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Abstract
All known life forms process information on a molecular level. This kind of chemical information processing is known
to be robust, self-organizing, adaptive, decentralized, asynchronous, fault-tolerant, and evolvable. This paper discusses
several aspects of how the metaphor of chemistry can be employed to build technical information processing systems. In
these systems, computation emerges out of an orchestrated interplay of many decentralized relatively simple components
called molecules. Chemical programming encompassed then the definition of molecules, reaction rules, and the topology
and dynamics of the reaction vessel. Through the nature of emergence, chemical computation is difficult to predict from
the underlying microscopic interaction rules. Therfore, one central challenge, namely, how to program emergent chemical
processes, is discussed in more detail.

1 Introduction
Organic computing takes inspiration from the living world
in order to cope with the fast-growing complexity of tech-
nical information processing systems surrounding us [1,
2, 3, 4]. Information in biological systems is processed
in a fundamentally different way than by today’s mass-
produced computing systems [5]. All known life forms
process information using chemical processes [6]. Signal
processing in bacteria, e.g., chemotaxis, or control of gene
expression are well-known examples. This kind of chem-
ical information processing is known to be robust, self-
organizing, adaptive, decentralized, asynchronous, fault-
tolerant, and evolvable. Computation emerges out of an or-
chestrated interplay of many decentralized relatively sim-
ple components (molecules).
The first part of this contribution provides a short intro-
duction into chemical information processing and how the
metaphor of chemistry can be employed to build techni-
cal information processing systems. The second part dis-
cusses the programmability of chemical computing archi-
tectures. It is argued that programming in a chemical lan-
guage requires fundamentally new tools and a different
way of thinking. This contribution focuses on what might
be called “artificial chemical computing” in accordance to
the term “artificial neural network” and as opposed to com-
puting with real molecules.

1.1 The Chemical Metaphor

Chemistry is a science of experiment and observation,
which provides a particular view on our world. Like
physics, chemistry deals with matter and energy, but fo-
cuses on substances composed of molecules and how the
composition of these substances is changed by “chemical”
reactions. Compared with chemistry, physics is more
concerned with energy, forces, and motion (= physical
change of a system).

Chemistry looks at the macro and micro level: On the
macro level the emergent properties and the emergent be-
havior of substances are studied, e.g., color or smell. On
the microscopic level, molecular structures and reaction
mechanisms are postulated, which should explain macro-
scopic observations. Ideally, microscopic models allow to
formally derive macroscopic observations. However, this
is possible only in limited cases, e.g., no algorithm that
computes the melting temperature of a molecule given its
structure is known. In general, chemistry explains a chemi-
cal observation using a mixture of microscopic and macro-
scopic explanations.
Three aspects why chemistry is interesting for computer
scientists should be mentioned. First, the way of explain-
ing macroscopic phenomena by microscopic interactions
of relatively simple compounds. It is quite appealing, when
computation appears as an emergent process, where only
the microscopic rules have to be specified and information
processing appears as a global behavior, which might have
some intersting properties, such as fine grained parallelism
without central control. Second, chemical processes pos-
sess characteristic properties, which allow to implement
particular systems like emotional systems [7] more natu-
rally. Third, chemical processes themselves can be seen as
a natural media for information processing either in vitro
or in vivo [8, 9].

1.2 How are Chemical Explanations Orga-
nized?

When we study chemistry [10], first we learn how sub-
stances look like. We describe macroscopic properties of
the substances, such as color, and how substances are com-
posed from elementary objects, the atoms1. Second, we
learn, how substances interact, in particular, we describe
the outcome that results from their union. Reactive in-

1A chemical element is a compound that consists only of one atom type.



teractions among molecules require that these molecules
come into contact, which can be the result of a collision.
Third, we learn the detailed dynamical process of a chem-
ical transformation of substances. All these steps of de-
scription can be done on a microscopic and macroscopic
level. The steps are also not independent: The properties of
substances are often described in terms of how a substance
reacts with other substances, e.g., when we say “Chlorine
is not healthy in large quantities” we describe the property
of chlorine by how it interacts with molecules in an organ-
ism. In fact, in chemistry, substances are often classified
according to their reactive behavior.

1.3 Information Processing and Computing
in Natural System

When we intend to take inspiration from chemistry, we
have first to investigate where chemical information pro-
cessing appears in natural systems. Obviously, living sys-
tems are prime candidates, since information processing is
identified as a fundamental property of life [6].
Information processing in living systems can be observed
on at least two different levels: the chemical and the neural
level. Where the neural level is responsible for cognitive
tasks and fast coherent control, such as vision, planning,
and muscle control; chemical information processing is
used for regulating and controlling fundamental processes
like growth, ontogeny, gene expression, and immune sys-
tem response. Neurons themselves are based on (electro-
)chemical processes, and more often than not, chemical
processes are combined with neuronal processes resulting
in a large-scale computational result, e.g., a short path from
an ant’s nest to a food source.

1.4 Where Chemistry helps Computing ...
First, it should be noted that chemistry apparently helps
computer science to build electronic devices. However,
here we are interested in approaches where chemistry stim-
ulates the development of new computational paradigms.
These approaches can be distinguished according to the
following two dimensions: First, real chemical computing,
where real molecules and real chemical processes are em-
ployed to compute. Second, artificial chemical computing,
where the chemical metaphor is utilized to program or to
build computational systems. This includes: constructing
chemical-like formal system in order to model and master
concurrent processes, e.g., GAMMA [11], CHAM [12];
using the chemical metaphor as a new way to program
conventional computers including distributed systems,
e.g., smart dust; and taking the chemical metaphor as an
inspiration for new architectures, e.g., reaction-diffusion
processors [13].
An early example, where the chemical metaphor appeared
in computer science, are theartificial molecular machines
suggested by Laing [14]. These machines consists of
molecules (strings of symbols). Each molecule can appear
in two forms: data or machine. During a reaction, two

molecules come into contact at a particular position. One
of the molecules is considered as the active machine,
which is able to manipulate the passive data molecule.
The primary motivation for developing these molecular
machines was to construct artificial organisms in order to
develop a general theory for living systems (cf. [15] for
a comparing discussion of more recent approaches in that
direction).
A fundamentally different motivation has been the starting
point for the development of GAMMA by Banâtre and
Daniel Le Métayer, namely to introduce a new program-
ming formalism that allows to automatize reasoning about
programs, such as automatic semantic analysis [16, 11].
GAMMA is defined by rewriting operations on multisets,
which mimics chemical reactions in a well-stirred reaction
vessel. GAMMA inspired a series of other chemical
rewriting systems: Berry and Boudol [12] introduced the
chemical abstract machine(CHAM) as a tool to model
concurrent processes. Pǎun’s P-Systems [17] stress the
importance of membranes. Suzuki and Tanaka [18] intro-
duced a rewriting system on multisets in order to study
chemical systems, e.g., to investigate the properties of
chemical cycles [19], and to model chemical-like systems
including economic processes.
Within biological organisms, the endocrine system is a
control system that transmits information by chemical
messengers called hormones via a broadcast strategy. The
humanoid robot torso COG [20] is an example where
the endocrine system has inspired engineering. Artificial
hormones are used to achieve a coherent behavior among
COG’s large number of independent processing elements
[20]. In general, chemical-like systems can control the
behavior and particularly emotions in artificial agents, e.g.,
the computer game Creatures [21] and the psychological
model PSI by Dörner [7]. Further application areas of
chemical computing are: the control of morpho-genetic
systems, i.e. the control of morphogenesis by artificial
gene expression; in particular, the control of growth of an
artificial neural networks (cf. Astor and Adami [22]); and
the control of amorphous computers [23]. Husbands et al.
[24] introduced diffusing chemical substances in artificial
neural networks (cf. GasNet).

2 Challenges
There are several challenges for future research in chemi-
cal computing: (1) Efficiency: How to obtain runtime and
memory efficient chemical programs and their execution
on electronic hardware? (2) Scalability: How do chemi-
cal computing paradigms scale up? (3) Programmability:
How to program a chemical computer? (4) Adaptability
and robustness: How to achieve self-adapting, learning,
and reliable chemical computing systems? Furthermore
we may investigate fundamental question concerning the
power and limits of chemical computing by questions like:
Can the chemical metaphor lead to new computational sys-
tems with abilities superior to conventional approaches, or



even to systems that can not be realized by conventional
approaches? In the following, the problem of programma-
bility is discussed in more detail.

2.1 How to Program a Chemical Computer?

Programming a chemical computer means to define a
chemical system, which is often also referred to as areac-
tion systemor anartificial chemistry. Since information
processing emerges from the interaction of many simple
components, programming a chemical systems appears
to be difficult [25]. We have to rely mostly on our intu-
ition when defining or programming a reaction system.
In order to systematize the construction of an artificial
chemical system, it is useful to partition its definition in
the following three major steps:
(1) Molecules: In the first step, we have to specify how
the molecules should look like. Should they be symbols
or should they posses a structure, e.g., a sequence of char-
acters [26], a hierarchical expression [27], or a graph like
structure [28]. If molecules posses a structure, the def-
inition of the reaction rules and the dynamics can refer
to this structure, which allows to define large (even infi-
nite) reaction systems, as for example in the prime number
chemistry [29] (Appendix). If the molecules are symbols,
we have to specify the set of possible moleculesexplic-
itly by enumeration of all possible molecules, e.g.,M =
{a, b, c, d}. If molecules posses a structure, we can de-
fine the set of all possible molecules implicitly, e.g.,M =
{1, 2, . . . , 10000}.
(2) Reactions: In the next step, we have to specify what
happens when molecules collide. Real molecules can
collide elastically or they can collide causing a reaction,
which transforms the molecules. In a simple abstraction, a
reaction rule is just a pair of two multisets of molecules,
which specifies what kind of molecules can be transformed
and replaced by what kind of molecules, e.g., a well
known reaction rules is({H2, H2, O2}, {H2O, H2O}),
which is written in chemical notation equivalently as
2H2 + O2 → 2H2O. In general, reaction rules can
become more complicated and can carrying further infor-
mation, such as parameters specifying kinetic constants or
environmental conditions under which this reaction can
occur. Analogously to molecules, reaction rules can be
specifiedexplicitly, as in the previous example reaction
rule, orimplicitly , as in the prime number chemistry.
(3) Dynamics: Finally, we have to specify the dynamics,
which includes the geometry of reaction vessel. Do we
assume a well-stirred vessel or vessel with a spatial struc-
ture? How do molecules collide? How are the reaction
rules applied, e.g., deterministically or stochastically?
Well-stirred, deterministic reaction systems are usually
simulated by integrating ordinary differential equations.
Stochastic systems can simulated by explicit stochastic
collisions of individual molecules or by more advanced
discrete event based methods like the Gillespie algorithm
[30]. Spatial structures are usually introduced by some

sort of cellular automata (e.g., lattice molecular automata
[31]) or by compartments like in amorphous computing
[23], membranes in P-systems [32], or topology in MGS
[33].

2.2 Strategies for Chemical Programming

We can distinguish different strategies of chemical pro-
gramming according to the components a programmer can
manipulate: (1)Define molecules and reactions explicitly:
The programmer has to specify the set of molecules as a
set of symbols and the reaction rules as a set of explicit
transformation rules. An example for this approach is
the hypercyclic memory, the metabolic robot [34], and
evolved chemical systems like those reported by Ziegler
and Banzhaf [35].
(2) Define molecules and reactions implicitly: The pro-
grammer can specify molecules and reaction rules implic-
itly like demonstrated by the prime number chemistry in
Sec. 3. This approach is quite general, but because of its
generality it does not guide the programmer.
(3) Change molecules principle: Again, the reaction rules
are implicitly defined but fixed (predefined) and cannot be
changed by the programmer. The programmer has “just”
to select the right molecules and the dynamics, including
the topology of the reaction space. This resembles the way
real chemical computers are programmed, e.g., selecting
appropriate DNA stands for solving a Hamiltonian-Path as
in the famous example by Adleman [36]. Although the
programmer has limited choices (compared to the previ-
ous setting), the expressive power is the same, if a univer-
sal chemistry is used. Auniversal chemistryis defined as a
chemistry that includes every possible (let’s say, finite) re-
action network topology. Such chemistry can, for example,
easily be defined based on lambda-calculus [27] or combi-
nators [37]. Because such abstract formalisms from theo-
retical computer science can not be easily and intuitively
handled by programmers, other approaches are more fea-
sible for practical application [38].
(4) Multi-level chemical programming: As before, the
programmer selects appropriate molecules and dynamics.
At the same time, the “physics” can be manipulated, too.
For example, the calculus specifying implicitly the set of
possible molecules and the set of possible reactions can
be altered and extended. By this, the function (meaning)
of molecules can become more transparent (syntactic
sugar). On a higher level of abstraction, molecules may be
assembled to higher clusters resembling macro molecules
or modules, which can again serve as building blocks for
implicit definitions of other molecules, reaction rules, and
dynamics. Therefore, a programmer operates on different
levels, such as: Level 0: manipulation of the physics, e.g.,
combinator rules. Level 1: selecting (defining) the right
molecules and reaction rules, and dynamics in the context
of the chosen physics, e.g., selecting appropriate combi-
nators. Level 2: Specifying higher level clusters, modules,
macro-molecular complexes, e.g., based on membrane



computing concepts.

3 Conclusion

Taking bio-chemical information processing as an inspira-
tion for organic computing appears to be attractive, since
chemical systems possess a number of desirable properties.
Various approaches following this line can already been
found. However, chemical programming will surely not
replace our current methods, e.g., implementing a word-
processor on a chemical basis is not feasible. It is more
likely that artificial chemistries will be integrated as sub-
systems together with other higher-level computing con-
cepts. Still, comprehensive techniques for programming
chemical-like technical systems are missing and system-
atic qualitative and quantitative studies concerning the pro
and cons have to be carried out. However, taking heed
of the different approaches envisioned here, advances in
chemical programming can be expected in the near future.

Appendix: Prime Number Chemistry

Banâtre and Le Metayer [11] suggested the numerical de-
vision operator as an implicit reaction mechanism, which
results in a prime number generating chemistry defined as
follows: the set of all possible molecules are all integers
greater one and smallern + 1: M = {2, 3, 4, . . . , n}. The
reaction rules are defined by a devision operation:R =
{a + b → a + c | a, b, c ∈ M, c = a/b, a mod b = 0}
= {4 + 2 → 2 + 2, 6 + 2 → 3 + 2, 6 + 3 → 2 + 3,
. . . }. So, two moleculesa andb can react, ifa is a mul-
tiple of b. For the dynamics, we assume a well-stirred re-
action vessel. The state of the reaction vessel of sizeM
is represented by a vector (or equivalently by a multi-set)
P = (p1, p2, . . . , pM ) wherepi ∈ M. The dynamics is
simulated by the following stochastic algorithm: (1) chose
two integersi, j ∈ {1, . . . , M}, i 6= j randomly. (2) if
there is a rule inR wherepi + pj matches the left hand
side, replacepi andpj by the right hand side. (3) goto 1.
Assume that we initialize the reaction vesselP such that
every molecule fromM is contained inP , then we will
surely reach a stationary state where all molecules from
P are prime numbers and every prime number greater one
and less or equaln is contained inP . The outcome (prime
numbers present inP ) is deterministic and in particular in-
dependent from the sequence of reactions, where the actual
concentration of each prime number can vary and depends
on the sequence of reactions.
Now assume thatP is smaller thanM, e.g.,M = 100
andn = 10000. The outcome (molecular species present
in P ) is not deterministic. It depends on the sequence of
updates, e.g.,P = (20, 24, 600) can result in the stable
solutionsP = (20, 24, 30) or P = (20, 24, 25). Note that
the behavior (ability to produce prime numbers) depends
critically on the reactor sizeM (see ref. [29] for details).

Acknowledgment
This work was supported by theFederal Ministry of
Education and Research (BMBF) Grant 0312704A to
Friedrich Schiller University Jena.

4 References
[1] Organic computing. URL: www.organic-

computing.org, visited: 22.01.2005, last updated:
07.06.2005 (2004)

[2] Müller-Schloer, C., Malsburg, M., Würtz, R.P.: Ak-
tuelles Schlagwort: Organic Computing. Informatik
Spektrum27 (2004) 332–336

[3] von der Malsburg, C.: The challenge of organic
computing (1999) Memorandum, Computer Science
Department.

[4] Würtz, R.P.: Organic computing for face and object
recognition. In Dadam, P., Reichert, M., eds.: Infor-
matik 2004. Volume 2., Gesellschaft für Informatik
(2004) 636–640

[5] Paton, R.C., ed.: Computing with Biological
Metaphors. Chapman and Hall, London (1994)

[6] Küppers, B.O.: Information and the Origin of Life.
MIT Press, Cambridge, MA (1990)

[7] Dörner, D.: Bauplan einer Seele. Rowohlt, Reinbeck
(1999)

[8] Conrad, M.: Information processing in molecular
systems. Currents in Modern Biology5 (1972) 1–14

[9] Liberman, E.A.: Cell as a molecular computer
(MCC). Biofizika17 (1972) 932–43

[10] Tilden, W.A.: Introduction to the Study of Chem-
ical Philosophy. 6 edn. Longmans, Green and Co.,
London (1888)

[11] Banâtre, J.P., Métayer, D.L.: The GAMMA model
and its discipline of programming. Sci. Comput.
Program.15 (1990) 55–77

[12] Berry, G., Boudol, G.: The chemical abstract ma-
chine. Theor. Comput. Sci.96 (1992) 217–248

[13] Adamatzky, A.: Universal dynamical computation
in multidimensional excitable lattices. Int. J. Theor.
Phys.37 (1998) 3069–3108

[14] Laing, R.: Artificial organisms and autonomous cell
rules. J. Cybernetics2 (1972) 38–49

[15] Suzuki, H., Ono, N., Yuta, K.: Several necessary
conditions for the evolution of complex forms of life
in an artificial environment. Artif. Life9 (2003)
153–174

[16] Banâtre, J.P., Métayer, D.L.: A new computational
model and its discipline of programming. technical
report RR-0566, INRIA (1986)
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