
in: Unconventional Programming Paradigms (UPP 2004),
J.-P. Banatre, J.-L. Giavitto, P. Fradet, O. Michel, Editors,
LNCS 3566, pp. 19-32, Springer, Berlin, 2005

Chemical Computing

Peter Dittrich

Bio Systems Analysis Group
Jena Centre for Bioinformatics (JCB) and

Department of Mathematics and Computer Science
Friedrich-Schiller-University Jena

D-07743 Jena, Germany
http://www.minet.uni-jena.de/csb/

Abstract. All information processing systems found in living organ-
isms are based on chemical processes. Harnessing the power of chemistry
for computing might lead to a new unifying paradigm coping with the
rapidly increasing complexity and autonomy of computational systems.
Chemical computing refers to computing with real molecules as well as
to programming electronic devices using principles taken from chem-
istry. The paper focuses on the latter, called artificial chemical comput-
ing, and discusses several aspects of how the metaphor of chemistry can
be employed to build technical information processing systems. In these
systems, computation emerges out of an interplay of many decentral-
ized relatively simple components analogized to molecules. Chemical pro-
gramming encompassed then the definition of molecules, reaction rules,
and the topology and dynamics of the reaction space. Due to the self-
organizing nature of chemical dynamics, new programming methods are
required. Potential approaches for chemical programming are discussed
and a road map for developing chemical computing into a unifying and
well grounded approach is sketched.

1 Introduction

All known life forms process information on a molecular level. Examples are:
signal processing in bacteria (e.g., chemotaxis), gene expression and morpho-
genesis, defense coordination and adaptation in the immune system, and infor-
mation broadcasting by the endocrine system. Chemical processes play also an
important role, when an ant colony seeks a suitable route to a food source. This
kind of chemical information processing is known to be robust, self-organizing,
adaptive, decentralized, asynchronous, fault-tolerant, and evolvable. Computa-
tion emerges out of an orchestrated interplay of many decentralized relatively
simple components (molecules).

How can chemistry be employed for computing? First, it should be noted
that chemistry is used for the fabrication of electronic devices. However, here
we are interested in approaches where chemistry stimulates the development of
new computational paradigms. These approaches can be distinguished accord-
ing to the following two dimensions: First, real chemical computing where real



molecules and real chemical processes are employed to compute. Second, artifi-

cial chemical computing where the chemical metaphor is utilized to program or
to build computational systems. The former aims at harnessing new substrates
for computation. The latter takes the chemical metaphor as a design principle
for new software or hardware architectures built on conventional silicon devices.
So, artificial chemical computing includes constructing chemical-like formal sys-
tem in order to model and master concurrent processes, e.g., Gamma [1], CHAM
[2]; using the chemical metaphor as a new way to program conventional com-
puters including distributed systems, e.g., smart dust; and taking the chemical
metaphor as an inspiration for new architectures, e.g., reaction-diffusion proces-
sors [3].

1.1 The Chemical Metaphor

Chemistry is a science of experiment and observation, which provides a partic-
ular view on our world. Like physics, chemistry deals with matter and energy,
but focuses on substances composed of molecules and how the composition of
these substances is changed by “chemical” reactions. Compared with chemistry,
physics is more concerned with energy, forces, and motion, ie. the physical change
of a system.

Chemistry looks at the macro and micro level: On the macro level emergent
properties and the emergent behavior of substances are studied, e.g., color or
smell. On the microscopic level, molecular structures and reaction mechanisms
are postulated, which are taken to explain macroscopic observations. Ideally,
microscopic models allow to formally derive macroscopic observations. However,
this is possible only in limited cases, e.g., no algorithm that computes the melting
temperature of a molecule given its structure is known. In general, chemistry
explains a chemical observation using a mixture of microscopic and macroscopic
explanations.

The difficulty to predict the macroscopic behavior from microscopic details
has its root in the nature of emergence. The time-evolution of a chemical sys-
tem is a highly parallel self-organization process where many relatively simple
components interact in a nonlinear fashion. And it is a central aim of chemical
computing to harness the power inherent in these self-organization processes.

From a computer science perspective it would be quite appealing to achieve
computation as an emergent process, where only microscopic rules have to be
specified and information processing appears as global behavior. From knowing
the biological archetype, we can expect a series of interesting properties, such
as, fine grained parallelism without central control, fault tolerance, and evolv-
ability. There is a wide application range, especially where the characteristics
of chemical processes fit naturally to the desired task, as for example in highly
distributed and dynamic “organic” processor networks or within one comput-
ing node to implement particular systems like artificial emotional [4], endocrine
[5], or immune systems more naturally. It should be mentioned that chemical
processes themselves can be seen as a natural media for information processing
either in vitro or in vivo [6–8]; for a recent discussion of molecular computing



see ref. [9]. Here we concentrate on how technical electronic systems can utilize
the chemical metaphor.

1.2 The Organization of Chemical Explanations

When we study chemistry [10], first we learn how substances look like. We de-
scribe macroscopic properties of the substances, such as color, and how sub-
stances are composed from elementary objects, the atoms. Second, we learn how
substances interact, in particular, we describe the outcome that results from
their union. Reactive interactions among molecules require that these molecules
come into contact, which can be the result of a collision. Third, we learn the
detailed dynamical process of a chemical transformation of substances. All these
steps of description can be done on a microscopic and macroscopic level. The
steps are also not independent: The properties of substances are often described
in terms of how a substance reacts with other substances, e.g., when we say “flu-
orine is not healthy in large quantities” we describe the property of fluorine by
how it interacts with molecules in an organism. In fact, in times when nothing
was known about the molecule’s structure substances where classified according
to their macroscopic appearance and reactive behavior.

Today, classification of substance usually refers to the structure of the mole-
cules, e.g., alcohols are characterized by a functional OH-group. Sometimes only
the composition of atoms is taken for classification, e.g., hydrocarbons. Inter-
estingly and importantly for the success of the discipline Chemistry is the fact
that structural classification coincide with classifications based on behavior and
appearance. This phenomenon is not sufficiently explained by the fact that the
function (ie. physical and reactive properties) of a molecule depends on its struc-
ture, which is a form of causality. Moreover, similarity in structure tends to co-
incide with similarity in function, which is a form of strong causality between
structure and function.

Another important observation should be noted: When we combine some
substance in a reaction vessel and wait while these substances react; as a result
only a small subset of molecular species will appear, which is usually much
smaller than the set of molecular species that could be build from the atoms
present in the reaction vessel. So there is also a certain (strong) causality in
the dynamics and a dependency on initial conditions. Not everything that is
possible does appear, though there is also nondeterminism. So, we can say that
a chemical system evolves over time in a contingent way that depends on its
history.

1.3 Information Processing and Computing in Natural System

When we intend to take inspiration from chemistry, we have first to investigate
where chemical information processing appears in natural systems. Obviously,
living systems are prime candidates, since information processing is identified as
a fundamental property of life [11].



Information processing in living systems can be observed on at least two
different levels: the chemical and the neural level. Where the neural level is re-
sponsible for cognitive tasks and fast coherent control, such as vision, planing,
and muscle control; chemical information processing is used for regulating and
controlling fundamental processes like growth, ontogeny, gene expression, and
immune system response. Neurons themselves are based on (electro-)chemical
processes, and more often than not, chemical processes are combined with neu-
ronal processes resulting in a large-scale computational result.

Real chemical computing utilizes a series of “chemical principles”, which are
also relevant for artificial chemical computing, such as: pattern recognition[12],
change of conformation[13], chemical kinetics [14], formation of (spatial) struc-
tures, energy minimization, and optical activity [15]. Pattern recognition is a
central mechanism for explaining reactions among complex biomolecules (e.g.,
transcription factors binding to DNA). It is also used in real as well as artifi-
cial chemical computing approaches, such as DNA computing [12] and rewriting
systems [1, 16, 17], respectively.

1.4 Application of the Chemical Metaphor in Computing

There are already a series of approaches in computer science that have been in-
spired by chemistry: An early example are the artificial molecular machines sug-
gested by Laing [18]. These machines consists of molecules (strings of symbols).
Each molecule can appear in two forms: data or machine. During a reaction, two
molecules come into contact at a particular position. One of the molecules is
considered as the active machine, which is able to manipulate the passive data
molecule. The primary motivation for developing these molecular machines was
to construct artificial organisms in order to develop a general theory for living
systems (cf. [19] for a comparing discussion of more recent approaches in that
direction).

A fundamentally different motivation has been the starting point for the de-
velopment of Gamma by Banâtre and Le Métayer, namely to introduce a new
programming formalism that allows to automatize reasoning about programs,
such as automatic semantic analysis [20, 1]. Gamma is defined by rewriting op-
erations on multisets, which mimics chemical reactions in a well-stirred reaction
vessel. Gamma inspired a series of other chemical rewriting systems: Berry and
Boudol [2] introduced the chemical abstract machine (CHAM) as a tool to model
concurrent processes. Pǎun’s P-Systems [16] stress the importance of membranes.
Suzuki and Tanaka [21] introduced a rewriting system on multisets in order to
study chemical systems, e.g., to investigate the properties of chemical cycles [22],
and to model chemical-like systems including economic processes.

Within biological organisms, the endocrine system is a control system, which
transmits information by chemical messengers called hormones via a broadcast
strategy. The humanoid robot torso COG [5] is an example where the endocrine
system has inspired engineering. Artificial hormones are used to achieve a co-
herent behavior among COG’s large number of independent processing elements
[5]. In general, chemical-like systems can control the behavior and particularly



emotions in artificial agents, e.g., the computer game Creatures [23] and the
psychological model PSI by Dörner [4]. Further application areas of chemical
computing are: the control of morpho-genetic systems, i.e. the control of mor-
phogenesis by artificial gene expression; in particular, the control of growth of an
artificial neural networks (cf. Astor and Adami [24]); and the control of amor-
phous computers [25]. Finally, Husbands et al. [26] introduced diffusing chemical
substances in artificial neural networks (cf. GasNet).

2 Facets of Chemical Computing

As exemplified by the previous section, the world of chemical computing enjoys
already a wide spectrum of approaches. This section discusses a set of important
aspects, which allow to characterize chemical computing in more detail.

2.1 Microscopic vs. Macroscopic Computing

Chemical information processing can be characterized according to the level on
which it appears: In approaches like chemical boolean circuits [27], the chemical
neuron [14], or the hypercyclic memory (Sec. 5.2), information is represented by
the concentration of substances and computation is carried out by an increase
and decrease of concentration levels, which can be regarded as a form of macro-

scopic chemical computing. Alternatively, in microscopic chemical computing,
the intermediately stored information and computational results are represented
by single molecules. Examples are DNA computing [12] and the prime number
chemistry (Sec. 5.1). The dynamics is usually stochastic, in contrast to macro-
scopic computation, which can be more readily described with ordinary differ-
ential equations. Nevertheless, microscopic computing also can deliver results
virtually deterministically, as shown by the prime number chemistry example in
Sec. 5.1.

2.2 Deterministic vs. Stochastic Processes

On the molecular level, chemical processes are stochastic in nature. However, in
technical applications deterministic behavior is often required. There are various
ways how this can be achieved:

(1) The problem can be stated such that the order of the sequence of collisions
does not play a role1. An example is the prime number chemistry where we start
with a population that contains all numbers between 2 and n. The outcome will
be a reactor containing all and only prime numbers less or equal n, independently
of the sequence of updates.

(2) Increasing the reactor size would reduce the effect of randomness. If the
reactor size and together with it the number of molecules of each molecular type

1 For a theory that considers the effect of the order of update see “sequential dynamical
systems” [28, 29]



tends to infinity, the molecules’ concentrations tend to a deterministic dynam-
ics. In this case, the dynamics of the concentrations can be represented by a
differential equation and simulated by numerical integration of this equation.

(3) A well-defined deterministic update scheme can be used. For example we
can check one reaction rule after another in a fixed predefined sequence, e.g.,
early ARMS [21] and MGS [17]2 Doing this, we gain determinism and might
gain efficiency, but we loose aspects of the chemical metaphor and may introduce
artifacts by the update scheme, e.g., when the rule order plays a significant role.
This might be reasonable from a computing point of view, but is unnatural from
a chemical point of view.

2.3 Closed vs. Open Systems

In thermodynamics, a system that can exchange mass and energy with its envi-
ronment is called open.When mass is not exchanged the system is called closed
If the system cannot exchange anything, it is called isolated. In chemical com-
puting we also encounter closed and open systems, whose characteristics are
quite different. In a closed system, molecules do not leave the reaction vessel.
There is no dilution flow. Reaction rules must be balanced, which means that
the mass on the left hand side must be equal to the mass on the right hand side.
So, a molecule can only disappear by transforming it via a reaction into other
molecules. In an isolated system, stable dissipative structures can not appear;
they can only appear as transient phenomena locally. The prime number chem-
istry is an example for a closed and isolated system. There is no dilution flow
and molecules are transformed by the mass-conserving rule: a + b → a + b/a for
b being a multiple of a.

The hypercyclic memory is an example for an open system. Molecules con-
stantly vanish and are regenerated from an implicitly assumed substrate, which
is available at a constant concentration from the environment. Before the query,
the system is in a quasi-stationary state, which is a dissipative structure that
requires a constant regeneration of all of its components.

The hypercyclic memory is also an example where there is a so called non-

selective dilution flow, where the rate of decay is proportional to the concen-
tration of a molecule, or more precisely, the concentration of molecules in the
dilution flow is the same as in the reaction vessel. Systems with selective dilu-
tion flows are not discussed here, but it should be noted that by introducing a
selective dilution flow, we can move gradually from an open to a closed system
and can capture aspects from both.

Does it make sense to consider open systems with a non-selective dilution
flow, where we have to regenerate constantly molecules we wish to have in the
reactor? From a formal point of view, both might be equivalent: In an open
system, a stable solution is a self-regenerating set of molecules; while in a closed
system, a stable solution is just a set of molecules, which do not react further

2 Note that both mentioned systems (ARMS, MGS) allow also a randomized “natural”
update scheme.



to form other molecules (nevertheless there might be a reversible dynamics). So
from this point of view, taking a closed systems approach appears more reason-
able, because the solution is more stable. We do not have to fear that informa-
tion gets lost by the dilution flow and we do not have to care for regenerating
molecules.

However, when using an open system approach we arrive at more robust and
flexible organic systems. Open reaction systems are especially suitable, where
the substrate is unreliable and highly dynamic. Consider for example a compu-
tational substrate that is under constant change, where nodes are added and
removed at a relatively high rate, e.g., the network of activated cellular phones.
In such a system, there is no place that exists for long. When a cellular phone
is switched off, the molecules residing in that places vanish, too, which causes
from a chemical point of view a general, non-selective dilution flow. Thus sta-
ble structures must consists of molecules that constantly reproduce themselves
as a whole; according to the theory of chemical organization [30], they must
encompass a self-maintaining set of molecules.

2.4 Computing with Invisible Networks

What is the difference between chemical computing and an artificial neural net-
work (ANN)? In both approaches, a network is specified by a set of components
(molecules/neurons), a set of interactions (reactions/connections), and a descrip-
tion of the behavior (dynamics/firing rule). In contrast to chemical computing,
an ANN is usually accompanied by a learning procedure. However, learning can
be added to chemical computing by means of evolutionary computation [31,
32] or by transferring learning techniques from computational intelligence, e.g.,
Hebbian learning. In particular, this should be straight forward for explicitly
defined chemical systems operating macroscopically, which are quite similar to
dynamical neural networks (see Sec. 5.2 or ref. [14]).

But there are some remarkable differences: When we consider a reaction sys-
tem with implicitly defined molecules and rules like the prime number chemistry
in Sec. 5.1, we can easily obtain giant networks that are “invisible”. When we
look inside a reaction vessel, no component that represents a connection can be
seen. Even the nodes of the chemical network cannot be easily identified because
they are not spatially differentiated from each other, since a chemical node may
be represented by a collection of molecules that are instances of one molecular
species. The prime number chemistry is an example where a couple of simple
rules imply a giant network, much larger than a human brain, e.g., for n = 1030.

Another important difference to ANNs should be mentioned: When executing
a chemical computation, only a subnetwork is active at a certain point in time,
which is illustrated by Fig. 1. Since the size of a reaction vessel is limited, it can
only contain a fraction of molecules from the set of all possible molecules. These
present molecules together with all reactions that can occur among them can be
regarded as the active reaction network. Due to internal or external dynamics,
the set of molecular species in the reaction vessel can change, and thus the



d
e

f

g

b

a

e

g

a

a
a

b

b

c
c

c
f d

f

f

cc

c

b

ca c

d

f

time

Fig. 1. Illustration of the invisible network, whose active part changes over time. A
bold character denotes a molecular species that is present in the reactor. These species
imply the currently active network highlighted by solid arrows. Note that a character
in the reaction network denotes a molecular species, whereas the same character in the
sketched reaction vessel denotes a concrete molecule (or instance) of that species.

active network evolves over time, too (Fig. 1). This phenomenon is captured
theoretically by a movement through the set of chemical organizations [33, 30].

3 Chemical Programming

Programming a chemical computer means to define a chemical system, which is
often also referred to as a reaction system or an artificial chemistry [34]. There are
two fundamentally different approaches to chemical programming: (1) automatic
programming by optimization, e.g. by means of evolutionary computation [31,
32], and (2) engineering by a human programmer, e.g. [1, 25]. Both approaches
require specifying the following three aspects of the target chemistry:

(1) Molecules: In the first step, we have to specify how the molecules should
look like. Should they be symbols or should they posses a structure, e.g., a
sequence of characters [35], a hierarchical expression [36], or a graph like struc-
ture [37]. If molecules posses a structure, the definition of the reaction rules and
the dynamics can refer to this structure, which allows to define large (even infi-
nite) reaction systems, as exemplified by the prime number chemistry in Sec. 5.1.
If the molecules are symbols, we have to specify the set of possible molecules
explicitly by enumeration of all possible molecules, e.g., M = {a, b, c, d}. If
molecules posses a structure, we can define the set of all possible molecules
implicitly, e.g., M = {1, 2, . . . , 10000}.



(2) Reactions: In the next step, we have to specify what happens when
molecules collide. Real molecules can collide elastically or they can collide causing
a reaction, which transforms the molecules. In a simple abstraction, a reaction
rule is just a pair of two multisets of molecules, which specifies what kind of
molecules can be transformed and replaced by what kind of molecules, e.g., a
well known reaction rules is ({H2,H2, O2}, {H2O,H2O}), which is written in
chemical notation equivalently as 2H2 + O2 → 2H2O. In general, reaction rules
can become more complicated and can carry further information, such as pa-
rameters specifying kinetic constants or environmental conditions under which
this reaction can occur. Analogously to molecules, reaction rules can be specified
explicitly like 2H2+O2 → 2H2O, or implicitly, as in the prime number chemistry.

(3) Dynamics: Finally, we have to specify the dynamics, which includes the
geometry of reaction vessel. Do we assume a well-stirred vessel or vessel with
a spatial structure? How do molecules collide? How are the reaction rules ap-
plied, e.g., deterministically or stochastically? Well-stirred deterministic reac-
tion systems are usually simulated by integrating ordinary differential equations.
Stochastic systems can be simulated by explicit stochastic collisions of individual
molecules or by more advanced discrete event based methods like the Gillespie
algorithm [38]. Spatial structures are usually introduced by some sort of cel-
lular automata (e.g., lattice molecular automata [39]) or by compartments like
in amorphous computing [25], membranes in P-systems [16] or mobile process
calculi [40], or topology in MGS [17].

3.1 Strategies for Chemical Programming

We distinguish different strategies of chemical programming according to the
components a programmer can manipulate:

(1) Define molecules and reactions explicitly: The programmer has to specify
the set of molecules as a set of symbols and the reaction rules as a set of explicit
transformation rules. An example for this approach is the hypercyclic memory
(Sec. 5.2), the metabolic robot [41], and evolved chemical systems like those
reported by Ziegler and Banzhaf [31].

(2) Define molecules and reactions implicitly: The programmer specifies mole-
cules and reaction rules implicitly like demonstrated by the prime number chem-
istry in Sec. 5.1. For defining reaction rules implicitly, the molecules can not be
just a list of symbols, rather they must posses a structure to which the definition
of the reaction rules can refer to (see Sec. 3(1)). This approach is quite general,
but because of its generality additional principle for guiding the programmer are
required.

(3) Change-molecules-only principle: Again, the reaction rules are implicitly
defined but fixed (predefined) and cannot be changed by the programmer. The
programmer or an evolutionary process has “just” to select the right molecules
and the dynamics, including the topology of the reaction space. This resembles
the way real chemical computers are programmed, e.g., selecting appropriate
DNA strands for solving a Hamiltonian path problem as in the famous example
by Adleman [12]. Although the programmer has limited choices (compared to



the previous setting), the expressive power is the same, if a universal chemistry
is used. A universal chemistry is defined as a chemistry that includes every
possible (let’s say, finite) reaction network topology. Such chemistry can, for
example, easily be defined based on lambda-calculus [36] or combinators [42].
However, these abstract formalisms stemming from theoretical computer science
can not be easily and intuitively handled by programmers, other approaches are
more feasible for practical application (see Banâtre, Fradet, and Radenac in this
volume).

(4) Multi-level chemical programming: As before, the programmer selects ap-
propriate molecules and dynamics. At the same time, the “physics” can be ma-
nipulated, too, but at a slower rate. For example, the calculus specifying implic-
itly the set of possible molecules and the set of possible reactions can be altered
and extended. By this, the function (meaning) of molecules can become more
transparent (syntactic sugar). On a higher level of abstraction, molecules may be
assembled to higher clusters resembling macro molecules or modules, which can
again serve as building blocks for implicit definitions of other molecules, reaction
rules, and dynamics. Therefore, a programmer operates on different levels, such
as: Level 0: manipulation of the physics, e.g., combinator rules. Level 1: selecting
(defining) the right molecules and reaction rules, and dynamics in the context
of the chosen physics, e.g., selecting appropriate combinators. Level 2: Speci-
fying higher level clusters, modules, macro-molecular complexes, e.g., based on
membrane computing concepts.

4 Conclusion and Challenges

This essay discussed several aspects of artificial chemical computing. It has been
shown that chemical-like systems possess a number of interesting properties,
which appear especially feasible in domains like distributed computing, ambient
computing, or organic computing. Furthermore, a couple of application scenarios
have been described, including a first successful commercial application [23].
Taking heed of these facts, the chemical metaphor appears as a paradigm, which
will qualitatively enrich our repertoire of programming techniques.

The road map of chemical computing includes a series of challenges: (1) Ef-
ficiency: How to obtain runtime and memory efficient chemical programs and
their execution on electronic hardware? (2) Scalability: How do chemical com-
puting paradigms scale up? (3) Programmability: How to program a chemi-
cal computer? (4) Adaptability and robustness: How to achieve self-adapting,
learning, and reliable chemical computing systems? (5) Theory: How to describe
chemical computing processes theoretically? Here, chemical organization theory
[30] appears as a promising approach, especially when dealing with constructive
chemical systems. Other sources for a theoretical base are classical dynamical
systems theory and approaches from computer science like rewriting calculi [1,
2, 16, 40] and temporal logic. Furthermore we may investigate fundamental ques-
tion concerning the power and limits of chemical computing by questions like:
Can the chemical metaphor lead to new computational systems with abilities



superior to conventional approaches, or even to systems that can not be realized
by conventional approaches?

It is evident that the future will witness further integration of concepts from
the natural sciences and computer science, which will reduce the differences be-
tween the living and the technological world. Like living systems, computing
systems in the future will consist of decentralized and highly distributed com-
ponents that interact with increasing autonomy and flexibility. For harnessing
their potential it will be crucial to obtain new, organic methods for their con-
struction and control. Chemical computing, which has been employed by nature
with great success, offers a promising paradigm.

5 Appendix: Examples

5.1 Prime Number Chemistry

Banâtre and Le Metayer [1] suggested the numerical devision operator as an im-
plicit reaction mechanism, which results in a prime number generating chemistry
defined as follows (see ref. [41, 43] for details): the set of all possible molecules
are all integers greater one and smaller n+1: M = {2, 3, 4, . . . , n}. The reaction
rules are defined by a devision operation: R = {a + b → a + c | a, b, c ∈ M,
c = a/b, a mod b = 0} = {4 + 2 → 2 + 2, 6 + 2 → 3 + 2, 6 + 3 → 2 + 3, . . . }.
So, two molecules a and b can react, if a is a multiple of b. For the dynamics, we
assume a well-stirred reaction vessel. The state of the reaction vessel of size M
is represented by a vector (or equivalently by a multi-set) P = (p1, p2, . . . , pM )
where pi ∈ M. The dynamics is simulated by the following stochastic algorithm:
(1) chose two integers i, j ∈ {1, . . . ,M}, i 6= j randomly. (2) if there is a rule in
R where pi + pj matches the left hand side, replace pi and pj by the right hand
side. (3) goto 1.

Assume that we initialize the reaction vessel P such that every molecule
from M is contained in P , then we will surely reach a stationary state where all
molecules from P are prime numbers and every prime number greater one and
less or equal n is contained in P . The outcome (prime numbers present in P )
is deterministic and in particular independent from the sequence of reactions,
where the actual concentration of each prime number can vary and depends on
the sequence of reactions. Now assume that P is smaller than M, e.g., M = 100
and n = 10000. The outcome (molecular species present in P ) is not determin-
istic. It depends on the sequence of updates, e.g., P = (20, 24, 600) can result in
the stable solutions P = (20, 24, 30) or P = (20, 24, 25). Note that the behavior
(ability to produce prime numbers) depends critically on the reactor size M [41,
43].

5.2 Hypercyclic Associative Memory

Assume that we have an unreliable media, where all molecules decay sooner or
later. In order to store data over a longer period, molecules have to be repro-
duced. Simple self-replicating molecules are not sufficient, since, as discussed by



Fig. 2. Hypercyclic associative memory. Left: Illustration of the reaction network.
An arrow represents a catalytic interaction where both reactants act as catalysts and
are not used up. Only the active network is shown. Right: Example of a stochastic
simulation of a query. 400 molecules of type q1 are inserted. Reactor size M = 1000.

Eigen and Schuster [44], in a limited volume, self-replicating molecules compete
for resources and can not coexist stably (exponential growth and no interaction
assumed).

In the following example [41], three “units” of data {d1, d2, d3} are stored in
three different molecules {w1, w2, w3}. In order to query the memory, there are
three input molecules {q1, q2, q3}. Our demanded specifications are: the chemical
system should store the data for a long period of time, under constant dilution
of the molecules. The system should produce di provided qi as input. We assume
the following reactions: R = {w1 + w2 → w1 + w2 + w2, w2 + w3 → w2 + w3 +
w3, w3 + w1 → w1 + w2 + w1, w1 + q1 → w1 + q1 + d1, w2 + q2 → w1 + q2 +
d2, w3 + q3 → w1 + q3 +d3}. For the dynamics, we assume a well-stirred reaction
vessel that contains a constant number of M molecules. The state of the vessel
is represented by a vector (or equivalently by a multi-set) P = (p1, p2, . . . , pM )
where pi ∈ M. The dynamics is simulated by the following stochastic algorithm:
(1) chose three integers i, j, k ∈ {1, . . . ,M}, i 6= j randomly. (2) if there is a rule
pi + pj → pi + pj + x in R, replace molecule pk by x. (3) goto 1. This kind of
stochastic algorithm is equivalent to the deterministic replicator equation and
catalytic network equation. It is also used in several other works [45, 35, 46].

Figure 2 shows an example of a simulation where 400 molecules of type q1

are inserted into a reactor that contains approximately the same amount of
each information molecule {w1, w2, w3}. Interaction of q1 with w1 results in the
production of d1. Since all molecules are subject to a dilution flow and q1 is not
produced, q1 and d1 are washed out while the concentrations of {w1, w2, w3}
stabilize again.

Acknowledgment: I am grateful to F. Centler, N. Matsumaru, and K.-P. Za-
uner for helpful comments. This work was supported by the Federal Ministry of
Education and Research (BMBF) Grant 0312704A to Friedrich Schiller Univer-
sity Jena.



References

1. Banâtre, J.P., Métayer, D.L.: The GAMMA model and its discipline of program-
ming. Sci. Comput. Program. 15 (1990) 55–77

2. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96
(1992) 217–248

3. Adamatzky, A.: Universal dynamical computation in multidimensional excitable
lattices. Int. J. Theor. Phys. 37 (1998) 3069–3108

4. Dörner, D.: Bauplan einer Seele. Rowohlt, Reinbeck (1999)
5. Brooks, R.A.: Coherent behavior from many adaptive processes. In Cliff, D.,

Husbands, P., Meyer, J.A., Wilson, S., eds.: From animals to animats 3, Cambridge,
MA, MIT Press (1994) 22–29

6. Conrad, M.: Information processing in molecular systems. Currents in Modern
Biology 5 (1972) 1–14

7. Liberman, E.A.: Cell as a molecular computer (MCC). Biofizika 17 (1972) 932–43
8. Liberman, E.A.: Analog-digital molecular cell. BioSytems 11 (1979) 111–24
9. Zauner, K.P.: Molecular information technology. Cr. Rev. Sol. State 30 (2005)

33–69
10. Tilden, W.A.: Introduction to the Study of Chemical Philosophy. 6 edn. Longmans,

Green and Co., London (1888)
11. Küppers, B.O.: Information and the Origin of Life. MIT Press, Cambridge, MA

(1990)
12. Adleman, L.M.: Molecular computation of solutions to combinatorical problems.

Science 266 (1994) 1021
13. Conrad, M., Zauner, K.P.: Conformation-driven computing: A comparison of de-

signs based on DNA, RNA, and protein. Supramol. Sci. 5 (1998) 787–790
14. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural

networks and turing machines. Proc. Natl. Acad. Sci. USA 88 (1991) 10983–10987
15. Bazhenov, V.Y., Soskin, M.S., Taranenko, V.B., Vasnetsov, M.V.: Biopolymers

for real-time optical processing. In Arsenault, H.H., ed.: Optical Processing and
Computing, San Diego, Academic Press (1989) 103–44

16. Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61 (2000) 108–143
17. Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex

objects and collections. In van den Brand, M., Verma, R., eds.: Electronic Notes
in Theoretical Computer Science. Volume 59., Elsevier Science Publishers (2001)

18. Laing, R.: Artificial organisms and autonomous cell rules. J. Cybernetics 2 (1972)
38–49

19. Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of
complex forms of life in an artificial environment. Artif. Life 9 (2003) 153–174

20. Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of
programming. technical report RR-0566, INRIA (1986)

21. Suzuki, Y., Tanaka, H.: Symbolic chemical system based on abstract rewriting and
its behavior pattern. Artif. Life and Robotics 1 (1997) 211–219

22. Suzuki, Y., Tsumoto, S., Tanaka, H.: Analysis of cycles in symbolic chemical system
based on abstract rewriting system on multisets. In Langton, C.G., Shimohara,
K., eds.: Artificial Life V, Cambridge, MA, MIT Press (1996) 521–528

23. Cliff, D., Grand, S.: The creatures global digital ecosystem. Artif. Life 5 (1999)
77–94

24. Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural
networks. Artif. Life 6 (2000) 189–218



25. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R.,
Rauch, E., Sussman, G.J., Weiss, R., Homsy, G.: Amorphous computing. Commun.
ACM 43 (2000) 74–82

26. Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry:
Evolving gasnets for robot control. Connect. Sci. 10 (1998) 185–210

27. Seelig, L.A., Rössler, O.E.: A chemical reaction flip-flop with one unique switching
input. Zeitschrift für Naturforschung 27b (1972) 1441–1444

28. Barrett, C.L., Mortveit, H.S., Reidys, C.M.: Elements of a theory of simulation II:
sequential dynamical systems. Appl. Math. Comput. 107 (2000) 121–136

29. Reidys, C.M.: On acyclic orientations and sequential dynamical systems. Adv.
Appl. Math. 27 (2001) 790–804

30. Dittrich, P., di Fenizio, P.S.: Chemical organization theory: Towards a theory of
constructive dynamical systems. (submitted), preprint arXiv:q-bio.MN/0501016 x
(2005) 1–7

31. Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artif. Life 7
(2001) 171 – 190

32. Bedau, M.A., Buchanan, A., Gazzola, G., Hanczyc, M., Maeke, T., McCaskill, J.,
Poli, I., Packard, N.H.: Evolutionary design of a DDPD model of ligation. In: 7th
Int. Conf. on Artificial Evolution. LNCS, Springer, Berlin (2005) (in press)

33. Speroni Di Fenizio, P., Dittrich, P.: Artificial chemistry’s global dynamics. move-
ment in the lattice of organisation. The Journal of Three Dimensional Images 16
(2002) 160–163

34. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries - a review. Artif. Life
7 (2001) 225–275

35. Banzhaf, W.: Self-replicating sequences of binary numbers – foundations I and II:
General and strings of length n = 4. Biol. Cybern. 69 (1993) 269–281

36. Fontana, W., Buss, L.W.: ’The arrival of the fittest’: Toward a theory of biological
organization. Bull. Math. Biol. 56 (1994) 1–64

37. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J.
Chem. Inf. Comput. Sci. 43 (2003) 2759–2767

38. Gillespie, D.T.: Exact stochastic simulation of coupled chemical-reactions. J. Phys.
Chem. 81 (1977) 2340–2361

39. Mayer, B., Rasmussen, S.: Dynamics and simulation of micellar self-reproduction.
Int. J. Mod. Phys. C 11 (2000) 809–826

40. Cardelli, L.: Brane calculi. In Danos, V., Schachter, V., eds.: Computational Meth-
ods in Systems Biology (CMSB 2004). Volume 3082 of LNCS., Berlin, Springer
(2005) 257–278

41. Dittrich, P.: Selbstorganisation in einem System von Binärstrings mit algorithmis-
chen Sekundärstrukturen. Diploma thesis, Dept. of Computer Science, University
of Dortmund (1995)

42. Speroni di Fenizio, P.: A less abstract artficial chemistry. In Bedau, M.A., Mc-
Caskill, J.S., Packard, N.H., Rasmussen, S., eds.: Artificial Life VII, Cambridge,
MA, MIT Press (2000) 49–53

43. Banzhaf, W., Dittrich, P., Rauhe, H.: Emergent computation by catalytic reactions.
Nanotechnology 7 (1996) 307–314

44. Eigen, M., Schuster, P.: The hypercycle: a principle of natural self-organisation,
part A. Naturwissenschaften 64 (1977) 541–565

45. Fontana, W., Wagner, G., Buss, L.W.: Beyond digital naturalism. Artif. Life 1/2
(1994) 211–227

46. Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system.
Artif. Life 4 (1998) 203–220


