Simon King
      
	 
	 
	 
      
    
      
    
        David J. Green
     
      
    
      Cohomology
        →Theory
        →Implementation
     
      
    
      Jena:
     
          
     
      Faculty
     
      
    
      External links:
     
       
     
    Singular
     
    Gap
      
     | 
    
            
       
          
         
      
  Cohomology of group number 350 of order 128
 
 
  General information on the group
  - The group has 3 minimal generators and exponent 8.
  
 
  -  It is non-abelian.
  
 
  -  It has p-Rank 4.
  
 
  -  Its center has rank 2.
  
 
  -  It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
  
 
 
 
  Structure of the cohomology ring
  General information
  -  The cohomology ring is of dimension 4 and depth 3.
  
 
  -  The depth exceeds the Duflot bound, which is 2.
  
 
  -  The Poincaré series is    
| ( − 1) · (t6  −  t3  −  t  −  1) |        
  |  | (t  +  1)2 · (t  −  1)4 · (t2  +  1)2 |  
     
     -  The a-invariants are -∞,-∞,-∞,-4,-4.  They were obtained using the filter regular HSOP of the Benson test.
  
 
 
  
  
 
  Ring generators
 The cohomology ring has 11 minimal generators of maximal degree 5:
 
  -  a_1_0, a nilpotent element of degree 1
  
 
  -  b_1_1, an element of degree 1
  
 
  -  b_1_2, an element of degree 1
  
 
  -  b_2_4, an element of degree 2
  
 
  -  a_3_2, a nilpotent element of degree 3
  
 
  -  a_3_4, a nilpotent element of degree 3
  
 
  -  b_3_7, an element of degree 3
  
 
  -  b_4_10, an element of degree 4
  
 
  -  c_4_11, a Duflot regular element of degree 4
  
 
  -  c_4_12, a Duflot regular element of degree 4
  
 
  -  a_5_9, a nilpotent element of degree 5
  
 
 
  
 
  Ring relations
There are 31 minimal relations of maximal degree 10:
 
  -  a_1_0·b_1_1
  
 
  -  a_1_0·b_1_2
  
 
  -  a_1_03
  
 
  -  b_1_1·b_1_22
  
 
  -  b_2_4·b_1_1
  
 
  -  b_1_2·a_3_2
  
 
  -  b_1_1·a_3_2
  
 
  -  b_1_2·a_3_4 + b_2_4·a_1_02
  
 
  -  b_1_1·a_3_4
  
 
  -  a_1_0·b_3_7
  
 
  -  a_1_02·a_3_2
  
 
  -  a_1_02·a_3_4
  
 
  -  b_4_10·a_1_0 + b_2_4·a_3_2 + b_2_42·a_1_0
  
 
  -  b_1_1·b_1_2·b_3_7 + b_4_10·b_1_1
  
 
  -  a_3_2·b_3_7
  
 
  -  a_3_4·b_3_7 + b_2_4·a_1_0·a_3_2 + b_2_42·a_1_02
  
 
  -  a_3_42 + b_2_4·a_1_0·a_3_4 + b_2_4·a_1_0·a_3_2 + b_2_42·a_1_02 + c_4_11·a_1_02
  
 
  -  a_3_42 + a_3_22 + b_2_4·a_1_0·a_3_4 + b_2_4·a_1_0·a_3_2 + c_4_12·a_1_02
  
 
  -  b_3_72 + b_1_26 + b_1_13·b_3_7 + c_4_12·b_1_22 + c_4_12·b_1_12 + c_4_11·b_1_22
  
 
  -  b_1_2·a_5_9 + b_2_4·a_1_0·a_3_2 + b_2_42·a_1_02
  
 
  -  a_3_2·a_3_4 + a_1_0·a_5_9 + b_2_4·a_1_0·a_3_4 + b_2_4·a_1_0·a_3_2
  
 
  -  b_4_10·b_1_12 + b_1_1·a_5_9
  
 
  -  b_4_10·a_3_2 + b_2_42·a_3_2 + b_2_43·a_1_0 + b_2_4·c_4_12·a_1_0 + b_2_4·c_4_11·a_1_0
  
 
  -  a_1_02·a_5_9
  
 
  -  b_4_10·a_3_4 + b_2_4·a_5_9 + b_2_42·a_3_2
  
 
  -  b_1_25·b_3_7 + b_1_28 + b_4_102 + b_2_4·b_1_23·b_3_7 + b_2_4·b_1_26
    + b_2_4·b_4_10·b_1_22 + b_2_42·a_1_0·a_3_2 + b_2_43·a_1_02 + c_4_11·b_1_24    + b_2_42·c_4_12 + b_2_42·c_4_11
   
  -  a_3_2·a_5_9 + b_2_4·a_1_0·a_5_9 + b_2_42·a_1_0·a_3_2 + b_2_43·a_1_02
    + c_4_12·a_1_0·a_3_4 + c_4_11·a_1_0·a_3_4 + b_2_4·c_4_12·a_1_02    + b_2_4·c_4_11·a_1_02
   
  -  a_3_4·a_5_9 + b_2_42·a_1_0·a_3_4 + c_4_11·a_1_0·a_3_2 + b_2_4·c_4_12·a_1_02
  
 
  -  b_3_7·a_5_9 + b_1_13·a_5_9 + c_4_12·b_1_13·b_1_2 + b_2_4·c_4_12·a_1_02
    + b_2_4·c_4_11·a_1_02
   
  -  b_4_10·a_5_9 + b_2_43·a_3_2 + b_2_44·a_1_0 + b_2_4·c_4_12·a_3_4 + b_2_4·c_4_11·a_3_4
    + b_2_42·c_4_12·a_1_0 + b_2_42·c_4_11·a_1_0
   
  -  a_5_92 + b_2_44·a_1_02 + b_2_4·c_4_12·a_1_0·a_3_4 + b_2_4·c_4_12·a_1_0·a_3_2
    + b_2_4·c_4_11·a_1_0·a_3_4 + b_2_4·c_4_11·a_1_0·a_3_2 + c_4_11·c_4_12·a_1_02    + c_4_112·a_1_02
   
 
 
  
 
  Data used for Benson′s test
   
    -  Benson′s completion test succeeded in degree 10.
    
 
    -  The completion test was perfect: It applied in the last degree in which a generator or relation was found.
    
 
    -  The following is a filter regular homogeneous system of parameters:
    
      - c_4_11, a Duflot regular element of degree 4
      
 
      - c_4_12, a Duflot regular element of degree 4
      
 
      - b_1_22 + b_1_12 + b_2_4, an element of degree 2
      
 
      - b_1_22, an element of degree 2
      
 
     
         -  The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 6, 8].
    
 
    -  The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
    
 
   
  
 
  Restriction maps
  
    Restriction map to the greatest central el. ab. subgp., which is of rank 2
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  b_1_1 → 0, an element of degree 1
      
 
      -  b_1_2 → 0, an element of degree 1
      
 
      -  b_2_4 → 0, an element of degree 2
      
 
      -  a_3_2 → 0, an element of degree 3
      
 
      -  a_3_4 → 0, an element of degree 3
      
 
      -  b_3_7 → 0, an element of degree 3
      
 
      -  b_4_10 → 0, an element of degree 4
      
 
      -  c_4_11 → c_1_14, an element of degree 4
      
 
      -  c_4_12 → c_1_14 + c_1_04, an element of degree 4
      
 
      -  a_5_9 → 0, an element of degree 5
      
 
     
  
    Restriction map to a maximal el. ab. subgp. of rank 3
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  b_1_1 → c_1_2, an element of degree 1
      
 
      -  b_1_2 → 0, an element of degree 1
      
 
      -  b_2_4 → 0, an element of degree 2
      
 
      -  a_3_2 → 0, an element of degree 3
      
 
      -  a_3_4 → 0, an element of degree 3
      
 
      -  b_3_7 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
      
 
      -  b_4_10 → 0, an element of degree 4
      
 
      -  c_4_11 → c_1_12·c_1_22 + c_1_14, an element of degree 4
      
 
      -  c_4_12 → c_1_1·c_1_23 + c_1_14 + c_1_0·c_1_23 + c_1_04, an element of degree 4
      
 
      -  a_5_9 → 0, an element of degree 5
      
 
     
  
    Restriction map to a maximal el. ab. subgp. of rank 4
  
    
      -  a_1_0 → 0, an element of degree 1
      
 
      -  b_1_1 → 0, an element of degree 1
      
 
      -  b_1_2 → c_1_3, an element of degree 1
      
 
      -  b_2_4 → c_1_2·c_1_3 + c_1_22, an element of degree 2
      
 
      -  a_3_2 → 0, an element of degree 3
      
 
      -  a_3_4 → 0, an element of degree 3
      
 
      -  b_3_7 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
      
 
      -  b_4_10 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_24 + c_1_1·c_1_33
    + c_1_12·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
       
      -  c_4_11 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
    + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_33    + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3    + c_1_02·c_1_22, an element of degree 4
       
      -  c_4_12 → c_1_34 + c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
    + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_33    + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22    + c_1_04, an element of degree 4
       
      -  a_5_9 → 0, an element of degree 5
      
 
     
 
 
               
              
              
                
               
               |