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Abstract

We investigate an algorithmic model based first of all on Luhmann’s description
of how social order may originate [N. Luhmann, Soziale Systeme, Frankfurt/Main,
Suhrkamp, 1984, p. 148-179]. In a basic “dyadic” setting, two agents build up ex-
pectations during their interaction process. First, we include only two factors into
the decision process of an agent, namely, its expectation about the future and its ex-
pectation about the other agent’s expectation (called “expectation-expectation” by
Luhmann). Simulation experiments of the model reveal that “social” order appears
in the dyadic situation for a wide range of parameter settings, in accordance to Luh-
mann. If we move from the dyadic situation of two agents to a population of many
interacting agents, we observe that the order usually disappears. In our simulation
experiments, scalable order appears only for very specific cases, namely, if agents
generate expectation-expectations based on the activity of other agents and if there
is a mechanism of “information proliferation”, in our case created by observation
of others. In a final demonstration we show that our model allows the transition
from a more actor oriented perspective of social interaction to a systems-level per-
spective. This is achieved by deriving an “activity system” from the microscopic
interactions of the agents. Activity systems allow to describe situations (states) on
a macroscopic level independent from the underlying population of agents. They
also allow to draw conclusions on the scalability of social order.

Keywords: networks, system theory, coordination, double contingency, self-organization,
learning, artificial chemistry
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1 Introduction

How is social order possible? This is one of the most fundamental question of sociology
since its beginning. Several answers have been given in the last 350 years, such as: social
order is generated by a powerful state, the Leviathan (Hobbes 1651); by an “invisible
hand” (Smith 1776); by norms (Durkheim 1893), which are legitimated by values located
in a cultural system of a society (Parsons 1937; Parsons 1971); or by rational choice of
action in consideration of a long common future (shadow) (Axelrod 1984).
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Another prominent proposal refers to the problem of double contingency. Parsons (1968),
p. 436, has formulated this problem as follows1 : “The crucial reference points for analyz-
ing interaction are two: (1) That each actor is both acting agent and object of orientation
both to himself and to the others; and (2) that, as acting agent orients to himself and to
others, in all of primary modes of aspects. The actor is knower and object of cognition,
utilizer of instrumental means and himself a means, emotionally attached to others and
an object of attachment, evaluator and object of evaluation, interpreter of symbols and
himself a symbol.”

Following Parsons (1968), Luhmann (1984) identified the problem of double contingency
as the main problem of producing social order. The problematic situation is this: two
entities2 meet each other. How should they act, if they want to solve the problem of
contingency, that is, if necessities and impossibilities are excluded?3

Parsons’ solution for this problem - a consensus on the basis of a common shared symbol
system - was strongly criticized, because the question how a common shared symbol
system can develop before social order emerges cannot be answered any longer in the
context of the situation of double contingency. As Parsons admits: ”This is one sense in
which the dyad is clearly a limiting case of interaction. However isolated a dyad may be in
other respects, it can never generate the ramified common culture which makesmeaningful
and stable interaction possible. A dyad always presupposes a culture shared in a wider
system. Furthermore, such a culture is always the product of a historical’ process long
transcending the duration of a particular dyadic relationship.” (Parsons 1968), p. 437.

Luhmann’s assumptions for the solution of the problem of double contingency are more
basic, in so far as he searches for a solution not in the social dimension as the consensus
would be, but in self-organization processes in the dimension of time. In a first step an
entity would begin to act tentatively, e.g., with a glance or a gesture. Subsequent steps
referring to this first step would be contingency reducing activities, so that the entities
would be able to build up expectations. As a consequence, a system history develops.
Beginning from this starting point further mechanisms could be instituted to generate
order, such as confidence or symbolic generalized media4. Thus, social structures, social
order or social systems are first of all structures of mutual expectations. That is, every
entity expects that the other entity has expectations about its next activity.

In this paper we model and simulate the situation of double contingency as the origin of
social order. We shall concentrate on specific aspects of fundamental order formation

1In an earlier version, Parsons’ (1951) solution for the problem of double contingency had a much
more economical bias. See also (Münch 1986).

2The term “entity” denotes what Luhmann (1988) called “Ego” and “Alter” in Chapter 3 (pp. 148),
and Parsons called “actor”.

3One of Luhmann’s basic assumptions is that both actors are interested in solving this problem. Luh-
mann (1984), p. 160: “No social system can get off the ground, if the one who begins with communication,
cannot know or would not be interested in whether his partner reacts positively or negatively.”. But the
question remains: Where does the motivation (interest) come from? According to Luhmann, an answer
should not consider actor characteristics (like intentions) as starting point for system theory. We think
that Luhmann falls back to his earlier anthropological position (see Schimank (1988), p. 629; Schimank
(1992), p. 182) and assumes a basic necessity of ”expectation-certainty”, that is, that Alter and Ego want
to know what is going on in this situation. A fundamental uncertainty still remains and takes further
effect in the emerged systems as an autocatalytic factor. See also the approach to formulate “double
contingency” from the perspective of a communication network as provided by Leydesdorff (1993), pp.
58f.

4For new simulation experiments about the genesis of symbolic generalized media, see (Papendick and
Wellner 2002)
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Figure 1: Two agents interact by showing signs symbolizing messages.

by beginning with an actor-theoretical framework as formulated by Parsons. The actor-
theoretical approach allows the transition to a multi-agent system and to switch to a
system level perspective.

Notably, we do not consider approaches like those including aspects of rationality (Lep-
perhoff 2000) or game theory (Lomborg 1996; Taiji and Ikegami 1999). Instead, we model
and analyze the way of producing “social” order, from the basic assumptions of the sit-
uation of double contingency: a dialectic constellation, mutual inscrutableness, necessity
of expectation-expectation and expectation-certainty and no external assumptions, e.g.,
norms or values.

2 The Model

The model consists of agents exchanging messages. The basic model is dyadic and re-
stricted to two agents called A and B, or Ego and Alter, respectively. There areN different
messages used and recognized by the agents. There is no a priori relationship between
messages. Two agents interact only by exchanging message. Messages are exchanged
alternatively. This means that Agent A sends one message out of N possible messages.
After receiving this message, Agent B sends one message on his part; and so on.

We can imagine that each agent displays the message he would like to send on a sign he
holds (Fig. 1). In our case, the message is just a number written on the sign. An activity
of an agent consists of changing the number on his sign after observing the sign of the
other agent.

Discussion: We prefer to use the term “activity” because Luhmann’s concept of communication
is much more complex than the communication processes among the agents in our model; see
also (Hornung 2001). We cannot use the term “action” as understood by Parsons, because our
agents do not show a meaningfully motivated behavior that is oriented toward other agents
according to certain goals, means, and a symbolic reference framework rooted in the situation.
Therefore, our agents decide to do something we call “activity” - no more and no less.

For Luhmann every communication consists of a selection triple based on the three distinctions
(1) information, (2) transmission (German: Mitteilung), and (3) understanding (see Luhmann
(1984), Chapter 4). Our agents do not communicate in that sense, but we could take their
interaction as an abstract model of communication dispensing from the distinction between
message, information and meaning. Since it just represents the transmission of information, it
is not an accurate model for Luhmann’s communication concept. In this contribution, however,
we are just interested in the process of order formation and have removed many details for the
sake of simplicity.
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2.1 Motivation and Activity Selection

What are the agents’ motives that influence the selection of a specific activity? Selecting and
performing activity i is equivalent to displaying a particular number i on the sign.

Here, we consider two fundamental motives: (1) expectation-expectation (EE): an agent
wants to meet the expectations of the other agent, (2) expectation-certainty (EC): the
reaction of the other agent following its own activity should be as predictable as possible. Note
that both motives might contradict each other.

Agent A selects an activity in the following way: (1) For each activity i it determines how
much i is expected by Agent B (expectation-expectation). (2) It then determines how well
the reaction of Agent B following activity i can be predicted (expectation-certainty). (3) It
combines both values by a weighted sum in order to arrive at the activity value. Activity values
are calculated ”weights” for each possible activity that are used to select an activity: The larger
an activity value, the more probable that the corresponding activity is selected. The impact
of randomness can be easily varied in our model by adjusting a parameter called γ between 0
(maximum randomness) and ∞ (maximum determinism), as can be seen by Eq. 3 below.

A more precise description follows:

1. For each possible activity i ∈ {1, 2, . . . , N} compute:

(a) expectation-expectation wi
EE = lookup(Mego,mreceived, i)

Here, an agent estimates the probability that Agent B expects activity i to be per-
formed next by Agent A. The value is determined by accessing A’s memory Mego

which has stored responses of Agent A to activities of Agent B. mreceived is the last
activity of Agent B to which Agent A has to respond now. In other words, mreceived

is the number that Agent B displays on its sign. Roughly speaking, the function
lookup(Mego,mreceived, i) returns how often Agent A has reacted with activity i to
activity mreceived in the past. In order to model forgetting, past events long passed
are counted less than recent events (see Sec. 2.2.1, below).

(b) expectation-certainty wi
EC = fcertainty(lookup(Malter, i))

In order to calculate the certainty of the future, Agent A possesses a second memory
Malter, which stores how the other agent has reacted to A’s activities. So, using
this memory, A can predict what B might do as a response to A’s potential activity
i. Consulting A’s alter-memory by calling the function lookup(Malter, i) results in
a vector (p1, . . . , pN ) containing N values. A value pj ∈ [0, 1] of this vector is an
estimate of the probability that Agent B responds with activity j to activity i of
Agent A. The expectation-certainty is measured by the function fcertainty. The
input of that function the vector (p1, . . . , pN ). The function fcertainty returns a
certainty of 0.0, if all values of the vector are the same, e.g., (1/N, 1/N, . . . , 1/N),
since in that case the agent has no information (there is no distinction possible).
The highest certainty (value 1.0) is returned for a vector that consists of zeros but
a single value 1, e.g., (1, 0, 0, . . . , 0). For this work we measure the certainty by the
Shannon entropy (Shannon and Weaver 1949):

fcertainty(p1, p2, . . . , pN ) = 1 +
N

∑

i=1

pi logN pi. (1)

(See Sec. 9.5 in the Appendix for alternative certainty measures.)

(c) activity value wAV = normalize(f(w1
EE , w1

EC), f(w
2
EE , w2

EC), . . . , f(w
N
EE , wN

EC))
The expectation-expectation wi

EE and the expectation-certainty wi
EC are combined

by function f and the result is normalized in order to calculate the activity value
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wi
AV . The parameter α specifies the fraction of EC contained in the activity value.

f is a linear sum plus a small additive constant:

f(EE,EC) = (1− α)EE + αEC +
cf
N

, (2)

with cf being a constant parameter. The addition of cf/N prevents an activity value
from approaching zero on order to avoid artifacts. Division by N assures that the
influence of the constant summand does not increase with increasing N . For the
experiments presented here we have chosen cf = 0.01 so that there is always at least
a small chance for each activity to be selected. In a situation where an agent is
rather sure what to do and proportional selection (explained below) is used, there is
a chance of about 1% that an activity is selected different from the most probable
one. In case of quadratic selection (γ = 2) the “error” probability caused by cf is
about 0.2%. (See Sec. 9.1 in the Appendix for a detailed discussion of cf .)

2. activity probabilities wAP = g(wAV )
The activity values are scaled by the selection function g : RN → RN :

g(w1, w2, . . . , wN ) = normalize(wγ
1 , w

γ
2 , . . . , w

γ
N ). (3)

The parameter γ allows to control the influence of randomness (see below). Note that γ
is an exponent in Eq. (3).

3. Randomly select activity i such that the probability of activity i is wi
AP .

As indicated, selection is controlled by a parameter γ. The larger γ the smaller the influence
of randomness. For simplification we have defined the following selection methods based on
different choices for γ:

• Maximizing selection(γ =∞): Choose activity i with largest activity value wi
AV . (The

rational choice.)

• Proportional selection(γ = 1): Randomly choose activity i such that the probability
of i is proportional to activity value wi

AV .

• Quadratic selection (γ = 2) Randomly choose activity i such that the probability of i
is proportional to the activity value wi

AV squared.

2.2 The Memory and Prediction Component

Our agents possess memory in order to store observed events. Stored observations are subse-
quently used to predict future events. The ability to predict future events is necessary in order
to build up expectations, which are an important component of Luhmann’s description of the
genesis of social order (Luhmann (1984), Chapter 4).

Note that forgetting is an important feature of the memory. Only if agents forget events, they
free capacity for new situations. If they would store everything, the capacity of information
processing would run down quickly or the simulation experiments would require unproportional
computational resources. So, memorized objects emerge by the repression of forgetting. One
can say that the memory in general connects activities.

Our agent implementation has been designed with two memory modules for each agent, one for
storing its own responses and one for storing the other agent’s responses. We will call these
memory modules ego-memory Mego and alter-memory Malter, respectively. An event to be
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be stored in memory, is a pair (a, b) ∈ M2 where a ∈ M is a message (or activity) and b is the
response to a, M = {1, 2, . . . , N}.

We formalize the memory as an abstract data type called Memory with the following interface
functions:

memorize : Memory ×M×M →Memory (4)

lookup : Memory ×M×M → [0, 1] (5)

The function memorize stores an event in memory5. Given a memory M ∈ Memory, calling
lookup(M, a, b) returns the estimated probability that the event (a, b) will be observed, e.g., the
estimated probability that an agent responds to activity a with activity b. Mathematically, we
demand that the output of lookup is a quantity with features of a probability, i.e., normalized
for each memory M:

N
∑

b=1

lookup(M, a, b) = 1, lookup(M, a, b) ≥ 0, for all activities a, b ∈M. (6)

In order to simplify the following formalism we define a function which returns a vector of all
estimated probabilities for every possible response to message a:

lookup(M, a) = (lookup(M, a, 1), lookup(M, a, 2), . . . , lookup(M, a,N)). (7)

2.2.1 The Simple Neuronal Memory

In the previous section we have described the memory as an abstract data type by specifying
interface functions and their general meaning. In our simulation software many different memory
models are implemented (see Sec. 9.4 in the Appendix), with each possessing the same interface
functions. In this contribution a simple neuronal memory is used as defined by:

Representation: A memory M is represented by a N × N dimensional matrix (ma,b) called
memory matrix. This matrix (ma,b) is manipulated by the following initialization, memoriza-
tion and lookup procedures:

Initialization: The matrix is initialized with ma,b = 1/N .

Memorize(M, a, b): First, we increase the entry in the memory matrix given by the index
(a, b) by the learning rate rlearn

6 :

ma,b := ma,b + rlearn. (8)

Then we increase all entries by the forgetting rate rforget divided by the number of activities N :

∀i, j ∈ {1, . . . , N} : mi,j := mi,j +
rforget

N
. (9)

Finally we normalize every line of the memory matrix:

∀i, j ∈ {1, . . . , N} : mi,j :=
mi,j

∑N
k=1 mi,k

. (10)

Lookup(M, a, b): Return the entry of the memory matrix given by index (a, b):

lookup(M, a, b) = ma,b. (11)

5Storing an event (a, b) in memory M is achieved by calling M′ := memorize(M, a, b). M ′ is the new
memory (or the new state of the memory), which is created by inserting (a, b) into M.

6With increasing learning rate, the number of different messages, used by the agents, decreases (see
Sec. 9.2 in the Appendix). Qualitatively, the relative behavior of the model is independent of the choice
of the learning rate (above 0.2).
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2.3 Example

As an example we take a look at the first three steps of a simulation experiment with the following
settings: Two agents (dyadic world scenario), N = 2 different activities, normal learning rate
rlearn = 0.1 and forgetting rate rforget = 0.01, EE-EC ratio α = 0.5, quadratic selection method,
γ = 2.

After initialization the state of Agent A looks like:

Agent A at time step 0

presented message on sign: 1

ego-memory: 0.500000 0.500000

0.500000 0.500000

alter-memory: 0.500000 0.500000

0.500000 0.500000

Agent B looks like:

Agent B at time step 0:

presented message on sign: 1

ego-memory: 0.500000 0.500000

0.500000 0.500000

alter-memory: 0.500000 0.500000

0.500000 0.500000

Note that the “presented message on sign” is initialized randomly. Here, by chance it is initialized
with activity 1 in both cases.

Now Agent A has to select an activity. The activity of Agent B (equal to the number on the
sign presented by Agent B) has been activity 1. So, A has to react to activity 1.

For this purpose a couple of calculations have to be performed: First, A tries to estimate, what
kind of activity Agent B expects from him. A is doing this estimate by consulting his (A’s)
ego-memory:

w1
EE = lookup(Mego, 1, 1) = 0.5, w2

EE = lookup(Mego, 1, 2) = 0.5.

Second, the expectation-certainty is calculated by using the alter-memory:

w1
EC = 0.0, w2

EC = 0.0.

This means, that Agent A has no information about what can happen once he performs activity
1 or activity 2. Practically, these two values are calculated by taking the entropy of the two
rows of the alter-memory. Recall that the first row of the alter-memory represents the estimated
probabilities describing how the other agent might react to activity 1 and the second row how
he might react to activity 2.

Next, EE and EC are combined by function f :

f(0.5, 0.0) = 0.26, f(0.5, 0.0) = 0.26,

and the result is normalized to arrive at the activity values:
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w1
AV = 0.5, w2

AV = 0.5.

Finally, the activity values are scaled by the function g in order to get activity probabilities. In
our example, this action will not change anything, since both activity values are the same. So
we have:

w1
AP = 0.5 w2

AP = 0.5

We can summarize the decision process of Agent A as follows:

i = 1 i = 2
expectation-expectation wi

EE 0.5 0.5
expectation-certainty wi

EC 0.0 0.0
f(wi

EE , wi
EC) (not normalized) 0.26 0.26

activity value wi
AV 0.5 0.5

activity probabilities wi
AP 0.5 0.5

In this situation, A selects an activity randomly, since the probability is the same for each
activity. In our example, Agent A selects activity 1. This activity, or more precisely, the
activity pair (1, 1) has to be stored in A’s ego-memory. Additionally, B stores the activity pair
(1, 1) in its alter-memory, since B’s alter-memory stores what A has done.

Let us look at the new state of both agents:

Agent A at time step 1:

presented message on sign: 1

ego-memory: 0.545045 0.454955

0.500000 0.500000

alter-memory: 0.500000 0.500000

0.500000 0.500000

Agent B at time step 1:

presented message on sign: 1

ego-memory: 0.500000 0.500000

0.500000 0.500000

alter-memory: 0.545045 0.454955

0.500000 0.500000

As we can see, entry (1,1) in A’s ego-memory has increased, whereas entry (1,2) has decreased.
The same is true for B’s alter-memory.

Now it is B’s turn. B has to react to A’s activity 1. So, B calculates:

i = 1 i = 2
expectation-expectation wi

EE 0.5 0.5
expectation-certainty wi

EC 0.005863 0.0
f(wi

EE , wi
EC) (not normalized) 0.262931 0.260000

activity value wi
AV 0.502803 0.497197

activity probabilities wi
AP 0.505605 0.494395
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We can observe that the expectation-certainty for activity i = 1 is greater than for i = 2 now,
since B has already observed one time how A has reacted to activity 1. See the first row of
B’s alter-memory from which the expectation-certainty of activity 1 is calculated (0.00586 =
fcertainty(0.545045, 0.454955)).

We can also see that the activity probability for activity 1 (0.505605) is larger than its activity
value (0.502803). This is a result of scaling by g with exponent γ = 2 (quadratic selection). To
give an example for how to calculate the activity probability for activity 1:

0.505605 =
0.502803γ

0.502803γ + 0.497197γ
=

0.502803× 0.502803

0.545872× 0.545872 + 0.497197× 0.497197
. (12)

B selects an activity randomly with probability of about 51% for activity 1 and probability of
about 49% for activity 2. In our example Agent B selects activity 1. After storing the activity
pair (1, 1) in B’s ego-memory and A’s alter-memory, the state of both agents is as follows:

Agent A at time step 2:

presented message on sign: 1

ego-Memory: 0.545045 0.454955

0.500000 0.500000

alter-memory: 0.545045 0.454955

0.500000 0.500000

Agent B at time step 2:

presented message on sign: 1

ego-memory: 0.545045 0.454955

0.500000 0.500000

alter-memory: 0.545045 0.454955

0.500000 0.500000

Now it is A’s turn. He has to react to B’s activity 1. So, A calculates:

i = 1 i = 2
expectation-expectation wi

EE 0.545045 0.454955
expectation-certainty wi

EC 0.005863 0.0
f(wi

EE , wi
EC) (not normalized) 0.285454 0.237477

activity value wi
AV 0.545872 0.454128

activity probabilities wi
AP 0.590979 0.409021

We can see that A’s expectation-expectation for activity 1 (0.545045) is larger than the
expectation-expectation for activity 2 (0.454955). This means that A thinks that B expects
activity 1 more likely than activity 2 to be performed by A. Now, A selects an activity randomly
with a probability of about 59% for activity 1 and a probability of about 41 % for activity 2.

And so on...

3 Results

We have performed a large number of simulation experiments in order to investigate the behavior
of our model. There are three main results:

(1) In the dyadic situation (two agents) order appears for a wide range of parameter settings.
We may say that “Luhmann has been right” that the process he describes leads to order in the
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dyadic situation. In a way this is a trivial result, as, e.g. also stated by Parsons, who clearly
saw that the dynamics within sub-systems may generate a kind of ordered “coevolution”. Our
model, however, allows to study further, which factor possesses which kind of influence, as we
shall show in Sec. 5. (For a more detailed analysis of the dyadic situation see (Kron and Dittrich
2002)).

(2) The appearance of order in the dyadic situation does not necessarily allow to infer that order
appears in the multi-agent case. In Sec. 6 we show that the scalability of order formation depends
critically (a) on how the agents calculate their expectation-expectation and (b) on the presence
of a mechanism that allows information transmission between agents, in our case achieved by
introducing observers.

(3) Our model allows to demonstrate the transition from an actor-oriented perspective to a
system level perspective. In Sec. 7 we demonstrate how we can derive an activity system from
the microscopic interactions of agents. The communication system allows to describe a situation
(state) independent from the underlying population of agents.

4 How to Measure Social Order?

Before we can observe order formation in our model, we have to clarify: What does it mean for
a system to be ordered? Here order is measured in the following ways:

(1) Average number of different activities selected during a time interval:

We measure the average number of different activities used by the agents during a time interval
of a constant number of steps (here, 50 steps). The lower that number, the higher the order,
because the larger is the contingency reduction. That is, for an observer order appears if there
are few alternatives that come into consideration for the agents. This measurement, however,
makes only sense if the number of different activities in that interval is much smaller than the
length of the interval. 7

(Data can be found in log-file: runName.msgstat)

(2) Certainty of activity values - average certainty OAV :

One elegant way to measure order is to apply the same function used to calculate certainty. In
a way, in doing so we would take an actor-oriented perspective to measure order.

The certainty function is simply applied to the activity values or activity probabilities of an
agent, respectively. Thus the resulting values estimate how certain an agent is when he selects
a message. A high value represents high certainty and thus high order. Formally we define:

OAV = fcertainty(w
1
AV , w2

AV , . . . , wN
AV ) (13)

and
OAP = fcertainty(w

1
AP , w

2
AP , . . . , w

N
AP ). (14)

In the following we will use OAV only, since it is very similar to OAP and because taking OAP

into account has not lead to different conclusions.

(OAV and OAP data can be found in log-file: runName.log)

(3) Predictability of an activity - systems level order OP :

Here we measure how predictable an activity of a randomly drawn agent Ego is, given the
activity presented on the sign by another randomly drawn agent Alter.

7Alternatively we can measure the number of different activity-reaction pairs (a, b) occurring in a time
interval.
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To measure the predictability we can use fcertainty again:

OP =
1

M

N
∑

i=1

Mifcertainty(pi,1, pi,2, . . . , pi,N ) (15)

where pi,j is the probability that a randomly drawn agent reacts with activity j to the displayed
message i of Alter. Mi is the number of agents displaying message i. The matrix (pi,j) can be
interpreted as the average behavior matrix of the whole population.

In order to get an intuitive understanding of the systems level order imagine the following game:
An external player has to predict the activity of the agents. At the outset the player can take a
look at the internal state of every agent. Then, in each turn, an agent is chosen randomly, the
activity number i on his sign is shown to the player. (Note that the agents are anonymous, so
that the player does not know which agent possesses what kind of internal state). Then, again
an agent is chosen randomly from the population and the player has to predict the reaction of
that agent to the activity number i. For each correct prediction the player receives a point. The
state of the agents is not altered during the game, so they are not allowed to learn during the
game.

The larger the systems level order OP is, the higher is the maximum average score that the
player can achieve. For OP = 0 the player cannot perform better than just guessing randomly.
For OP = 1 the player can predict the reaction correctly in each turn.

Note that this measure makes sense only if the number of agents is large compared to the number
of messages actively used.

Sociologically we can interpret the value OP as a measure of integration. Integration with
regard to society, “social integration”, is a very important term in sociological theory even if
it is not definitely clear what it means, because the integration of society could be observed
from different analytical perspectives (Münch 1997). The core of social integration consists of a
situation of society where all of its particles are stably affiliated with each other and build up a
unit which is marked-off outwards. So, in modern societies on the one hand we can differentiate
between economical integration, the accentuation of exchange, free contracts, and the capitalistic
progression of wealth; political integration, the accentuation of the importance of the exertion
of political enforcement by means of national governance; cultural integration, the accentuation
of compromise by discourse on the basis of mutually shared reason; and solidarity integration,
the accentuation of the necessity of modern societies to generate free citizenship in terms of
networks of solidarity. On the other hand we can observe the systemic integration (Schimank
1999). The accentuation here lies on the operational closure of the system. If a (activity)
system is operationally closed it is in the position of being able to accept highest complexity
of its environment, to pick up and to process this complexity in itself without to imperil its
existence. We interpret the value OP as a measure of systemic integration. In all our simulation
experiments a high value of OP has indicated a closure of the emerging activity system. This
means that the better the agents are able to predict the activities of other agents as reactions to
their own activity selections, the more the communication system appears to be operationally
closed, that is certain activities follow certain activities.

(Data can be found in runName.op8)

8In order to calculate OP you have to set the parameter writeOP=1
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5 Behavior of the Basic Dyadic Model

In this section we analyze the properties of our basic model by systematic simulation experi-
ments. In the basic model, only two agents are present interacting alternately. We investigate
this “dyadic world” intensely, because it is the situation as described by Parsons and Luhmann.
In the next section (Sec. 6) scalability is investigated, i.e., the number of agents is increased.

For the dyadic world we investigate the influence of various parameters, namely, (1) the number
of possible activities N , (2) the influence of the selection method γ (equal to the influence of
randomness), and (3) the influence of the EE-EC weighting factor α.

In order to show the average behavior of the model we have performed at least 20 independent
runs for each parameter setting, only varying the random seed. Before looking at the average
behavior we present a single run as example.

5.1 Example of a Single Run

Figure 2 shows a typical complex simulation experiment of the dyadic situation. There are
N = 64 potential activities. The agents are using expectation-expectation only (α = 0.0) and
the selection method is something in between proportional and quadratic selection (γ = 1.5).
The parameter setting is an example for a case where complex behavior appears.

We can see in Fig. 2 that at the outset the average certainty of the agents is low. This means
that they are not very sure about what to do, because their memories do not contain much
information. Therfore, the calculated activity values are similar. An activity is selected more or
less randomly, so that at the beginning many different activities are performed.

Then, during learning, the number of different activities decreases quickly. So, in the so called
transient phase (about step 0 - 400) the certainty increases, on average.

In generation 400 a highly ordered state appears where the agents are sure what to do and only a
few activities are used. We will refer to that state as an emergent activity system later (Sec. 7).
Here, each agent uses four different activities, but Agent A acts different from Agent B. Both
agents are sure what the other one expects. So the situation is quite stable.

Interestingly, at time step 1950 a heavy disturbance appears, which leads to a drop of the average
certainty and a relatively complex, much more disordered phase (step 1950-2200). How could
it happen that an activity system which is stable over a relatively long time breaks down after
such a disturbance? We can only understand this system-breakdown if we analyze the agents:

Agent B initiated the disturbance by an unexpected activity9, which confused the other agent
(Agent A): This means that A was not able to calculate the expectation-expectation of B in
that situation, since B suddenly used a completely unusual activity. Hence agent A reacts
more or less randomly.10 This nearly random reaction confuses agent B in turn. The mutual
confusion may be amplified, as is the case in this example, by further reactions and result in a
heavy disturbance, which later gives way to a new relatively stable state. This new stable state
consists of an activity pattern with five different activities used by each agent.

In this example we can also see that an activity pattern (or system) can be stable against small
disturbances which appear, for instance, at steps 3200 and 3700.

Note: Given that agents sometimes act randomly, we cannot expect (or deduce) that periods of
stability and periods of instability exist for chance reasons. A small (structural) change of the

9Note that in our simulation there is always a small chance for every activity to be selected.
10“More or less randomly” means that there are some very small memory traces left. Thus the reaction

is not fully dictated by chance. Note also that when we add expectation-certainty the situation will be
different.
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Figure 2: A complex example of a single run of the dyadic situation. There are N = 64
potential activities. The agents are using expectation-expectation only (α = 0.0). The
selection method is something in between proportional and quadratic selection (γ = 1.5).
Learning rate rlearn = 0.2. Forgetting rate rforget = 0.001. cf = 0.010000.
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Figure 3: Average number of different activities in an interval of 50 time steps for different
N . Measurement started at time 500 after the transient phase at the beginning. Simulation
time: 1000 time steps for each run. Parameter setting: normal learning rate rlearn = 0.2,
low forgetting rate rforget = 0.001, proportional selection γ = 1.

model may lead to a new model where the “periods of stability” are asymptotically stable with
large basins of attraction. Under those conditions disturbances caused by occasional random
activities would not lead to a situation of instability.

5.2 Influence of the Number of Activities N

According to Luhmann the number of possible activities N has a strong influence on the genesis
of social order, since contingency reduction increases with increasing number of activities.

In order to investigate the influence of the total number of allowed activities N , we performed
simulations with learning rate rlearn = 0.2, forgetting rate rforget = 0.001, and different EE-EC
factors α = 0.0, 0.5, 1.0.

Figure 3, upper graph, shows how the average number of different messages in an interval of
50 times steps depends on the total number of possible activities N (for proportional selection,
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Figure 4: Same as in Fig. 3, but with a lower influence of randomness (γ = 1.5).

γ = 1). Let us take a look at the curve for α = 0.5: We can see that activities are not chosen
totally at random and that there must be a certain order. The green curve in the upper diagram
of Fig. 3 can be interpreted as follows: If we look at a randomly chosen interval of 50 time steps
(t > 500) and count the number of different activities appearing in that interval, we will observe,
on average, about 29 different messages for large N (e.g., N = 300). This is much less than the
number of different messages one would observe, if agents chose their activities randomly out of
{1, 2, . . . , N}.

If we decrease the influence of randomness by increasing γ, this effect becomes more pronounced.
Figure 4 shows the same as Fig. 3, but with γ = 1.5. We can see that, as expected, the number
of different activities used by the agents is much smaller than for γ = 1.0. The degree of order
is quite high and does not decrease for an increasing number of possible activities. Thus, it
is reasonably safe to conclude that order appears for an arbitrarily large number of possible
activities, provided γ is chosen sufficiently high.
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Figure 5: Average number of different activities in an interval of 50 time steps for different
α. Measurement started at time step 500, such that the transient phase at the beginning is
not considered. Simulation time 1000 time steps for each run. Parameter setting: normal
learning rate rlearn = 0.2, low forgetting rate rforget = 0.001, number of activities N = 20.

5.3 Influence of the Selection Method γ and EE-EC Factor α

As said before, the activity selection of an agent depends on two factors, namely, expectation-
expectation (EE) and expectation-certainty (EC). Both factors are lumped together by a
weighted sum, with α the weight for EC (Eq. (2)) and (1 − α) the weight for EE. Roughly
speaking, the larger α, the more an agent tries to select an activity such that the future becomes
predictable. A small α means that an agent tries to meet the expectation-expectation of the
other agent.

In Fig. 5 we can see how the average number of different messages in an interval of 50 steps and
the average certainty OAV depend on the relation of EE to EC α. This leads to an interesting
result: If agents take into account the expectation-expectation (EE) only, or if they take into
account the expectation-certainty (EC) only, a relatively high average certainty OAV results. If
a mixture of EE and EC is used, e.g., α = 0.5, then the average certainty OAV is much lower.
It is interesting to note that for α = 0 (EE only) the average expectation certainty OAV is high
(about 0.58), even if the average number of different activities used is large (about 15 activities).
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Figure 6: Average number of different messages (activities) in an interval of 50 time
steps for different γ. Measurement started at time step 500 after the transient phase at
the beginning of runs. Simulation time 1000 time steps for each run. Parameter setting:
normal learning rate rlearn = 0.2, low forgetting rate rforget = 0.001, number of activities
N = 20.

In our model the selection method depends on a parameter γ ∈ [0,∞]. For γ = 0, agents choose
their activities totally randomly from the set {1, 2, . . . , N} of possible activities (each activity
with same probability). In Fig. 3 we showed experiments with γ = 1, in which the probability
that an activity i is chosen is proportional to its activity value wi

AV .

Figure 6 demonstrates how the behavior of our model depends on γ. We can see that for
increasing γ (increasing determinism of activity selection) the influence of α on OAV and on the
average number of different activities used is reduced. But looking at Fig. 6 we can see also
that the influence of α is high only for the transition phase from disordered to ordered behavior
(0.5 < γ < 2). We will see that in the multi-agent case α will become much more important.

If we look at the correlation between α and γ for γ < 1.2 we can observe an interesting phe-
nomenon: Just trying to meet the expectations of the other leads to a better predictability of
the future than choosing an activity according to an estimate of future’s predictability based on
the own experience (memory). This phenomenon, however, is not general, rather it appears for
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specific parameter settings (in our case γ < 1.2, s. Fig. 6) and seems to be amplified especially
in the multi-agent scenarios (see Sec. 6.2 and Sec. 6.3).

6 Scaling Up - The Behavior of a Population of Many

Agents

In this section we will investigate the scalability of our model. We will look at the behavior of
many agents interacting based on the same mechanism as in the previous section. Note that
Luhmann has described the situation of double contingency as an interaction of two entities.
But there is no discussion in the literature how this might scale up. Luhmann’s answer to this
problem is that systems would “emerge” from the outset of the situation of double contingency
and would sustain themselves through self-organization (see also Luksha (2001)). Thus, an
investigation of scalability would not be necessary because social systems and psychic systems
would be strictly separated by their operations (communication vs. thinking). Exactly at
this point a more detailed explanation of the emergence is missing (Esser (2000), p. 1-29):
Luhmann does not explain if and how the genesis of social systems is possible in the case
of multi contingency, although multi contingency is more “empirically realistic” than double
contingency. And, of course, multi contingency is a non-linear phenomenon and cannot just be
thought of as a summation of double contingency situations (assuming linearity).

As we will see in the following section, scalability in the terms of increasing numbers of agents
decreases the probability for the emergence of order dramatically. In order to arrive at an
ordered behavior we have to choose our parameters much more carefully than for the dyadic
situation.

The aim of the following investigation is to identify those parameters and mechanisms that are
important for the formation of order under the condition of increased numbers of agents.

6.1 Using the Ego-Memory to Calculate the Expectation-

Expectation

In order to simulate a population of many agents we have to change the algorithm for interaction
slightly:

1. Randomly choose an agent from the population and call it Ego.

2. Randomly choose another agent and call it Alter.

3. Let Ego observe Alter’s displayed message a (equal to Alter’s last activity) and let Ego
react to Alter’s message. (Note that only Ego acts, but not Alter.)

4. Ego stores its reaction b in its Ego-memory.
Formally, Ego does: Mego := memorize(Mego, a, b).

5. Alter stores Ego’s reaction b in Alter’s Alter-memory.
Formally, Alter does: Malter := memorize(Malter, a, b).

Figure 7 shows that for a small number of agents, systems level order11 is present. In that
situation a single agent behaves deterministically but usually it behaves differently than other

11Recall that high systems level order means that just by observing the interactions among (non-
learning) agents, it is possible to predict, how an agent in the population will react, without knowing his
internal state nor his identity.
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agents. Thus there is order but not a common activity pattern. From the perspective of an
agent the behavior of the other agents appears to be disordered, because it is not able to
identify individuals. As a result, low systems level order OP can be observed if we increase the
number of agents.

Why are agents in large populations not able to predict correctly the expectations of others? The
reason is that an agent (Ego) calculates the expectation-expectation based on its ego-memory.
Thus Ego uses its own past behavior to predict what the other agent (Alter) expects from it.
This works fine in a dyadic situation, because the other agent has observed the past behavior
of Ego. But in a larger, randomly interacting, population it is unlikely that Alter has met Ego
before and thus the expectations of Alter are (mostly) independent of Ego’s past behavior.

Hence we conclude: For scalable prediction ability Ego must use more information than solely
the memory entries of its own past behavior.

6.2 Using the Alter-Memory to Calculate the Expectation-

Expectation

Now we implement a small but important change in our model. In the basic model an agent has
calculated the expectation-expectation by using its Ego-memory. That means that Ego expects
from Alter that Alter expects from Ego that Ego acts similarly to how Ego acted in the past.

But now an agent uses its alter-memory instead. That means that Ego expects from Alter that
Alter expects from Ego that Ego acts similarly to how other agents acted when encountered by
Ego. So Ego is not using its experience of own activities to generate the expectation-expectation.
Rather, it uses the average behavior of others reacting to his own activities.

The simulation results are shown in Fig. 8. First note that the curves for α = 1 (EC only) are
the same as in Fig. 7, since for α = 1 only the expectation-certainty is used for activity selection
and we have only changed the way how the expectation-expectation is calculated, which does,
however, not influence the EC calculation.

Looking at the red curves, we can see that for α = 0.0 (EE only) the systems level order OP is
much higher than in the previous case (Sec. 6.1). But, as in the previous case, the systems level
order is not scalable and systems level order OP decreases with an increasing number of agents
M . Only for a moderate number of agents (M < 10) we can observe nearly maximal systems
level order (OP close to 1). Thus we can randomly chose two agents from the population, and
can predict exactly how one agent would react to the other, without knowing the internal state
of the acting agent.

The important difference to the previous case is that now every agent acts in the same way (as
we will see later). So there are shared common activity patterns, which we will regard as an
acticity network later on. But, as noted before, this shared behavior can only be “learned” in
small populations (M < 10).

Why is Ego still unable to predict correctly the expectations of others in large populations?
The reason is that Ego observes Alter’s behavior only as a reaction to its own (Ego’s) behavior.
For instance, if Alter shows a sign (activity) that Ego has never used, Ego cannot predict what
Alter expects, because Ego has never encountered an agent that has reacted to that activity.

We can conclude: For scalability it is not enough that Ego uses its memory entries of the
behavior of other agents that react to its (Ego’s) activities.

It might be interesting to note that, although the systems level order is higher and the average
number of activities is smaller than in the previous case of using the Ego-memory, the certainty
of a single agent OAV is lower (for α = 0, and especially for M > 10). It seems that if agents
consider only EE, they are more confused despite a higher systems level order. This does not
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Figure 7: Average behavior of multi-agent simulations where the ego-memory is used for
calculation of the expectation-expectation, as in the basic dyadic scenario. Parameters:
N = 10 activities, γ = 2 (quadratic selection), rlearn = 0.5, rforget = 0.001, cf = 0.01.
Multi agent scenario as described in Sec. 6.1.
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Figure 8: Same as Fig. 7, but alter-memory is used to calculate expectation-expectation
(EE). Multi-agent scenario as described Sec. 6.2.
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mean, however, that the consideration of EC automatically leads to higher systems level order or
certainty. If we look at the green curves showing a mixture of EE and EC (α = 0.5), we observe
an extremely low systems level order OP , a low average certainty OAV , and a high number of
different activities. In sum, the whole system is less ordered12.

6.3 Adding Observers

In a further step we extend the model by allowing an agent to observe the interaction of others.
For this purpose the algorithm is varied:

In each simulation step, do:

1. Randomly choose an agent and call it Ego.

2. Randomly choose another agent and call it Alter.

3. Let Ego observe Alter’s displayed message a (equal to Alter’s last activity) and let Ego
react to Alter’s message. (Note that only Ego acts, but not Alter.)

4. Ego stores its reaction b in its Ego-memory.
Formally, Ego does: Mego := memorize(Mego, a, b).

5. Alter stores Ego’s reaction b in Alter’s Alter-memory.
Formally, Alter does: Malter := memorize(Malter, a, b).

6. Choose n agents randomly and call them observers.

7. Each observer stores Ego’s reaction in its Alter-memory.
Formally, each observer performs Malter := memorize(Malter, a, b) where a is the mesage
displayed by Alter and b is Ego’s reaction.

Note that in every simulation step it is determined anew, who is Ego, Alter, or an observer. So,
the same agent can be Ego in one step and an observer in the next step.

Figure 9 shows that, opposite to the results shown before, systems level order OP corresponds
to the average certainty OAV of single agents.

But only for α = 0 (EE only) the systems level order is high and is scalable; i.e., in all simulation
experiments with α = 0 (EE only) an activity pattern appeared with maximum systems level
order and maximum certainty of agents. One may say that the activity system is completely
integrated and closed (neglecting small random fluctuation due to the constant cf ). What is
more: This phenomenon is scalable! With increasing number of agents order still appears, in
other words the appearance of order is independent of the number of agents. But as said before
this is true only for α = 0 (EE only).

If Luhmann says that expectation-expectation is necessary to generate social order then we can
add: if we do not consider further extensions, such as trust or social networks, in our model
the scalability of social order is just possible under the exclusive consideration of expectation-
expectation (α = 0 , EE only). If expectation-certainty is considered, systems level order
(systemic integration) breaks down with increasing number of agents M for α = 1 (EC only) as
well as for α = 0.5.

Thus, scalability is achieved if (1) Ego uses its alter-memory (which stores interactions
among other agents Ego has observed) to calculate the expectation-expectation, (2) Ego uses

12This non-linearity is not a general phenomenon, because it does not appear if using a different memory
type like the linear degenerating memory (type 04), see Appendix Sec. 9.4.
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Figure 9: Same as Fig. 8, but with n = 3 observers. For α = 0 (EE only), systems
level order is scalable. As in Fig. 8, the alter-memory used to calculate the expectation-
expectation. Multi-agent scenario as described in Sec. 6.3.
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expectation-expectation only for activity selection, and (3) there is at least a certain (minimum)
number of observers who observe activities and learn from these observations.

7 Emergence of Activity Systems - A Systems Level

View

We have started this paper from the microscopic level by specifying the agents and how they act.
Although one can say that Luhmann has also described the situation of double contingency in an
actor-oriented way, the main body of his theory uses a systemic view and does not require any
notion of an actor. In this section we shall therefore also move from the actor-level description
to a systems level description. That is, we shall describe the emerging activity systems in our
simulation experiments as networks (Fuchs 2001) or graphs. This may also help to understand
what is meant by a systemic view of a society.

7.1 Definition of Activity Systems

Recall that we assume a population of M agents and that each agent can select from N different
possible activities {1, 2, . . . , N}. Execution of an activity is equivalent to displaying a sign with
the activity number on it (Fig. 1). Each agent displays only one sign with a number at any
time. For activity selection an agent looks at the sign of a randomly chosen agent and reacts to
the presented number.

We define the activity graph as a directed graph (V,E), where the vertices (nodes) are possible
activities: V = {1, 2, . . . , N}. Two nodes v1, v2 ∈ V are connected by an edge (v1, v2) ∈ E, if
and only if there is an agent in the population that would react to v1 by activity v2. For each
edge (v1, v2) ∈ E we can define a weight w(v1, v2) as the probability that a randomly chosen
agent from the population reacts with v2 when seeing activity v1. (Note that v1 need not to be
shown by any agent in the population.)

For analysis and visualization it is convenient to look at a reduced graph: In an activity graph
with edge threshold τ we keep only those edges whose weights are larger than a threshold
τ . For our model this is appropriate, since agents can react with a low probability with any
activity (if cf > 0 and γ <∞, see also Sec. 9.1). Additionally we can remove nodes that do not
have any incoming edges.

In terms of general systems theory an activity graph is a system. But from the point of view of
Luhmann’s systems theory, we may not call every activity graph a system. In Luhmann’s theory
it is important that there are inner elements belonging to the system and that there are outer
elements belonging to its environment. The system-environment distinction is the precondition
for observing systems.

How should we define an activity system more formally? A first attempt might read:

An activity system consists of a set of activity symbols13 (subset of {1, 2, . . . , N}) where
activity symbols within that set mainly produce activity symbols within that set, and every
activity symbol in that set is produced by activity symbols of that set. This can be expressed
more formally14, e.g.: The set O, O ⊆ {1, 2, . . . N}, is called activity system, if and only if (1)

13Activity symbols are equivalent to an activity.
14Note that we define “activity system” operationally for the purposes of our discussion here. The

definition should show what can be interpreted as an activity system in our model. And the formal form
should make that as clear as possible. It is, however, not a general definition of “activity system”.
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for all v1 ∈ O and v2 /∈ O, w(v1, v2) ≤ τ (property of closure), and (2) for all v2 ∈ O there exists
v1 ∈ O such that w(v1, v2) > τ (property of self-maintenence).

The threshold τ is one way to formalize the fuzzy term “mainly” of the previous informal
definition.

With this definition an activity system is equivalent to a (chemical) organization as defined
by Speroni di Fenizio, Dittrich, Ziegler, and Banzhaf (2000) following Fontana and Buss (1996).
This equivalence allows us to view activity systems as artificial chemistries (Dittrich, Ziegler,
and Banzhaf 2001), which may open a path for a promising and powerful theoretical treatment.

7.2 Examples of Emergent Activity Systems

Figure 10 shows a typical activity graph that has emerged in a simulation experiment with
M = 20 agents, N = 64 possible activities, and no observers. In this particular case, the agents
are using just 15 out of 64 available activities. Using the definition above, we can call the set of
15 activities the elements of an activity system, which can be distinguished from the remaining
elements (activities). There is a transition from every node to every other node within the
system, but there is no transition leading to outer elements, except for those transitions which
occur with very low probability (smaller than 0.01) and which are excluded by the threshold
τ = 0.01. These interferences (perturbations) cannot influence the system in a deterministic
manner. An activity outside the system (exemplified by the node in the upper right corner)
would lead to an activity within the system. So, there is a certain order, which is reflected also
by our systems level order measure equal to OP = 0.39 in the situation shown in Fig. 10.

In Sec. 6.1 we have shown that for the parameter setting used in Fig. 10 order disappears if the
number of agents is increased. Why is the system not scalable? This becomes clear if we look at
agents and how they act. As also shown in Sec. 6.1 the average certainty of activity values OAV

is maximal. This means that every agent is 100% sure of what to do. But every agent is doing
something different (by chance, though, some agents are doing the same). There is no common
“language” or common activity pattern. In fact, every agent selects only one specific activity
– all the time the same – independently of the activity it has encountered. This explains why
systems level order is present only in a small population of agents and why there is a transition
from each node of the activity system to every other node within the system.

Figure 11 shows an example of maximal systems level order OP . The example is taken from
an experiment with M = 10 agents and N = 10 possible activities with agents only using
expectation-expectation based on their alter-memory. (Similar networks appear for “scalable”
parameter settings where observers are included). The agents in the population use only three
activities, namely O = {1, 5, 6}. Within that activity system transitions are practically deter-
ministic: Each agent acts in the same way, which is an important difference to the previous
example. There is a common activity pattern that is shared among all agents. The structure
of the remaining network is a reminiscence of the process in the past during which the activity
system O emerged (see Fig. 14 in the Appendix).

7.3 Is there Autopoiesis?

The results of our simulation experiments show that activity systems have emerged. But are they
autopoietic, like Luhmann stated social systems would be? Per definitionem (by Luhmann), they
are not, since social systems consist of communication and not of activities. But the example
of an emerging activity system in our multi-agent world in Fig. 11 shows that activities 1, 5,
and 6 are completely interlinked. Even (small) disturbance by other activities do not produce
“resonances” the system is not able to cope with. Usually, the system equilibrates itself quickly.
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Figure 10: Typical activity system that has emerged in a simulation experiment with
20 agents, 64 possible activities, and no observers. A node represents an activity. All
nodes without any incoming edges are removed, except for one (upper right corner of the
diagram), which should illustrate how the removed nodes are connected to the “inner”
active network. Parameters: γ = 2, N = 64, α = 1.0, rlearn = 0.2, rforget = 0.001,M =
20. No observers. Ego-memory used for EE calculation. Threshold τ = 0.01. The
corresponding single run is shown in the Appendix, Fig. 13.

27



34 %

15 %

20 %

99 %

23 %

11 %

11 %

18 %

16 %

17 %

20 %

11 %

11 %

37 %

10 %

11 %

25 %

99 %

99 %

22 %

10 %

13 %

14 %

14 %

37 %

15 %

22 %

12 %

27 %

0

1

2

3

4

5

6

7

8

9

Figure 11: Example of an activity system that has emerged in a simulation experiment with
10 agents, 10 possible activities, alter-memory used for EE calculation, and no observers.
A node represents an activity. The sub-set of nodes {1, 5, 6} can be interpreted as an
autopoietic (sub-)system. Parameters: γ = 2, N = 10, α = 0.0, rlearn = 0.2, rforget =
0.001,M = 10. No observers. Alter-memory used for EE calculation. Edges with weights
smaller than τ = 10% have been omitted for clarity. The corresponding single run is
shown in the Appendix, Fig. 14.
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In concordance with Luhmann the activity system is reproduced by an ongoing development
through the production of system elements by elements of the system (Luhmann 1988), p. 71.
This is, what autopoiesis means for Luhmann: Elements are elements just for systems which use
these elements as unity, and the elements are a unity just by the means of the system (Luhmann
1984), p. 43. No individual, person, human being or psychical system, “nothing non-social”
is directly and indispensable involved in the reproduction of the communication system, if we
only take the macroscopic observer perspective. If we look at the network in Fig. 11 we cannot
see the acting agents “behind” this network. The network is independent from its agents, it
operates autonomously (this does not mean: autarchic!). From the vantage point of agents, the
network could be a fiction that sustains itself, since the agents deal with the network as if it
would be real and so it is real as a consequence. In other words, we may interpret the network
as a fiction of its actors, generated and sustained as a self-fulfilling-prophecy (Schimank 1988).

8 Conclusion

In this paper we have demonstrated how a component of a social theory can be formally modeled
and analyzed by simulation in order to reveal its critical determinants. Concretely we have
modeled the situation of double contingency as a fundamental problem in the context of the
formation of social order.

We have investigated a number of factors, such as the memory capacity of agents and the
activity selection method. In summary, we can say that the mechanisms proposed by Luhmann
and others lead to order in the dyadic case.

Taken together, the most important factor in the dyadic situation is the activity selection mech-
anism, or more precisely, the influence of randomness, which is closely related to how well agents
are able to perceive their world (including other agents). The missing description of the activity
selection mechanism is an important deficit in Luhmann’s and Parsons’ theory (Esser (2001),
p. 33-78), since it is so fundamental for an explanatory sociology (Esser 1993). Luhmann has
not specified a rule according to which an entity15 selects an activity among a set of potential
alternatives. Therefore, one cannot explain16 why and under which specific parameter settings
systems appear.

Our thesis is that Luhmann can dispense of this rule if there are systems, but that he cannot
dispense of it for the purpose of explaining the genesis of a system. The reason why Luhmann
did not (want to) consider the activity selection mechanism is that - in his view - social systems
evolve independently of certain actor qualities. Our simulation experiments show that without
the consideration of these qualities an explanation of the genesis of autopoietic communication
systems is not possible or would become trivial. The capacities to perceive, memorize, generalize,
and to make predictions are important properties of social actors. This kind of “cognitive”
capacities should also be present in a computational agent modeling a social actor.

In Sec. 6 we have shown that the scalability of order formation depends critically (a) on how
agents calculate their expectation-expectations and (b) on the presence of a mechanism for
information transmission between agents, in our case achieved by introducing observers. The
resulting behavior is similar to learned imitation (Ikegami and Taiji 1999; Conte and Paolucci
2001).

We have found that for scalable systems level order, (a) Ego must not use (solely) its memories of
his own past behavior to predict what Alter expects from it, (b) it is not sufficient that Ego uses

15Here, “entity” refers to Ego and Alter in Luhmann’s (1984) explantation of the situation of double
contingency. Note that an “entity” needs not to be a human person.

16In terms of Hempel and Oppenheim (1948).
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its memories of the behavior of other agents that react to its (Ego’s) activities. Scalable systems
level order appeared if (a) the agents use only expectation-expectation for activity selection,
and (b) if the expectation-expectation is generated from observations of the interaction of other
agents.

If agents included expectation-certainty into their decision process, scalable systems level order
has not been observed for any parameter setting investigated in this paper. We think, how-
ever, that this should not be taken as a general result yet, before we are able to explain this
phenomenon more theoretically and before we have performed further simulation studies with
different memory and certainty models.

Finally, a third important result is that our model allows to demonstrate the transition from a
more actor oriented view to a systems level view. Therefore it helps to understand the so called
“micro-macro-link”, a fundamental problem of sociology, which is concerned with the question,
how an over-individual aggregation, e.g., communication system, emerges from interaction of
many actors.

For a “complete” explanation, the logic of aggregation has to be examined in detail. One
would have to pin down the coherence of transformation rules, transformation conditions, and
the “individually” explained individual effects (Esser 2000), p. 18-29. In further studies this
may lead to a more precise notion of closure, self-reference, self-production, and autopoiesis of
communication systems.

An important step in our future research will be the introduction of social relationships, i.e.,
the introduction of a topology, a spacial differentiation. In our model each agent interacts with
every other agent with the same probability. In the real world, however, this probability depends
on geographical conditions and the social network among actors. Obviously this social network
plays an important role in the formation and persistence of social order. A dynamic social
network can be easily introduced by a process where a “successful” interaction amplifies a social
connection (Skyrms and Pemantle 2000). It would be extremely interesting to investigate the
resulting coevolution of the social and the activity network.
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9 APPENDIX

The Appendix contains further details about the model and about the simulation software that
was used for the experiments described in this paper.

9.1 Interpretation of the Constant cf

The constant cf specifies an additive component to the activity value (Eq. (2)). What does that
mean? And how should we set cf?
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Assume that we choose proportional selection (γ = 1). In that case the probability that activity
i is selected is proportional to its corresponding activity value wi

AV . Further assume that for
cf = 0 exactly one activity value is 1 and all other activity values are 0. Let us take an example
for N = 4 possible activities:

cf = 0 : w1
AV = 1, w2

AV = 0, w3
AV = 0, w4

AV = 0. (16)

We can see that although we use proportional selection, activity number 1 is always selected
with probability one. Our selection method parameter γ has no influence in that situation.

If there should be always a non-deterministic (random) influence on the activity selection process,
we have to choose a positive small value for cf . Let us see what happens when cf is set to 1:

cf = 1 : w1
AV = 1 +

1

4
, w2

AV =
1

4
, w3

AV =
1

4
, w4

AV =
1

4
. (17)

In case of proportional selection the activity probabilities are calculated by normalizing the
activity values:

cf = 1 : w1
AP =

5

8
, w2

AP =
1

8
, w3

AP =
1

8
, w4

AP =
1

8
. (18)

In this case, activity 1 is selected with probability 5/8 = 62.5%, only, and there is a chance of
3/8 = 37.5% that an “error” occurs.

In general the probability perr that an “error” occurs is

perr = 1−
1 + cf/N

1 + cf
=

c(N − 1)

(1 + c)N
. (19)

If we would like to set cf such that the probability that an error occurs is perr we just have to
rearrange the previous equation:

cf =
Nperr

1−N(1 + perr)
. (20)

The following table shows perr for different settings of N and cf (rounded to two significant
digits):

N = 2 N = 4 N = 10 N = 100 N = 1000

cf = 1 0.25 0.375 0.45 0.50 0.50
cf = 0.1 0.045 0.068 0.081 0.09 0.09

cf = 0.05 0.024 0.036 0.043 0.047 0.047
cf = 0.01 0.005 .0074 0.009 0.010 0.010

cf = 0.001 0.0005 0.00074 0.0009 0.0010 0.0010

We can see, when we fix cf and increase the number of possible activities N then also the
probability perr that an “error” occurs increases and converges to

lim
N→∞

perr = 1−
1

1 + cf
. (21)

For the experiments presented here we have chosen cf = 0.01. This means that in a situation
where an agent is as sure as possible what to do and proportional selection is used, there is a
chance of about 1% (0.5 % for N = 2) that a different activity is selected then the most likely
one.
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9.2 Influence of the Learning Rate

In Fig. 12 we can see how the average number of different activities in an interval of 50 steps
and the average certainty OAV depends on the learning rate rlearn. With increasing learning
rate, the number of different activities decreases, as expected. We can see that the relative
qualitative behavior of the model is independent of the choice of rlearn > 0. This is especially
true for rlearn > 0.2.

9.3 Single Runs with Many Agents

Figure 13 and Fig. 14 show single runs of the multi-agent scenario. They correspond to the
activity networks shown in Fig. 10 and Fig. 11, respectively.

9.4 Memory Models

This section describes additional memory models, which are implemented in our simulation
software.

Memory Model 01 - Matrix Memory with Global Forgetting

Representation: The memory is represented by a N × N dimensional matrix (ma,b) called
memory matrix.

Initialization: The matrix is initialized with ma,b = 1/N .

Memorize(a, b): First we reduce every entry in the memory matrix in order to model forget-
ting:

∀i, j ∈ {1, . . . , N} : mi,j := γmemmi,j . (22)

Now we increase the entry in the memory matrix given by the index (a,b):

ma,b := ma,b +
N

∑

i,j=1

(1− γmem)mi,j . (23)

Lookup(a, b): Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N
b=1 ma,b

ma,b. (24)

Memory Model 02 - Matrix Memory with Local Forgetting

The same as Memory Model 01, but now events of the form (a′, b′) are forgotten only, if an event
(a′, b) is memorized.

Representation: The memory is represented by a N × N dimensional matrix (ma,b) called
memory matrix.

Initialization: The matrix is initialized with ma,b = 1/N .

Memorize(a, b): First we reduce the entries of the memory matrix in row a in order to model
forgetting:

∀j ∈ {1, . . . , N} : ma,j := γmemma,j . (25)
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Figure 12: Average number of different messages (activities) in an interval of 50 time
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Figure 13: The run corresponding to Fig. 10. The graph shown in Fig. 10 has been
calculated at time step 4000. Parameters: M = 20 agents, N = 64 activities, α =
1.0 (expectation-certainty only), γ = 2.0, rlearn = 0.2, rforget = 0.001, cf = 0.010000.
observers = 0.
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Figure 14: The run corresponding to Fig. 11. The graph shown in Fig. 11 has been
calculated at time step 4000. Parameters: M = 10 agents, N = 10 activities, α = 0.0
(expectation-expectation only), γ = 2.0 (quadratic selection), learning rate rlearn = 0.2,
forgetting rate rforget = 0.001, cf = 0.010000. Alter-memory used for EE calculation.
observers = 0.
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Now we increase the entry in the memory matrix given by the index (a,b):

ma,b := ma,b +
N

∑

j=1

(1− γmem)ma,j . (26)

Lookup(a, b): Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N
b=1 ma,b

ma,b. (27)

Memory Model 03 - Non-Degenerating Memory

Representation: In the non-degenerating memory past events are stored in a table. Agents
using that memory are able to “remember” the past nmem events.

Initialization: There are two initialization methods: (1) The memory table is filled with
random events (parameter initRandomly =1). (2) The memory table is empty at the beginning
(parameter initRandomly =0).

Memorize(a,b): The operation memorize(M,a, b) just stores the pair (a, b) in the table.

Lookup(a, b): For calculating the result lookup(M,a, b) we do the following steps:

• Calculate the memory matrix (ma,b):

ma,b =
cM
N

+

t
∑

i=t−nmem

{

1 if A[i] = a and B[i] = b,

0 otherwise.
(28)

where t is the current time step. A and B represent the columns of the table where the
events are stored by memorize. (A[i], B[i]) is the entry which has been stored in the table
of the memory at time step i.

• Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N
b=1 ma,b

ma,b. (29)

Memory Model 04 - Linearly Degenerating Memory

Like Memory Model 03, but past events are less important.

In the linearly degenerating memory past events are stored in a table. Agents using that memory
are able to “remember” the past nmem events. The operation memorize(M,a, b) just stores the
pair (a, b) in the table.

The operation lookup is more complicated. For calculating the result lookup(M,a, b) we do the
following steps:

• Calculate the memory matrix (ma,b):

ma,b =
cM
N

+
t

∑

i=t−nmem

nmem − i+ t

nmem

{

1 if A[i] = a and B[i] = b,

0 otherwise.
(30)

where t is the current time step. A and B represent the columns of the table where the
events are stored by memorize. (A[i], B[i]) is the entry which has been stored in the table
of the memory at time step i.
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• Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N
b=1 ma,b

ma,b. (31)

Memory Model 05 - Simple Neuronal Matrix Memory

The simple neuronal matrix memory is used for the experiments in this paper and is described
in Sec. 2.2.1 in detail.

9.5 Certainty Measures

Given a vector (p1, p2, . . . , pN ) the following functions for calculating the certainty are imple-
mented:

Shannon Entropy

(Shannon and Weaver 1949)

fcertainty(p1, p2, . . . , pN ) = 1 +
N

∑

i=1

pi logN pi. (32)

(This measure is used for the experiments described in this paper.)

Modified Standard Deviation

fcertainty(p1, p2, . . . , pN ) =

√

√

√

√

n

n− 1

N
∑

i=1

(
1

N
− pi)2. (33)

Maximum

fcertainty(p1, p2, . . . , pN ) returns the largest pi.

Variance

fcertainty is equal to the variance.

fcertainty(p1, p2, . . . , pN ) = V ar(p1, . . . , pN ). (34)
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9.6 Using the Simulation Software

The simulator is written in C++ and compiles with gcc (in our case version 2.95.2). There is
no graphical user interface yet. (A Java version with GUI is currently under development and
will be available from our website.) Parameters are specified in a parameter file or as command
line arguments. The result is written to various data files named <runName>.<suffix> where
<runName> is name of the simulation experiment, which can be set by the user (default: run).

Usage

Call the simulation program using:

luhmann3 -pf <parameter-file-name>

You can also set parameters using command line arguments. Command line arguments
given after the argument -pf <parameter-file-name> overwrite settings in the parameter
file <parameter-file-name>. Running the simulation creates a bunch of data files named
<runName>.<suffix>. The runName can be set as a parameter.

Example

Here is an example of a simulation experiment with M = 20 agents, which are allowed to use
N = 10 activities. The system is simulated for 1000 single interactions (steps).

luhmann3 -experiment multiWorld -steps 1000 -M 20 -N 10

Output Files

The following log-files are the result of a simulation experiment:

file name description

run.adoc Automatic documentation file. Contains the seed of the random number
generator, parameter settings, how the program has been called, and
important messages such as the termination criterion.

run.bm Average behavior matrix at the end of the simulation.
run.bm05 Binary average behavior matrix obtained with cutoff τ = 5% = 0.05.
run.bm10 Binary average behavior matrix obtained with cutoff τ = 10% = 0.10.
run.bm15 Binary average behavior matrix obtained with cutoff τ = 15% = 0.15.
run.bmg The average behavior matrix as a list of nodes and weighted edges, which

can be used for visualization of the communication system.
run.fi Activity values. Every step is represented by one row, which contains

the decision values used by the agent acting at that time step.
run.msg Activities which are performed by the agents.
run.op Systems level order measure OAP .
run.status Very detailed status log of the whole memory matrix of each agent.

Switched off by default. Use -writeStatus 1 to switch on.
run.log Main log file for certainty and selected activity (see below).
run.msgstat Message statistics, message diversity (see below).
run.pf A list of parameters, which can be used as a parameter file.
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runName.log The most important log-file. Here every step is represented by one row.

column symbol description

2 MAX(wi
AV ) the largest activity value of Agent A)

3 fcertainty(wAV ) certainty of the activity values of Agent A
4 fcertainty(wAP ) certainty of the activity probabilities of Agent A
5 activity selected by Agent A (starting with 0)
6 activity selected by Agent A (starting with 1)

8 max(wi
AV ) the largest activity value of Agent B)

9 fcertainty(wAV ) certainty of the activity values of Agent B
10 fcertainty(wAP ) certainty of the activity probabilities of Agent B
11 activity selected by Agent B (starting with 0)
12 activity selected by Agent B (starting with 1)

runName.msgstat Message statistics. Here the number of different messages which appear
during a time interval is stored. At the end of the file the average is written in the format:
# average 27.2137

So you can get the average number of different messages, e.g., by grep average runName.msgstat.
There are two parameters for the message statistics:

# intervalSize 50

# startAverage 500

They can be set, as usual, in the parameter file or by command line attributes.

Parameter File

The parameter file may look like this:

experiment multiWorld

steps 1000

M 20

N 10

runName run

seed 0

vicinity 0

useAlterMemoryForEE 1

rngNo 0

observers 0

trace 0

depth1 0

depth2 0

alpha 1.000000

cf 0.020000

cM 2.000000

selectionMethod 0

writeLog 1

writeStatus 0

writeOP 1

certainty entropy

memory 05

forgetrate 0.010000
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learnrate 0.100000

intervalSize 50

startAverage 500

The parameters have the following meaning:

par. name symbol meaningful description
in program in paper values
experiment dyadicWorld

multiWorld

Select the experiment type. In the “dyadic
world” only two agents are present acting al-
ternately. In the “multi world” two or more
agents can be present interacting randomly
(see above).

steps 50 - 10000 Number of simulation steps. One step consists
of one activity selection step.

runName The run name. All output is stored in data
files named <runName>.<suffix>.

N N 2 - 100 Number of activities (messages, symbols).
M M 2 - 100 Number of agents present in the “multi

world”.
observers n 0 - 5 Number of observers.
alpha α 0.0 - 1.0 Fraction of expectation certainty. α = 0.0:

only expectation-expectation (EE) is used
for activity selection. alpha = 1.0: only
expectation-certainty is used for activity se-
lection.

certainty entropy

modifiedStddev

selectMaximum

variance

Method for measuring the certainty.

selectionMethod 0,1,2,3,4 Selection method. 0: Select maximum. 1:
Select proportional (equal to γ = 1). 2: se-
lect squared proportional (equal to γ = 2). 3:
equal to gamma = 4. 4: selection method
using gamma as an exponent.

gamma γ 0.0 - 40.0 Exponent for selection method 4.
memory 01, 02, 03, 04 The memory model.
memSize 10 - 200 The memory size. Only valid for memory

model 03 and 04.
memGamma γmem 0.98 Recall rate. Only valid for memory model 01

and 02. Low value is equivalent to high for-
getting rate.

cM cM 2.0 Special constant. See Eq. (30).
cf cf 0.02 Special constant. See Eq. (2).
vicinity 0 The size of the vicinity in a ring topology.

vicinity=0: No topology. vicinity=1:
Only direct neighbors on the ring can inter-
act. (Not used here).

seed 0, any number The seed for the pseudo random number gen-
erator. 0: create seed automatically using
time(0).

rngNo 0, 1 The type of the random number generator. 0:
drand48, a linear congruence generator. 1:
rand2 from “Numerical Recipes in C”, a non-
linear matrix generator.
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