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Abstract

All known life forms process information on a molecular levEhis kind of chemical information processing is known
to be robust, self-organizing, adaptive, decentralizeginehronous, fault-tolerant, and evolvable. This papscufises
several aspects of how the metaphor of chemistry can be getbto build technical information processing systems. In
these systems, computation emerges out of an orchestné¢eplay of many decentralized relatively simple compdsen
called molecules. Chemical programming encompassed tieetetfinition of molecules, reaction rules, and the topology
and dynamics of the reaction vessel. Through the nature efgence, chemical computation is difficult to predict from
the underlying microscopic interaction rules. Therfomee central challenge, namely, how to program emergent azmi
processes, is discussed in more detail.

1 Introduction Chemistry looks at the macro and micro level: On the

. . L - macro level the emergent properties and the emergent be-

Organic computing takes inspiration from the living world . :

. - . . havior of substances are studied, e.g., color or smell. On

in order to cope with the fast-growing complexity of tech- . . .
L . i . the microscopic level, molecular structures and reaction

nical information processing systems surrounding us [1

2,3, 4]. Information in biological systems is processedmeChamsms are postulated, which should explain macro-

: : , scopic observations. Ideally, microscopic models allow to

in a fundamentally different way than by today’s mass- . ; . .
; ; formally derive macroscopic observations. However, this

produced computing systems [5]. All known life forms .

X . ) . .~ is possible only in limited cases, e.g., no algorithm that
process information using chemical processes [6]. Signa . . .

R . : computes the melting temperature of a molecule given its
processing in bacteria, e.g., chemotaxis, or control oégen

. L structure is known. In general, chemistry explains a chemi-
expression are well-known examples. This kind of chem-

N . . cal observation using a mixture of microscopic and macro-
ical information processing is known to be robust, self-

L . ) scopic explanations.

organizing, adaptive, decentralized, asynchronoust-faul . o .
i Three aspects why chemistry is interesting for computer
tolerant, and evolvable. Computation emerges outofanor- . ~ . . . ;
) . . . —scientists should be mentioned. First, the way of explain-
chestrated interplay of many decentralized relatively-sim; . ; g .
ing macroscopic phenomena by microscopic interactions

ple components (molecules).

The first part of this contribution provides a short intro- of relatively simple compounds. Itis quite appealing, when

duction into chemical information processing and how th computation appears as an emergent process, where only

metaphor of chemistry can be employed to build technﬁhe microscopic rules have to be specified and information

cal information processing systems. The second part gidrocessing appears as a global behavior, which might have

. . . .some intersting properties, such as fine grained paraiielis
cusses the programmability of chemical computing archi= " .
without central control. Second, chemical processes pos-

tectures. Itis argued that programming in a chemical Ian_ess characteristic properties, which allow to implement

guage requires fundamentally new tools and a different- ! .
way of thinking. This contribution focuses on what might particular systems like emotional systems [7] more natu-

2 : M rally. Third, chemical processes themselves can be seen as
be called “artificial chemical computing” in accordance to

the term “artificial neural network” and as opposed to com? natural media for information processing either in vitro

puting with real molecules. orinvivo [8, 9].

1.2 How are Chemical Explanations Orga-
1.1 The Chemical Metaphor nized? P 9

Chemistry !s a science of experiment and observa_\tiorwhen we study chemistry [10], first we learn how sub-
W:'Ch prO\r/]'de? a pdartllcula_rhwew on oudr world. bL'k? stances look like. We describe macroscopic properties of
physics, chemistry deals with matter and energy, but fog, o g hstances, such as color, and how substances are com-

cuses on substances composed of molecules and how t Esed from elementary objects, the atbmSecond, we
composition of these substances is changed by “chemic earn, how substances interact, in particular, we describe

reactions. Qompared with chemistry, p_hyS|cs IS merqhe outcome that results from their union. Reactive in-
concerned with energy, forces, and motion (= physical

change of a system). 1A chemical element is a compound that consists only of one &pe.




teractions among molecules require that these moleculesolecules come into contact at a particular position. One
come into contact, which can be the result of a collisionof the molecules is considered as the active machine,
Third, we learn the detailed dynamical process of a chemwhich is able to manipulate the passive data molecule.
ical transformation of substances. All these steps of defhe primary motivation for developing these molecular
scription can be done on a microscopic and macroscopimachines was to construct artificial organisms in order to
level. The steps are also not independent: The properties develop a general theory for living systems (cf. [15] for
substances are often described in terms of how a substanaecomparing discussion of more recent approaches in that
reacts with other substances, e.g., when we say “Chlorindirection).
is not healthy in large quantities” we describe the propertyA fundamentally different motivation has been the starting
of chlorine by how it interacts with molecules in an organ-point for the development of GAMMA by Banatre and
ism. In fact, in chemistry, substances are often classifie®aniel Le Métayer, namely to introduce a new program-
according to their reactive behavior. ming formalism that allows to automatize reasoning about
programs, such as automatic semantic analysis [16, 11].
1.3 Information Processing and Computing GAMMA is defined by rewriting operations on multisets,
in Natural System which mimics chemical reactions in a well-stirred reaction
_ L _ vessel. GAMMA inspired a series of other chemical
When_we mt_end t(_) take inspiration _from chem|s_try, Werewriting systems: Berry and Boudol [12] introduced the
have_ first to |nve§t|gate where chemical |.nformaF|(.)n Pro-chemical abstract machif€HAM) as a tool to model
CESSINg appears in qatural systems. ObV'F’“S'V' I'V'ng,sy%oncurrent processes. afh’s P-Systems [17] stress the
tems are prime candidates, since information processing |§,,ortance of membranes. Suzuki and Tanaka [18] intro-
identified as a fundamental property of life [6]. duced a rewriting system on multisets in order to study
Information processing in living systems_ can be observed, . mical systems, e.g., to investigate the properties of
on at least two different levels: .the chemlgal and the ne_waéhemical cycles [19], and to model chemical-like systems
level. Where the neural level is responS|bI¢ .for Cogn't',vemcluding economic processes.
tasks and fast coherent control, such as vision, planningihin piological organisms, the endocrine system is a
and muscle control; chemical information processing is,qntro| system that transmits information by chemical
used for regulating and controlling fundamental processeg,ossengers called hormones via a broadcast strategy. The
like growth, ontogeny, gene expression, and immune Sy§5,manoid robot torso COG [20] is an example where

in a large-scale computational result, e.g., a short path fr [20]

: In general, chemical-like systems can control the
an ant’s nest to a food source.

behavior and particularly emotions in artificial agents, e.

. . the computer game Creatures [21] and the psychological
14 Where Chemistry helps Computing ... model PpSI byngrner [7]. Fur&he]r applicatirc))nyareasgof
First, it should be noted that chemistry apparently helpshemical computing are: the control of morpho-genetic
computer science to build electronic devices. Howeversystems, i.e. the control of morphogenesis by artificial
here we are interested in approaches where chemistry stirgene expression; in particular, the control of growth of an
ulates the development of new computational paradigmsirtificial neural networks (cf. Astor and Adami [22]); and
These approaches can be distinguished according to tiiee control of amorphous computers [23]. Husbands et al.
following two dimensions: First, real chemical computing, [24] introduced diffusing chemical substances in artificia
where real molecules and real chemical processes are emmeural networks (cf. GasNet).

ployed to compute. Second, artificial chemical computing,

where the chemlcal metaphor is .utllllzed to program or th Challenges

build computational systems. This includes: constructing

chemical-like formal system in order to model and masteiThere are several challenges for future research in chemi-
concurrent processes, e.g., GAMMA [11], CHAM [12]; cal computing: (1) Efficiency: How to obtain runtime and
using the chemical metaphor as a new way to programmemory efficient chemical programs and their execution
conventional computers including distributed systemspn electronic hardware? (2) Scalability: How do chemi-
e.g., smart dust; and taking the chemical metaphor as aral computing paradigms scale up? (3) Programmability:
inspiration for new architectures, e.g., reaction-diffns How to program a chemical computer? (4) Adaptability
processors [13]. and robustness: How to achieve self-adapting, learning,
An early example, where the chemical metaphor appearezhd reliable chemical computing systems? Furthermore
in computer science, are tlagtificial molecular machines we may investigate fundamental question concerning the
suggested by Laing [14]. These machines consists giower and limits of chemical computing by questions like:
molecules (strings of symbols). Each molecule can appedan the chemical metaphor lead to new computational sys-
in two forms: data or machine. During a reaction, twotems with abilities superior to conventional approaches, o



even to systems that can not be realized by conventionabrt of cellular automata (e.g., lattice molecular aut@mat

approaches? In the following, the problem of programmaf31]) or by compartments like in amorphous computing

bility is discussed in more detail. [23], membranes in P-systems [32], or topology in MGS
[33].

2.1 HowtoProgram a Chemical Computer?

Programming a chemical computer means to define 621.2 Strategies for Chemical Programming

chemical system, which is often also referred to aeac- We can distinguish different strategies of chemical pro-
tion systemor an artificial chemistry Since information gramming according to the components a programmer can
processing emerges from the interaction of many simplenanipulate: (1)Define molecules and reactions explicitly
components, programming a chemical systems appeafhe programmer has to specify the set of molecules as a
to be difficult [25]. We have to rely mostly on our intu- set of symbols and the reaction rules as a set of explicit
ition when defining or programming a reaction systemtransformation rules. An example for this approach is
In order to systematize the construction of an artificialthe hypercyclic memory, the metabolic robot [34], and
chemical system, it is useful to partition its definition in evolved chemical systems like those reported by Ziegler
the following three major steps: and Banzhaf [35].

(1) Molecules In the first step, we have to specify how (2) Define molecules and reactions implicitlyfhe pro-

the molecules should look like. Should they be symbolggrammer can specify molecules and reaction rules implic-
or should they posses a structure, e.g., a sequence of chily like demonstrated by the prime number chemistry in
acters [26], a hierarchical expression [27], or a graph likeSec. 3. This approach is quite general, but because of its
structure [28]. If molecules posses a structure, the defgenerality it does not guide the programmer.

inition of the reaction rules and the dynamics can refe(3) Change molecules principl&gain, the reaction rules

to this structure, which allows to define large (even infi-are implicitly defined but fixed (predefined) and cannot be
nite) reaction systems, as for example in the prime numbeshanged by the programmer. The programmer has “just”
chemistry [29] (Appendix). If the molecules are symbols,to select the right molecules and the dynamics, including
we have to specify the set of possible molecudeplic-  the topology of the reaction space. This resembles the way

itly by enumeration of all possible molecules, egf,=  real chemical computers are programmed, e.g., selecting
{a,b,c,d}. If molecules posses a structure, we can deappropriate DNA stands for solving a Hamiltonian-Path as
fine the set of all possible molecules implicitly, e§4, =  in the famous example by Adleman [36]. Although the
{1,2,...,10000}. programmer has limited choices (compared to the previ-

(2) Reactions In the next step, we have to specify what ous setting), the expressive power is the same, if a univer-
happens when molecules collide. Real molecules cagsal chemistry is used. &niversal chemistris defined as a
collide elastically or they can collide causing a reactionchemistry that includes every possible (let’s say, finiee) r
which transforms the molecules. In a simple abstraction, action network topology. Such chemistry can, for example,
reaction rule is just a pair of two multisets of molecules,easily be defined based on lambda-calculus [27] or combi-
which specifies what kind of molecules can be transformeadators [37]. Because such abstract formalisms from theo-
and replaced by what kind of molecules, e.g., a wellretical computer science can not be easily and intuitively
known reaction rules i{H., H2, 02}, {H20, H,0}), handled by programmers, other approaches are more fea-
which is written in chemical notation equivalently as sible for practical application [38].

2H; + O — 2H>0. In general, reaction rules can (4) Multi-level chemical programming As before, the
become more complicated and can carrying further inforprogrammer selects appropriate molecules and dynamics.
mation, such as parameters specifying kinetic constants @it the same time, the “physics” can be manipulated, too.
environmental conditions under which this reaction carFor example, the calculus specifying implicitly the set of
occur. Analogously to molecules, reaction rules can bgossible molecules and the set of possible reactions can
specifiedexplicitly, as in the previous example reaction be altered and extended. By this, the function (meaning)
rule, orimplicitly, as in the prime number chemistry. of molecules can become more transparent (syntactic
(3) Dynamics Finally, we have to specify the dynamics, sugar). On a higher level of abstraction, molecules may be
which includes the geometry of reaction vessel. Do weassembled to higher clusters resembling macro molecules
assume a well-stirred vessel or vessel with a spatial stru@r modules, which can again serve as building blocks for
ture? How do molecules collide? How are the reactiorimplicit definitions of other molecules, reaction rulesdan
rules applied, e.g., deterministically or stochastically dynamics. Therefore, a programmer operates on different
Well-stirred, deterministic reaction systems are usuallyevels, such as: Level 0: manipulation of the physics, e.qg.,
simulated by integrating ordinary differential equations combinator rules. Level 1: selecting (defining) the right
Stochastic systems can simulated by explicit stochastimolecules and reaction rules, and dynamics in the context
collisions of individual molecules or by more advancedof the chosen physics, e.g., selecting appropriate combi-
discrete event based methods like the Gillespie algorithmators. Level 2: Specifying higher level clusters, modules
[30]. Spatial structures are usually introduced by somenacro-molecular complexes, e.g., based on membrane



computing concepts.
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3 Conclusion

Taking bio-chemical information processing as an inspira-4
tion for organic computing appears to be attractive, since
chemical systems possess a number of desirable propertiefl]
Various approaches following this line can already been
found. However, chemical programming will surely not
replace our current methods, e.g., implementing a word-[2]
processor on a chemical basis is not feasible. It is more
likely that artificial chemistries will be integrated as sub
systems together with other higher-level computing con- [3]
cepts. Still, comprehensive techniques for programming
chemical-like technical systems are missing and system-
atic qualitative and quantitative studies concerning ttee p  [4]
and cons have to be carried out. However, taking heed
of the different approaches envisioned here, advances in
chemical programming can be expected in the near future.

(5]

Appendix: Prime Number Chemistry (6]
Banétre and Le Metayer [11] suggested the numerical de{7]
vision operator as an implicit reaction mechanism, which
results in a prime number generating chemistry defined ag8]
follows: the set of all possible molecules are all integers
greater one and smaller+ 1: M = {2,3,4,...,n}. The
reaction rules are defined by a devision operati@:=
{a+b—a+c|abce M, c=a/ba modb=0}
={44+2—->2+42,64+2—-34+2,6+3 > 2+ 3,
... }. So, two molecules andb can react, ifa is a mul-
tiple of b. For the dynamics, we assume a well-stirred re{11]
action vessel. The state of the reaction vessel of &ize

is represented by a vector (or equivalently by a multi-set)

P = (p1,p2,...,pm) Wherep; € M. The dynamicsis [12]
simulated by the following stochastic algorithm: (1) chose

9]

(10]

two integersi,j € {1,...,M},i # j randomly. (2) if [13]
there is a rule iR wherep; + p; matches the left hand
side, replace; andp; by the right hand side. (3) goto 1.
Assume that we initialize the reaction vesgebuch that [14]

every molecule fromM is contained inP, then we will

surely reach a stationary state where all molecules frorfiL5]
P are prime numbers and every prime number greater one
and less or equal is contained inP. The outcome (prime
numbers present iFf) is deterministic and in particular in-
dependent from the sequence of reactions, where the actjab]
concentration of each prime number can vary and depends
on the sequence of reactions.

Now assume thaP is smaller thanM, e.g.,M = 100  [17]
andn = 10000. The outcome (molecular species present

in P) is not deterministic. It depends on the sequence 0of18]
updates, e.g.P = (20,24,600) can result in the stable
solutionsP = (20, 24, 30) or P = (20, 24, 25). Note that

the behavior (ability to produce prime numbers) depend§l9]
critically on the reactor sizd/ (see ref. [29] for details).
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