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Since sociology is seeking mechanisms for explaining social phenomena, we
discuss in this paper, whether and how the metaphor of a chemical reaction
network can be employed as a formal mechanism to describe social and polit-
ical systems. A reaction network is a quite general concept, which allows to
model a variety of dynamical systems. Further more, a set of powerful tools
can infer potential dynamical properties from the networks structure. Using
a toy model of the political system inspired by Luhmann, we demonstrate
how chemical organization theory can be applied and can give insight into the
structure and dynamics of the resulting model. Chemical organization theory
allows identifying an overlapping hierarchy of important sub-systems in these
networks.

1 Introduction

Sociology is seeking mechanisms that explain social phenomena [1]. Mecha-
nisms can be described in various ways, ranging from rich linguistic descrip-
tions to precise mathematical formulas [2]. In general it is desirable to obtain
a formal description of a social mechanism. However, there is the danger to
loose important details of the social phenomenon during the process of ab-
straction [3] or to arrive at a more complex model than actually required to
explain the designated phenomenon. Therefore it is necessary to posses a rich
toolbox, which offers different mechanisms for different levels of abstraction.

Here we discuss one specific but quite powerful metaphor, the chemical
reaction network, which can be used to describe a large variety of dynamical
phenomena from fields of study like economy and sociology. Furthermore,
we describe chemical organization theory [4, 5], which allows identifying an
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overlapping hierarchy of important sub-systems in these networks. These sub-
systems are closely connected to dynamics, because they are candidates for
self-sustaining (maybe even autopoietic) systems [6, 7].

Note that our approach is different from classical social network analysis
(SNA) [8] and especially from SNA using Galois lattices [9, 10, 11], which aim
at identifying structures in networks, but which do not rigorously relate these
structures to (potential) dynamics. Another important difference is that in
SNA, networks represent similarity relationships, for example, between actors
or between actors and events these actors participate in. However, in our ap-
proach, a network consists of production rules, which have a clear temporal
interpretation and direction. Our network defines the structure of a dynamical
model. Therefore, the hierarchies that we detect are fundamentally different
form those arising in SNA [8] or formal concept analysis [10]. In our case, an
element of the hierarchy represents a possible relatively stable state of the
system modeled by the reaction network. The dynamics appears as a move-
ment within that hierarchy, and not as a structural change of the hierarchical
structure itself [11], although both views are related and could be integrated.

The techniques described here are not only useful to model social systems.
In the same way as we build social models, we can use these techniques to build
and analyze multi-agent systems (MAS), which is the fundamental philosophy
of Socionics [12]

2 Chemical Organization Theory

Chemical organization theory deals with reaction systems. The basic idea of
the theory is to identify hierarchical structures in terms of chemical organiza-
tions, which are closed and self-maintaining sets of elements. These elements
can be chemical species, political decisions, social communications, or eco-
nomical products. Organizations can be visualized using a Hasse-diagram (as
shown in Fig. 1, right), which provides a powerful graphical representation of
the network’s inherent structure. The theory has been inspired by Fontana’s
and Buss’ notion of a biological organization [13].

The networks investigated in this study are equivalent to catalytic flow
systems, which are reactions systems where all molecules act only as catalysts
and where all molecules decay at a positive rate. Therefore, we require only a
simplified version of the chemical organization theory [13]. In particular, we
can exclude mass conservation and thus can exclude a more general concept
of self-maintenance ([5], Def. 10). The required theory can be explained in a
quite compact way. In order to explain the theory, we will stick to its termi-
nology. So, we call the elements of a system molecules and the relation among
elements reactions. Molecules and reactions together form a reaction network
as exemplified by Fig. 1, left. Let us first define clearly, how the systems look
like that we will analyze. We call these systems catalytic networks. The term
“catalytic” is used, since all reactions are assumed to be fully catalytic.
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Fig. 1. A catalytic network (left) and its lattice of organizations (right). An arrow
denotes a catalytic reaction where all educts are catalysts. In a catalytic network all
molecules decay, which is not depicted.

A catalytic network is a set of molecules together with a set of reaction
rules. A reaction rule is just a pair of sets of molecules. A reaction consists of a
left hand side and a right hand side. A reaction is interpreted in the following
way: The left hand side denotes a set of molecules that are sufficient to produce
the molecules on the right hand side. Further more, if the molecules of the
left hand side are present in a reactor, then all molecules on the right hand
side are produced by this reaction (at least at a low rate). Since we assume
a catalytic flow system, the molecules on the left hand side are not used up
when the molecules on the right hand side are produced. Molecules vanish only
through a general dilution flow, which is equivalent to a spontaneous decay.
In the political system we analyze here, a molecule like a denotes a decision.
According to Luhmann, a (political) decision is a special communication [14].
Dilution models the vanishing influence of a decision over time.

2.1 Chemical Organization Theory for Catalytic Flow Systems

In this section, we describe the basic concepts of a simplified version of the
chemical organization theory, which is sufficient for political systems investi-
gated here and other social systems [15]. The simplified version is limited to so
called catalytic flow systems, which are reaction systems where all molecules
act always as catalysts and all molecules decay spontaneously [5]. Despite
of these limiting assumptions, the simplified version of the theory posses al-
ready a wide application range, as exemplified by our investigations of the
political system and economic networks [15]. Furthermore, various systems in
Biology and related disciplines can be treated with the simplified theory, cf.,
hypercycle [16], replicator equation [17], autocatalytic networks [18].

The reaction system is given as a catalytic network (M,R), where M is
a set of molecules and R is a set of reactions of the form (A ⇒ B) ∈ R, were
A and B are sets of molecules, A,B ⊆ M. For an example see Fig. 1, left.

The set of reaction rules R contains all reaction rules of the model. A
reaction rule possesses the form A ⇒ B, where A is the set of molecules on
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the left hand side and B is the set of molecules on the right hand side. So, the
reaction rule a+b ⇒ c can be written as A ⇒ B with A = {a, b} and B = {c}.
Note that here it is sufficient that A and B are sets and not multisets, because
we deal solely with catalytic flow systems.

Example (catalytic network): The pair (M,R) is a catalytic network with
the set of molecules M = {a, b, c} and the set of reaction rules R = {a+b ⇒ c,
a ⇒ a, a+c ⇒ c, b+c ⇒ b+c, b ⇒ b} (Fig. 1). The double arrow ⇒ denotes a
catalytic reaction, ie. A ⇒ B is equivalent to the chemical reaction A → A+B.

In order to illustrate the meaning of this reaction system, we give an
example of a dynamical process that is governed by such a network: Imagine
that the process takes place inside a reaction vessel or reactor. Assume that
the reactor contains instances of the molecules, such that the concentrations of
the molecules are: [a] = 20, [b] = 5, [c] = 4. This concentration vector can be
interpreted in the following way: there are 20 units of a, 6 units of b, and 4 units
of c present in the reactor. The reactor represents an instance of our reaction
system (catalytic network). Now we can simulate the dynamics by applying
the reaction rules to the reactor. E.g., we can apply rule a + b ⇒ c, which
increases the amount of c by one. Note that it does not decrease a nor b, since
a and b both act as catalysts (we require that all reactions are fully catalytic).
Because we assume here catalytic flow systems, every molecule is effected by
a dilution flow, which is equivalent to the fact that every molecule decays
spontaneously. This decay can be simply simulated by choosing randomly a
molecule and decreasing its number by one. This can be done by randomly
choosing a molecule proportional to its concentration, e.g., the probability to
choose a is 19/29. Destroying a we arrive at [a] = 19, [b] = 5, [c] = 5. How
this update is performed, has to be defined in more detail in order to get a
precise description of the dynamics. E.g., we may define a reactor size, i.e. a
maximum number of molecules in order to prevent unlimited growth.

The set of all possible subsets is called powerset. Instead of writing A ⊆ M

we can write A ∈ P(M), where P(M) denotes the set of all possible sets that
contain elements from M.

Example: P(M) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {c, b}, {a, b, c}}. The set
{}, which does not contain any element, is called the empty set. P() is an
operator that take a set as input and returns a set of all possible subsets of
that set, including the set itself and the empty set.

Let us notice at that point that a set of molecules represents already a
large amount of different states our system that we intend to model can be
in. So, taking a set of molecule to describe the current state of a system is a
strong abstraction. This level of abstraction does not care, how many copies
of molecule a are present, nor does it care about the spatial distribution of
those copies, and so on. Despite the high level of abstraction, the number of
possible sets is still large. The number of possible sets grows exponentially
with the number of possible molecules: |P(M)| = 2|M|, where |M| denotes
the number of elements in the set M. For our example (Tab. 1) with |M| = 13
molecules there there are 8096 different sets.
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Some sets are more important than others, because we can observe some
sets more likely than others. The reason for this is that the system becomes
stable more likely when these molecules are present. In order to identify and
describe these important sets, we introduce specific conditions, properties, or
constraints. These constraints will reduce the set of all possible sets, leaving
a set of sets that can be regarded as a representation of the systems organi-
zational structure (Fig. 1, right).

2.2 Closed Sets

The first constraint that we introduce is the (algebraic) closure, which is a
classical mathematical concept. Given a set of molecules C that is closed, the
closure assures that reactions among molecules in C produce only molecules
in C. So, a closed set contains all molecules that can be produced by reactions
among those molecules.

Definition 1 (closed set). A set of molecules C ⊆ M is closed, if for all
reactions (A ⇒ B) ∈ R, with A is a subset of C, B is also a subset of C.

Example (closed sets): In our example the closed sets are: {}, {a}, {b},
{c}, {a, c}, {c, b}, {a, b, c}. The set {a, b} is not closed, since a and b produce
c by the reaction a + b ⇒ c.

Given a set of molecules A, we can always generate its closure. The closure
of A is defined as the smallest closed set that contains A. In order to generate
the closure of a set A, we simply add one by one all the molecules produced by
reactions among elements from A until we cannot add new molecules anymore.
A set A is always contained in its closure. With the following definition we have
defined an operator GCL : P(M) → P(M), which takes a set of molecules as
input and returns a closed set of molecules.

Definition 2 (generate closed set). Given a set of molecules A, we define
GCL(A) as the smallest closed set that contains A. We say that A generates
the closed set C = GCL(A). We call C the closure of A.

Example (generate closed set): GCL({a, b}) = {a, b, c}, because c is pro-
duced by reaction a+b ⇒ c. Further examples are: GCL({a}) = a, GCL({}) =
{}. Note that the empty set {} is not necessarily always closed. If there is a
reaction rule where the left hand side is empty, e.g., (⇒ c) representing an
inflow of c, then the empty set is not closed.

The closure implies a union operator and an intersection operator on closed
sets. The requirement for a well defined union on closed sets is that the result
of the union is closed, too. Imagine that we take two closed sets {a} and
{b} and compute their normal set union {a} ∪ {b} = {a, b}. Now, {a, b} is
not closed, because a + b ⇒ c. So, the normal set union does not fulfil our
requirement. Using the generate function, we can easily define a union and an
intersection on closed sets. Together with the set of all closed sets, we obtain
the lattice of closed sets:
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Definition 3 (union and intersection of closed sets). Given two closed
sets A and B, we can define the union and intersection of closed sets by

A ⊔CL B := GCL(A ∪ B), A ⊓CL B := GCL(A ∩ B). (1)

The closed set union of two closed sets A and B can be easily calculated
by first putting all elements of A and B together and then generating the
closed set. Example: Given two closed sets A = {a} and B = {b}, we would
like to calculate their closed set union A⊔CL B. First we compute the normal
set union, A ∪ B = {a, b} and then apply the generate closed set operator
GCL to this union, which generates the closed set {a, b, c}. So, A ⊔CL B =
GCL({a} ∪ {b}) = GCL({a, b}) = {a, b, c}.

The set of all closed sets OCL form a lattice: 〈OCL,⊔CL,⊓CL〉, which is
a common algebraic structure (a poset in which any two elements have a
greatest lower bound and a least upper bound). The property of closure is
important, because the closed set represents the largest possible set that can
be reached from a given set of molecules. Furthermore a set that is closed
cannot generate new molecules and is in that sense more stable than a set
that is not closed.

It is not important here to go into detail what an (algebraic) lattice is. It
is sufficient to know the following: A lattice is a mathematical concept. It is
defined by a set (here the set of all closed sets), and two operators that map
a pair of elements to an element (here the closed set union and intersection,
which map two closed sets to a set). When the lattice is not too big, we can
draw it nicely as a Hasse diagram (Fig. 1, right). The biggest element is at the
top (here the largest closed set, which is always the set containing all possible
molecules) and the smallest element is at the bottom (here the smallest closed
set). We can also read from the Hasse diagram, how the union and intersection
work. A union of two sets leads to the smallest set that is above both sets.
An intersection leads to the largest set below the two sets. As can be seen
in the Hasse diagram, union and intersection are somehow symmetric. The
Hasse diagram implies also a partial order, i.e. a set is smaller than another
set, if it is below it.

In summary, given a reaction system by a set of molecules and a set of
reaction rules, we can now find all closed sets and display the lattice of closed
sets as a Hasse diagram, which provides already information concerning the
structure of the reaction system. The set of closed sets is nearly always smaller
than the set of all sets. In our example we lost just one set ({ a, b}) by
introducing the constraint of closure. Nevertheless, in other systems we usually
reduce the number of sets by a much higher rate.

2.3 Self-maintaining Sets

In the same way as we have introduced the closure, we will now introduce
the constraint of self-maintenance, which has originated from studies of au-
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tocatalytic sets [18]. Later, closure and self-maintenance will define an orga-
nization. Note that the definition of self-maintenance given here holds only
for catalytic flow systems. For more general reaction systems, which are not
considered in this paper, the definition is more complex ([5], Def. 10). Given a
set of molecules C that is self-maintaining, the constraint of self-maintenance
assures that every molecule of C is produced by at least one reaction among
molecules in C. So, a self-maintaining set can produce all molecules inside. It
is not necessarily closed.

Definition 4 (self-maintaining set). Given a catalytic network (M,R), a
set of molecules C ⊆ M is self-maintaining, if for all molecules a ∈ C, there
exists a reaction (A ⇒ B) ∈ R, with A ⊆ C and a ∈ B.

Example (self-maintaining sets): In our example the self-maintaining sets
are: {}, {a}, {b}, {a, b}, {b, c}, {a, b, c}. Note that the set {a, b} is self-
maintaining but not closed, since a and b produce a, b, and c.

Given a set of molecules A, we can always generate a self-maintaining set
that is contained in A. The self-maintaining set generated by A is defined
as the biggest self-maintaining set contained in A. In order to generate the
self-maintaining set from A, we simply remove one by one all the molecules
not produced by reactions among elements from A until we cannot remove
molecules anymore. The self-maintaining set generated by A is always con-
tained in A. The self-maintaining set generated by A is be equal to A, iff A
is self-maintaining.

Definition 5. (generate self-maintaining set) Given a catalytic network (M,R)
and a set of molecules A ⊆ M, we define GSM (A) as the biggest self-
maintaining set contained in A. We say that A generates the self-maintaining
set C = GSM (A).

With this definition we have defined another operator of the form GSM :
P(M) → P(M), which takes a set of molecules as input and returns
the associated self-maintaining set. Example (generate self-maintaining set):
GSM ({c}) = {}, because there is no reaction that can produce c by using only
c. Further examples are: GSM ({a}) = a, GSM ({a, c}) = {a}. Note that the
empty set {} is always self-maintaining. The operator GSM implies a union
operator and an intersection operator on self-maintaining sets in the same
way as the closure did.

Definition 6 (union and intersection of self-maintaining sets). Given
a catalytic network (M,R) and two self-maintaining sets A,B ⊆ M, the
self-maintaining set generated by their union and intersection are defined as:

A ⊔SM B := GSM (A ∪ B), A ⊔SM B := GSM(A ∩ B). (2)

So, the self-maintaining set intersection of two self-maintaining sets A and
B can be easily calculated by first taking only those elements that appear in A
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and B together and then generating the self-maintaining set by removing the
molecules that are not produced anymore. Example: A = {a, c} and B = {b, c}
are self-maintaining sets of molecules. The intersection is A∩B = {c}, which
generates the self-maintaining set {}. So, A ⊓SM B = GSM ({a, c} ∩ {b, c}) =
GSM ({c}) = {}.

Again, the set of all self-maintaining sets OSM together with the self-
maintaining set union ⊔SM , and the self-maintaining set intersection ⊓SM

form an algebraic lattice. We can now display the set of all self-maintaining
sets by a Hasse diagram.

2.4 Chemical Organizations as Closed and Self-maintaining Sets

Now we put both constraints together in order to define the central concept
of chemical organization theory: an organization [13]. Note that the term
“organization” is a technical term denoting a mathematical object and should
not be confused with the term found in economics or the social sciences; in
particular there is no relation to Luhmann’s concept of an organization. A
chemical organization is more related to the concept of an autopoietic system
[6].

Definition 7 (organization, [13]). An organization is a closed and self-
maintaining set of molecules.

Given an organization O ⊆ M, we know that every molecule of O is
produced by at least one reaction among molecules in O and all possible
products that can appear by reactions among molecules of O are also contained
in O. In our example the organization are: {}, {a}, {b}, {b, c}, {a, b, c}.

Here, given a set of molecules A, we can always generate an organization.
We define this organization as the largest organization that can be reached
from the set A. In order to generate this organization, we first generate the
closure of A, and then generate the self-maintaining set of this closure. So, in
order to generate an organization from a set A, we simply add one by one all
the molecules produced by reactions among elements from A until we cannot
add new molecules anymore. Then we remove one by one all the molecules
not produced by reactions among elements from A until we cannot remove
molecules anymore. The generated organization is unique, which follows di-
rectly from the uniqueness of the closure and generate self-maintaining set
operator.

Definition 8 (generate organization). Given a set of molecules A, we de-
fine G(A) as the biggest organization that can be reached from A. Formally,
G(A) := GSM (GCL(A)). We say that A generates the organization O = G(A).

Example (generate organization): G({a, b}) = {a, b, c}, because there is no
reaction that can produce b by using only b. Further examples are: G({c}) =
{}, G({a}) = a, G({a, c}) = {a}. As before, the operator G implies a union
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operator and an intersection operator on organizations in the same way as the
closure did.

Definition 9 (union and intersection of organizations). Given two or-
ganizations A and B. The organization union and intersection is defined as
the organization generated by their set union and intersection, respectively:

A ⊔ B := G(A ∪ B), A ⊓ B := G(A ∩ B). (3)

Example: A = {a} and B = {b} are organizations. A ⊔ B = {a, b, c}.
A ⊓ B = {}.

The set of all organizations O (of a catalytic network) together with the
organization union ⊔ , and the organization intersection ⊓ form an algebraic
lattice 〈O,⊔,⊓〉.

We can now display the set of all organization by a Hasse diagram, which
we may call the organizational structure of the reaction system (Fig. 1, right).
An organization represents an important combination of molecular species,
namely those that are likely to be observed in a reaction vessel on the long
run. A set of molecules that is not closed or not self-maintaining would not
exist for long, because new molecules can appear or some molecules would
vanish, respectively.

2.5 Dynamics

So far we have analyzed the reaction system statically. This means that time
has not played any role in our analysis. However, the result of the static
analysis has strong implications for the potential dynamics of the reaction
system. One such implication is expressed by a theorem that relates fixed
points (stationary states) to organizations, and by doing so, underlines the
relevancy of organizations. The theorem says that, given the dynamics of the
reaction system by a continuous ordinary differential equation (ODE) of a
form that is commonly used to describe the dynamics of reaction systems and
that obeys the rules given by the reaction system, then every fixed point of
this ODE is an instance of an organization. This implies that we can only have
a stationary state with exactly those molecules that form an organization. It
is not possible to find a stationary state with a combination of molecules that
are not an organization. And this implies further that only organizations are
candidates for autopoietic systems. However, an organization is not necessarily
an autopoietic system, since a stationary state is not necessarily stable. In
an instable stationary state the system can reside for ever, as in a stable
stationary state, but a tiny perturbation would cause the system to move
away from this state towards a different (stable) attractor.
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Fig. 2. (a) The toy model of the political system inspired by Luhmann. (b) The
smallest non-empty (chemical) organization. An arrow represents a so called cat-
alytic reaction, that is a reaction where the educts are not consumed when produc-
ing the products. Or in other words, a decision is not “used-up” when it produces
another decision. For example, if there is one PPMit (political party member) there
can be two of them in the next time step according to the rule PPMit⇒ PPMit.

3 A Toy Model of the Political System

In this section we sketch a reaction network model for the political system
inspired by Luhmann [14]. This model should help to illustrate how chemical
organization theory can be applied to such systems. Note that this section is
preliminary and should only illustrate how the theory might be applied. The
model used is not validated and thus our study does not allow to draw conclu-
sions concerning the real political system. However, the toy model we generate
demonstrates that our theory can uncover interesting “hidden” structures that
are not obvious when looking at the network.

3.1 The Chemical Model

The political system is modeled as an catalytic network, which consists of a
list of molecules and a list of reaction rules (i.e. production rules). A molecule
represents a specific communication, which in the political system is a decision
according to Luhmann [14]. There are 13 different decisions (Table 1) and 20
reaction rules (Table 3). Figure 2 (a) shows a graphical representation of the
model.

Figure 2 (a) illustrates that it not easy to identify structures within the
model, whose graphical representation is already optimized to some extent. In
order to elucidate the structure hidden in this network, we will apply chemical
organization theory in the next section.
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Symbol Meaning

POLITICAL PARTIES
PPMit Political party members (Germ.: politische Partei, Mitglied): Political

parties decide decision prerequisites. PPMit represents the decision that
leads to new party members.

PPProg Political party program (Germ.: politische Partei, Programm): Decision
concerning the program of the political party.
SOCIAL MOVEMENT (e.g. labor union)

SBMit Social movement members (Germ.: soziale Bewegung, Mitglieder)
SBFor Political demands of a social movement (Germ.: soziale Bewegung,

Forderung)
CONSENSUS DECISIONS

KVE Collectively binding decisions (Germ: kollektiv verbindliche Entschei-
dungen): E.g. laws, regulations, state of emergency.

KVEpot Potential collectively binding decisions (Germ.: potenzielle kollektiv
verbindliche Entscheidungen): E.g., draft of a law or draft of a reg-
ulation.
DECISION CONCERNING OFFICES AND POSITIONS

FPMAmtH Formal political power (high) (Germ.: formale politische Macht, hohe
Ämpter): E.g. chancellor, president, major, member of parliament.

FPMAmtN Formal political power (low) (Germ.: formale politische Macht, niedrige
Ämpter): E.g. positions in administration departments.
OTHER

KVEimpl Implementation of collectively binding decisions (Germ.: kollektiv
verbindliche Entscheidungen, Implementierung): KVEimpl represents
the concrete implementations made by administration departments.

PhyG Physical force (Germ.: physische Gewalt): Decisions concerning the use
of physical force, such as military actions.

ThemKonf Thematic conflict (Germ.: thematischer Konflikt). The decision to chose
a specific conflict as a subject, e.g. for discussion.

OefMein Public Opinion (Germ.: öffentliche Meinung).
Wahl Public elections (Germ.: Wahl).

Table 1. The set of molecules constituting the toy model of the political system. A
molecule represents a communication, or more particiular, a descission [14].

3.2 Preliminary Results

Applying chemical organization theory to our model, 10 organizations are
found. Figure 3 shows the lattice of organizations. The smallest organization
(Fig. 3, bottom) contains no molecules (decision), because nothing is spon-
taneously created. The largest organization contains all decisions but Wahl

(public elections). As we can see in Fig. 2, Wahl is not created by any rule,
so it cannot be part of any organization, because an organization must be
self-maintaining (i.e. all its elements must be produced). We can take the ob-
servation that Wahl does not appear in any organization to check and improve
the model.

The smallest non-empty organization is
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Reaction rule Meaning

POLITICAL PARTIES
PPMit⇒ PPMit Members of political parties recruit further members.

Spontaneous formation of political parties is not consid-
ered here.

PPMit⇒ PPProg Members of a political party decide the party program.
PPProg⇒ KVEpot A party program implies potential collectively binding

decisions.
SOCIAL MOVEMENT

SBMit + SBFor⇒ SBMit New members of a social movement are recruited by
present members of the social movement SBMit together
with their demands SBFor. This rule means that both,
members SBMit and their demands SBFor are necessary
to get more members.

SBMit + KVE⇒ SBFor Demands of social movements (e.g. lowering the tax) can
be stimulated by collectively binding decisions (e.g. in-
crease tax)

SBMit + KVEpot⇒ SBFor Demands of social movements SBFor (e.g. not to increase
the tax) can be stimulated by potential collectively bind-
ing decisions (e.g. the plan to increase tax)
POLITICAL POWER

FPMAmtH⇒ FPMAmtN High political offices decide for positions in lower admin-
istration.

SBFor⇒ KVEpot The demands of social movements SBV or can also gen-
erate potential collectively binding decisions KVEpot.
POLITICAL PROCEDURES

Wahl + KVE⇒ FPMAmtH Democratic election Wahl leads to decisions concerning
high offices like chancellor or president. Elections require
laws KVE

KVEpot + KVE⇒ KVE This rule models law-making. In order to pass a law, laws
concerning the law-making process are required. Further-
more potential drafts KVEpot are needed.

KVE⇒ KVEimpl Laws are implemented by administration departments.
PHYSICAL FORCE

KVEimpl⇒ PhyG This rule captures the physical force executed by the po-
lice. Note that it depends on the particular political sys-
tems how the usage physical force is decided.

FPMAmtH⇒ PhyG Decision for using physical force by high offices FPMAmtH.
E.g. military actions.

Table 2. The set of reaction rules constitutiong the toy model of the political
system.
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Reaction rule Meaning

POLITICAL THEMATIC CONFLICT
SBFor⇒ ThemKonf A thematic conflict can be created by demands of social

movements, such as labor unions.
PPProg⇒ ThemKonf The program of political parties lead to a thematic con-

flict.
OefMein⇒ ThemKonf A thematic conflict can also be created by a public con-

flict (“autistic world of the political system”).
ThemKonf⇒ KVEpot A thematic conflict generates further potential collec-

tively binding decisions.
ThemKonf⇒ FPMAmtH A thematic conflict can, e.g., force a politician to resign.
ThemKonf⇒ FPMAmtN A thematic conflict ThemKonf can also influence deci-

sions concerning positions in administration departments
FPMAmtN.

ThemKonf⇒ OefMein Thematic conflict ThemKonf stimulations public opinion
OefMein .

Table 3. The set of reaction rules constituting the toy model of the political system.

FPMAmtH FPMAmtN KVEpot OefMein PhyG ThemKonf

PPMit PPProg ... SBMit SBFor ... KVE KVEimpl ...

(10 molecules) (10 molecules) (10 molecules)

(12 molecules, all but  Wahl)

Fig. 3. The lattice of organization of the toy model of the political system. The
smallest organization is empty and drawn at the bottom. The number of elements
is growing when going from the bottom to the top organization, which contains 12
elements (i.e. molecules, decisions, communications). Only molecules that are new
are depicted (cf. Fig. 1, right).

O1 = {FPMAmtH, FPMAmtN, KVEpot, OefMein, PhyGThemKonf}. (4)

It contains a self-maintaining sub-set {OefMein, ThemKonf}, which gener-
ates (Def. 2.4) the whole organization. Note that the sets {OefMein} and
{ThemKonf} are the smallest generators of that organization. It is interesting
to note that KVE (collectively binding decisions like laws) are not part of this
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organization. Is this intended by the modeler? If not, the result can again be
taken to improve the model.

Having identified organizations, we can continue with our analysis by ask-
ing, which kinds of decisions are required for a particular organization to exist,
or which kind of decisions can we remove so that the remaining set still gen-
erates the original organization. Using the terminology of our theory, we can
look for the internal generators. For example, a decision that has only inputs
is not required. Removing all nodes that have only incoming edges we would
arrive at a smaller internal generator. In Fig. 2 we can see that removing the
decision PhyG (physical force) would result in a set that still generates the
original organization. As opposed to this, members of a political party PPMit

are necessary, e.g., for the largest organization. If we remove PPMit from an or-
ganization containing them, the remaining set of decisions generates a smaller
organization without PPMit and without PPProg

4 Discussion

The results presented here are preliminary. Although we have derived our
toy model based on Luhmann’s theory of the political system, the derived
reaction network is unrealistic. However, the aim of this paper is to illustrate
the method and to demonstrate how a higher level of precision in formulating
social theories can be obtained and tools like chemical organization theory
can help to handle such formalisms.

In the context of our theory, there are a couple if interesting open ques-
tions: What kind of decisions are required for a particular organization to be
generated? How do the generators of an organization look like? How do the
smallest internal generators of an organization look like? This may character-
ize the potential stability of the system.

Furthermore we may map real data to the set of organizations. Assume
that we have data on the time evolution of the size of the different elements
of the political system (e.g. financial strength of social movements) over time.
We can now measure whether and with what intensity a (chemical) organiza-
tion is present in a certain state in time. This provides a new way to project a
high dimensional system to a low dimensional system (i.e., the lattice of orga-
nizations), which may give further insights into the structure of the network.
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