       a_5_25 → 0, an element of degree 5
       
 
 
 
               
 
 |