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Abstract

Chemical information processing posseses a variety of
valuable properties, such as, robustness, concurrency, fault-
tolerance, and evolvability. However, it is difficult to predict
and program a chemical system, because the computation
emerges as a global phenomenon from microscopic reac-
tions. Here, we will present design principles for chem-
ical programs. We focus on programs that should com-
pute a qualitative and not quantitative result. The de-
sign principles are based on chemical organization theory,
which defines a chemical organization as a closed and self-
maintaining set of molecular species. The fundamental as-
sumption of so called organization-oriented programming
is that computation should be understood as a movement
between chemical organizations. In this case we expect that
the resulting system is more robust, and fine-tuning of the
kinetic laws will be less important.

1. Introduction

Information processing by chemical reactions can be
found in all living systems. It is known to be robust, self-
organizing, adaptive, decentralized, asynchronous, fault-
tolerant, and evolvable. These valuable properties are ex-
ploited by a variety of approaches using real molecules
[2, 6] or artificial moleculesin-silico [4, 16]. When tak-
ing real molecules, one aims at exploring new substrates
for computation [23]. Inin-silico chemical computing the
chemical metaphor is utilized to program or to build com-
putational systems [8]. In this case the chemical metaphor
serves as a design principle for new software or hardware ar-
chitectures built on conventional silicon devices. Examples
are, chemical-like formal systems that model concurrent
processes, e.g., Gamma [4], CHAM [5], or P-Systems [18];
or new architectures inspired by chemistry, e.g., reaction-
diffusion processors [1].

Chemical programming requires to define microscopic
elements that lead to a global behavior realizing a desired
computation. Chemical programming can be decomposed
into different steps: choosing the molecules, reaction rules,
kinetics, and environmental conditions. Note that when
using real molecules all these steps are strongly intercon-
nected, e.g., after choosing the molecules the set of reaction
rules is also determined; the kinetics might be influenced
by temperature, spatial structures, or other environmental
conditions. Inin-silico (or artificial) chemical computing
we can define molecules, reaction rules, and kinetics quite
independently.

Because the computation emerges from an interplay of
many microscopic interactions, it is, in general, difficultto
find the right rules for a desired behavior. In general, the re-
lation between microscopic reaction rules and the resulting
behavior is non-trivial and non-linear, and therefore usually
difficult to predict. However, predictability is a necessary
condition for programming manually [22].

Like conventional programming chemical programming
should be guided by principles and metaphors, which
posses a theoretical base. These theoretical principles may
provide recipes, which improve coherence and predictabil-
ity.

Currently is seems that no universal theory is in sight.
Therefore a plethora of theoretical principles should be in
our toolbox. One such tool is chemical organization theory
[9]. The theory allows to relate reaction rules to the po-
tential behavior they generate. The theory focuses on the
qualitative change of a chemical system (i.e, the change of
the chemical species present) and abstracts from quantita-
tive change (i.e., a change in concentration). A central con-
cept of the theory is the chemical organization, which is a
set of molecular species that is closed and self-maintaining
[13].

The fundamental assumption of so called organization-
oriented programming is that computation should be un-
derstood as a movement between chemical organizations.



When following an organization-oriented approach, we
concentrate first on the reaction network neglecting kinetic
laws. The reaction network is designed with respect to its
organizational structure.. Then, in a second step, the ki-
netics is specified, which determines the dynamics between
and inside organizations. The underlying hypothesis is that
when a computation can be explained as a movement be-
tween organizations, it is more robust and fine-tuning of the
kinetics is less important.

Before describing the design principles we give a brief
introduction to chemical organization theory. Finally we
will demonstrate our approach by discussing chemical
boolean logic from an organization-oriented point of view.

2. Chemical Organization Theory

Chemical organization theory deals with reaction net-
works. A reaction network〈M,R〉 consists of a set of
molecular speciesM and a set of reaction rulesR ⊆
PM (M) × PM (M), wherePM (M) denotes the set of all
multisets with elements fromM. A multiset differs from
an ordinary set in that it can contain multiple copies of the
same element. A reaction rule is similar to a rewriting oper-
ation [21, 3] on a multiset. Adopting the notion from chem-
istry, a reaction rule(A,B) ∈ R is written asA → B where
bothA andB are multisets of molecular species. The ele-
ments of each multiset are listed with “+” symbols between
them. Instead of writing{s1, s2, . . . , sn}, the set is written
ass1 + s2 + · · · + sn in the context of reaction rules. We
also rewritea + a → b to 2a → b for simplicity. Note that
“+” is not an operator but a separator of elements.

A set of molecular species is called an organization if
the following two properties are satisfied: closure and self-
maintenance. A set of molecular species is closed when all
reaction rules applicable to the set cannot produce a molec-
ular species that is not in the set. This is similar to the alge-
braic closure of an operator in set theory.

Definition 1 (closure [12]). Given an reaction network
〈M,R〉, a set of molecular speciesC ⊆ M is closed, if
for every reaction(A → B) ∈ R with A ∈ PM (C), also
B ∈ PM (C) holds.

The second important property, self-maintenance, as-
sures, roughly speaking, that all molecules that are con-
sumed within a self-maintaining set can also be produced
by some reaction pathways within the self-maintaining set.
The general definition of self-maintenance is more com-
plicated than the definition of closure because the produc-
tion and consumption of a molecular species can depend on
many molecular species operating as a whole in a complex
pathway.

Definition 2 (self-maintenance [9]). Given an reaction net-
work 〈M,R〉, let i denote thei-th molecular species ofM

and thej-th reaction rules is(Aj → Bj) ∈ R. Given
the stoichiometric matrixM = (mi,j) that corresponds
to 〈M,R〉 wheremi,j denotes the number of molecules of
speciesi produced1 in reactionj, a set of molecular species
S ⊆ M is self-maintaining, if it there exists a flux vec-
tor v = (vA1→B1

,. . . , vAj→Bj
,. . . ,vA|R|→B|R|

)T satisfy-
ing the following three conditions:

1. vAj→Bj
> 0 if Aj ∈ PM (S),

2. vAj→Bj
= 0 if Aj /∈ PM (S),

3. (Mv)i ≥ 0 if si ∈ S.

These three conditions can be read as follows: When thej-
th reaction is applicable to the setS, the fluxvAj→Bj

must
be positive (Condition 1). All other fluxes are set to zero
(Condition 2). Finally, the production rate(Mv)i for all
the molecular speciessi ∈ S must be nonnegative (Condi-
tion 3). Note that we have to find only one such flux vector
in order to show that a set is self-maintaining.

Taking closure and self-maintenance together, we arrive
at an organization:

Definition 3 (organization [9, 12]). A set of molecular
speciesO ⊆ M that is closed and self-maintaining is called
an organization.

We visualize the set of all organizations by a Hasse di-
agram, in which organizations are arranged vertically ac-
cording to their size in terms of the number of their mem-
bers (e.g., Fig. 1). Two organizations are connected by a
line if the lower organization is contained in the organiza-
tion above and there is no other organization in between.

Finally, a relevant theorem from Ref. [9] states that given
a differential equation describing the dynamics of a chemi-
cal reaction system and the reaction network corresponding
to that system, then the set of molecular species with pos-
itive concentrations in a fixed point (i.e., stationary state),
if it exists, is an organization. In other words, we can only
obtain a stationary behavior with a set of molecular species
that are both closed and self-maintaining.

3. Organization-Oriented Design Principles

3.1. Computing Within vs. In-Between Or-
ganizations

Chemical computing can be distinguished whether a
computation takes place within one organization or whether
the computation can be explained as a movement between

1Formally, this can be defined asmi,j = #(i ∈ Bj) − #(i ∈ Aj),
where#(i ∈ Aj) denotes the number of occurrences of speciesi on the
left-hand side of reactionj and#(i ∈ Bj) the number of occurrences of
speciesi on the right-hand side of reactionj.



organizations. Computation within one organization might
exploit bistability of a chemical system or may implement a
continuous function, e.g., a chemical neuron [14] or a chem-
ical square-root [7]. Computation as a movement between
organizations is characterized by the fact that the molecular
species present in the reaction vessel change over time. This
is, for example, the case in classical DNA Computing [2],
which can be understood in terms of chemical organization
theory: For each solution there is at least one organization
and the experimental steps assure that the system will end
up in such an organization.

3.2. Design Principles

Let us proceed now with preliminary design principles
inspired by chemical organization theory:

P1: There should be (at least) one organization for
each behavioral output class. Following organization-
oriented design principles makes sense when computation
appears as a movement in-between organizations. In that
case the output behavior can be categorized in different dis-
crete behavioral classes. Here we demand that different
outputs should be represented by different organizations.
For example, in a chemical flip-flop [17], these behavioral
classes are the different states of the flip-flop, and we de-
mand that each state should be represented by a different
organization.

P2: The set of molecular species (and the organiza-
tion) representing a result should be in the closure of the
species representing the initial input. This principle as-
sures that there is a reaction path leading from the input to
the desired output species. The desired output set must be
(contained in) a self-maintaining set within the closure of
the initial input configuration. Ideally, within the closure
there is a largest self-maintaining set representing the out-
put. Otherwise the dynamics may stuck above the desired
output set.

P3: The set of molecules (and certain environmen-
tal conditions) representing an input should generate the
organization representing the desired output.

Given a set of (input) speciesA we can generate an or-
ganizationO by first adding all possible reaction products
until we reach a closed setC. Then we remove species until
we reach a largest self-maintaining setS contained inC. In
a specific class of networks (called semi-consistent [10]),
S is unique. And in so called consistent networks [10],
S is additional closed, thus an organization. In chemical
computing it is not necessary that the generate operation
is unique. Moreover it can even be beneficial, if it is not
unique. As for example in the chemical FLIP-FLOP [17] .

Note that even if the input configuration generates the
desired output organization (i.e., a set of chemical species),
this does not guarantee that we will end up in that desired

organization. There might be kinetic laws such that we will
end up in an organization below the desired organization.
Further note that this fact might be used by a computation,
in which case P3 would be violated.

P4: Eliminate organizations not representing a de-
sired output. If each organization represents a desired out-
put, the system’s dynamics must converge to a set of chem-
ical species representing an output. Therefore it makes ob-
viously sense to eliminate an organization not representing
an output. This can be achieved by either destroying its clo-
sure property or its self-maintenance. Note, however, that
in general not all such organizations can be eliminated (see,
e.g., the chemical FLIP-FLOP [17]).

P5: An output organization should have no organiza-
tion below.

As mentioned above, if there is an organization below an
output organizations, the system might move-down sponta-
neously, leaving the output organization.

P5: Assure, if possible, stoichiometrically the stability
of an output organization.

If an output organization contains another organitzation,
the system state can move spontaneously down to this orga-
nization. In some cases this down-movement can be ruled
out by a purely stoichiometric argument. That is, we can
design the reaction network such that for any kinetic law
the organization is stable. As a simple example consider
the systemR = {a → b, b → a}, which has two orga-
nizations. Due to mass-conservation, the system can never
move sponaneously from organization{a, b} to the empty
organization.

P6: Use kinetic laws for fine tuning. The kinetic laws
must assure that the output organizations are stable. Fur-
thermore the kinetics determines the transition dynamics
between organizations. Finding the right kinetic laws is
a non-trivial task, because an output organization usually
contains other organizations (ie., there are organizations be-
low). Chemical organization theory assures that such laws
exists (to a certain extend). For finding them we have to rely
on classical dynamical systems theory. However, note that
it is possible to derive at least in some cases rigorously dy-
namical stability from network structure [11]. Further note
that there can be a tradeoff between stability of an organiza-
tion and the speed of computation. Finally, the influence of
the kinetic laws can be studied by mapping the quantitative
dynamics (i.e., trajectory in the concentration space) to the
Hasse-diagram of organizations (like in Ref. [10], Figure 4).

4. Organization-Oriented Chemical Boolean
Logics

In this section we will demonstrate the approach by
studying boolean logics implemented by chemical reaction
systems. First, we investigate two different codings from an



organization point of view. Then, a recipe for programming
boolean logics is described.

4.1. Functions like NOT and XOR Require
Non-trivial Encoding

The first code (Code 1, Table 1) assumes that a logic
one (true) is trivially encoded by the presence of a molecu-
lar species, while logic zero (false) is encoded by the same
species’ absence. We will show that in this case there are no
reaction rules that implement an organization-orientedXOR,
i.e., a chemicalXOR-network whose behavior can be ex-
plained purely from an organization-oriented point of view.
When we assume alternatively a code where each logical
variable is represented by two molecules (Code 2, next sec-
tion), we can define such anXOR gate.

In order to prove that Code 1 is not sufficient for an
organization-orientedXOR, it is sufficient to show that we
can even not construct an organization-orientedNOT with
Code 1: Letx ∈ M andy ∈ M be the species represent-
ing the input and output of theNOT-gate, respectively. For
x being not present, the organizations of the network must
containy and notx. Forx being present (i.e.,(→ x) ∈ R),
there should be one or more organizations, all of which must
not containy. We distinguish now two cases: Case 1:y
cannot be overproduced (i.e., a decay ofy cannot be com-
pensated. by the network). Whenx appears (input 1),x
must destroyy in order to obtain output 0. However, when
x disappears (input 0),y can not be regenerated, because
we assumed that it cannot be overproduced. Case 2:y can
be overproduced. Whenx appears (input 1),y cannot van-
ish completely, because a decay initiated byx can be com-
pensated by the remaining network. In case the production
y requires a species that is not overproducible, we obtain
Case 1. q.e.d.

Therefore, with Code 1 we can only build aNOT-gate
that functions once. That is, we would have to regeneratey
by an external “clock” after each operation. In the follow-
ing recipe we will use a different code. Code 2 requires two
molecular species for each logical variable, which allows
to build arbitrary boolean functions. Note that in biolog-
ical signaling networks signals are often encoded by two
(or more) molecules, for example, by a phosphorylated and
unphosphorylated protein. Whether this is related to our
organization-oriented design remains speculative.

4.2. Recipe for Organization-Oriented Pro-
gramming of Chemical Logics

In this section we present a procedure for designing
chemical reaction networks implementing a logic circuit
(see Table 2 for a recipe and Ref. [17] for details). A logic
circuit is a composition of logic gates. As such it can be

Code 1
value representation
b = 0 [b] = 0
b = 1 [b] > 0

Code 2
value representation
b = 0 [b] > 0, [B] = 0
b = 1 [b] = 0, [B] > 0

Table 1. Two codes for a boolean variable
b using one molecular species {b} and two
molecular species {b,B}, respectively.

Input: Boolean network given by two sets: a set ofM
boolean functions{F1, . . . , FM} and a set ofN boolean
variables{b1, . . . , bM , . . . , bN}. Variables{b1, . . . , bM}
are determined by the boolean functions (internal vari-
ables); the remaining variables{bM+1, . . . , bN} are input
variables of the boolean network.
Output: Reaction network〈M,R〉 (a set of molecular
speciesM and a set of reaction rulesR) representing the
boolean network without any input variable specified.a

Algorithm:
1. For each boolean variablebj :

(a) Add two molecular species,bj andBj , toM;b

(b) Add onedestructive reactionof the formbj + Bj →
∅ toR;

2. For each boolean functionFi:
(a) Create the truth table ofFi with 2ni input cases

(whereni is the arity ofFi);

(b) For each input case, create alogical reaction.c

i Lefthand side (reactants) corresponds to the input
of Fi.

ii Righthand side (products) consists of one molec-
ular species representing the respective boolean
output ofFi.

aSpecifying an input variable of the boolean network is codedby an
inflow reaction.

bAs a naming convention of molecular species in this paper, the low-
ercase species represents value0 in the boolean variable, and the upper-
case stands for1.

cFor example, theXOR-function is converted into reactions as fol-
lows:

b2 b3 b1 = F1(b2, b3)
0 0 0
0 1 1
1 0 1
1 1 0

⇒

Reactants → Products
b2 + b3 → b1
b2 + B3 → B1

B2 + b3 → B1

B2 + B3 → b1

Table 2. Recipe for mapping a boolean circuit
to a chemical reaction network.



fully described by a set of boolean functions and boolean
variables, forming a boolean network [15]. Let the boolean
network be defined by a set ofM boolean functions and a
set ofN (≥ M ) boolean variables:

{b1, . . . , bM , . . . , bN} (1)

where{bj |1 ≤ j ≤ M} are determined by the boolean
functions (internal variables) and the remaining variables
{bj |M < j ≤ N} are the input variables of the boolean
network. The set of boolean functions is

{bi = Fi(bq(i,1), . . . , bq(i,ni)) | i = 1, . . . ,M} (2)

wherebq(i,k) indicates the boolean variable listed as thek-
th argument of thei-th function. Since thei-th boolean
functionFi takesni boolean variables as arguments, there
are2ni possible inputs. Thus the truth tableTi for function
Fi has2ni rows andni + 1 columns:

Ti :







ti1,1 · · · ti1,ni
ti1,ni+1

...
. . .

...
...

ti2ni ,1 · · · , ti2ni ,ni
ti2ni ,ni+1






(3)

wheretih,k ∈ {0, 1} is the boolean value of thek-th argu-
ment in theh-th input case for thei-th boolean function.
The (ni + 1)-th column contains the output ofFi.

Given the boolean network, a reaction network〈M,R〉
is designed as described by Table 2. The resulting reac-
tion network〈M,R〉 implements the logic circuit without
any input specified. The input variables of the boolean net-
work {bj |M < j ≤ N} must be initialized externally
because they are not set by the boolean functions. The
initialization of the input variables is encoded by an in-
flow reaction, which is a zero-order reaction producing sub-
stances from the empty set. If an input variablebj is ini-
tialized to0, for example, the reaction network is changed
to 〈M, (R ∪ {∅ → s2j−1})〉. It is possible for more than
one variable to be initialized in this manner as it is possible
for more than one molecular species to be injected by the
influx.

4.3. Example: Chemical XOR

For anXOR logic gate we need two boolean input vari-
ablesa, b and one boolean output variablec. The logic func-
tion c = Fc(a, b) is given by the truth table

a b c

Tc :









0 0 0
0 1 1
1 0 1
1 1 0









(4)

Given the definition of theXOR boolean network, a reac-
tion network〈MXOR,RXOR〉 is generated to implement the

logic gate. Since there areN = 3 boolean variables, the set
of molecular species consists of six molecular species:

MXOR = {a,A, b,B, c, C} (5)

where the lower- and uppercase version of the variable
name are assigned to the boolean variable of that name. For
example, molecular speciesa represents boolean variable
a = 0, andA stands fora = 1 (see Code 2, Table 1).

The set of reaction rulesRXOR is defined following the
recipe of Table 2 as:

RXOR = {a + b → c, a + B → C, A + b → C,

A + B → c, a + A → ∅, b + B → ∅, c + C → ∅}.

The reaction network〈MXOR,RXOR〉 implements theXOR

logic gate without any input specified. There are 15 orga-
nizations [17]. Now we set only one input variable of the
boolean network by adding an inflow reaction to the set of
reaction rules (Figure 1). As we can see, the set of organi-
zations reduces to three. There is always one organization
containingc and one containingC, which means that with
one input the output is not determined from an organization-
oriented point of view.
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Figure 1. Four Hasse-diagrams of the chem-
ical xor for underspecified inputs. Only one
input signal is specified by an inflow reac-
tion.

When we finally provide both inputs, the Hasse diagram
of organizations collapses so that only one organization re-
mains for every input condition (Figure 2). This implies
that, no matter how we chose the kinetic details, no other
molecular species than those of the organization can be sus-
tained in the reaction vessel regardless of the initial state.
We can also see that the remaining organization contains
the desired output molecular speciesc or C, respectively.

5. Conclusion and Outlook

Organization-oriented programming guides the design of
the reaction network of a chemical program. When the
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Figure 2. Four Hasse-diagrams of the chem-
ical xor for each possible input. Both inputs
are specified by inflow reactions.

chemical computation can be explained as movement be-
tween organizations it is more robust, because kinetics is
less important. In certain situations (e.g. chemicalXOR)
the theory can show that the system is completely robust
such that the computation is always achieved independtly
of the kinetics.

The organizational structure does not allow to derive ki-
netic properties like stabilty. For this we have to rely on
other theories (e.g., Refs. [11, 19, 20]) Integrating those
with an organizational analysis would be interesting.

The basic defintions of the theory are also applicable
to implicitly defined reaction systems, where molecules
posses a structure and where organization may contain an
infinit amount of molecules. Implicit representations of or-
ganizations is especially important when dealing with com-
binatorial explosions like those encountered in polymer sys-
tems. However developing concepts, tools, and software to
represent and handle organizations implicitly has yet to be
done, which is an important task for future research.
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