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Abstract. The way how cell signals are generated, encoded, transferred,
modified, and utilised is essential for understanding information process-
ing inside living organisms. The tremendously growing biological knowl-
edge about proteins and their interactions draws a more and more de-
tailed image of a complex functional network. Considering signalling net-
works as computing devices, the detection of structural principles, espe-
cially modularisation into subunits and interfaces between them, can
help to seize ideas for their description and analysis. Algebraic models
like P systems prove to be appropriate to this. We utilise string-objects
to carry information about protein binding domains and their ligands.
Embedding these string-objects into a deterministic graph structured
P system with dynamical behaviour, we introduce a model that can de-
scribe cell signalling pathways on a submolecular level. Beyond questions
of formal languages, the model facilitates tracing the evolutionary devel-
opment from single protein components towards functional interacting
networks. We exemplify the model by means of the yeast pheromone
pathway.

1 Introduction

Protein signalling networks can be viewed as computational devices of the cell,
triggering and directing responses to external inputs. Therefore, the utilisation
of tools and techniques from computer science to study signalling networks con-
stitutes an almost natural step. In this contribution, we propose a specialised
version of the P system framework, which is a term-rewriting mechanism de-
signed with cellular principles in mind [12, 13].

Cell signalling networks (CSNs) represent a class of biochemical reaction net-
works, set apart from others (such as metabolic networks) by an arrangement of
special properties. One of these is the importance of the configuration of individ-
ual molecules (proteins) to their function in the network, which is exemplified by
the activation of certain kinases via phosphorylation. Therefore, the protein con-
stituents of CSNs should not be viewed as atomic objects, but rather as entities



whose configuration can change over the course of time. Another distinguish-
ing property of CSNs is the importance of their temporal behaviour. While the
steady-state behaviour might be enough to characterise a metabolic network,
the function of a CSN depends heavily on its temporal evolution. Thirdly, par-
titioning the whole pathway into several connected modules is thought to be
a keystone for understanding molecular networks, a concept common to both
metabolic and signalling systems. The formalism described here intends to in-
corporate the module concept by altering the established membrane framework
from a tree-based to a graph-based structure. Similar approaches to P system
structures are considered in tissue and population P systems [2, 10].

P systems with string-objects have already been considered in [12], while
graph-based membrane structures were introduced in [14], and dynamics in [15,
18]. Our approach to temporal dynamics is based on the metabolic algorithm
developed in [8], where a kinetic understanding of P system rewriting rules is
explained and simulated. While these features have been introduced and inves-
tigated previously, the novelty of the approach presented here lies in their com-
bination into one system, in order to define a framework suitable for modelling
complex CSNs. A detailed account of the system is provided, and its suitability
for modelling CSNs is demonstrated by an extensive example model of the yeast
pheromone pathway.

2 Modelling Cell Signalling Networks

Modern molecular biology yields more and more data sheding light on signalling
processes in the cell. In order to keep up with these developments, theoretical
biologists and computer scientists have to provide modelling formalisms capable
of integrating this growing knowledge. This section will briefly review common
practices in modelling CSNs and introduce the advantages of using the P sys-
tems approach for this task, together with the extensions and novelties that are
proposed in this contribution.

The most common class of formal CSN models consists of analytical models,
based on differential equations. These systems are relatively straightforward to
set up from a reaction network, and a plethora of tools for their numerical eval-
uation is available. Unfortunately, differential equations do not allow to include
much human-readable information into the model, so that large models quickly
become incomprehensible. Additionally, due to their continuous nature, these
approaches are usually not tractable by tools and theory of computer science.

A classic step from continuous to discrete models leads to stochastic ap-
proaches, in which the number of molecules of each molecular species is assumed
to be a random variable with temporally varying probability distribution. The
conversion of a set of reactions into a stochastic system description has been
adressed by a range of publications, mostly building on the fundamental work
by Gillespie [5].

Algebraic approaches, drawing heavily on concepts from theoretical computer
science, have several advantages to offer. They are well understood, cover a wide



field of different modelling aspects, and each one comes with its own set of tools to
analyse specific models. Additionally, they enable structuring and classification
on several levels of abstraction. A short and by no means complete list of such
formalisms would include: state-based systems such as abstract machines and
X machines [4], process calculi such as π calculus [11], ambient calculus [3] and
Petri nets [16], and term-rewriting systems based on Chomsky-grammars [17].
P systems, which represent an instance of the last category, are especially suited
to develop models of cellular computation.

The general P system framework [13] is based on rewriting of multisets of
molecule objects, which are contained in different compartments of the cell.
Rewriting rules are localised to the compartments, so that object-processing
depends on the current localisation. Objects can move between compartments,
allowing the flow of a signal through the system. Here, we extend this formalism
with a set of concepts that are essential for modelling CSNs.

By considering string-objects, we allow the substructures and properties of
individual proteins to carry information. Extending the original concept of mem-
branes to the more abstract view of distinguished modules in the CSN leads to
models built out of coherent components, which are easier to create, maintain
and re-use. In order to enable detailed studies on the temporal evolution of the
system, we replace the maximally parallel rewriting from the original framework
with a mechanism that is based on reaction kinetics. For each rewriting rule, the
number of applications per turn is given by a kinetic function, depending on the
current configuration of the module. This way, a deterministic system evolution
is obtained.

3 System Description

We introduce a deterministic rewriting P system based on multisets of string-
objects. The system description combines aspects of formal languages with nu-
meric evaluations for handling of object selection and multiplicities. String-
objects are composed in a way to encode information about protein substructures
and specific protein properties.

Formal Language Prerequisites

We denote the empty word by ε. The concatenation of formal languages L1

and L2 over a common alphabet Σ is written as L1 ⊗ L2 = {uv | u ∈ L1 ∧
v ∈ L2}. P(L) denotes the power set of L. Let A be an arbitrary set and
N the set of natural numbers including zero. A multiset over A is a mapping
F : A −→ N ∪ {∞}. F (a), also denoted as [a]F , specifies the multiplicity of
a ∈ A in F . Multisets can be written as an elementwise enumeration of the form
{(a1, F (a1)), (a2, F (a2)), . . .} since ∀(a, b1), (a, b2) ∈ F : b1 = b2. The support
supp(F ) ⊆ A of F is defined by supp(F ) = {a ∈ A | F (a) > 0}. A multiset F
over A is said to be empty iff ∀a ∈ A : F (a) = 0. The cardinality |F | of F
over A is |F | =

∑

a∈A F (a). Let F1 and F2 be multisets over A. F1 is a subset



of F2, denoted as F1 ⊆ F2, iff ∀a ∈ A : (F1(a) ≤ F2(a)). Multisets F1 and F2

are equal iff F1 ⊆ F2 ∧ F2 ⊆ F1. The intersection F1 ∩ F2 = {(a, F (a)) | a ∈
A ∧ F (a) = min(F1(a), F2(a))}, the multiset sum F1 ⊎ F2 = {(a, F (a)) | a ∈
A∧F (a) = F1(a)+F2(a)}, and the multiset difference F1⊖F2 = {(a, F (a)) | a ∈
A ∧ F (a) = max(F1(a) − F2(a), 0)} form multiset operations. Multiplication of
a multiset F = {(a, F (a)) | a ∈ A} with a scalar c, denoted c · F , is defined by
{(a, c · F (a)) | a ∈ A}. The term 〈A〉 = {F : A −→ N ∪ {∞}} describes the set
of all multisets over A.

Definition of the System

Let N+ = N \ {0} be the set of natural numbers without zero. A P system for
describing CSNs of degree n ∈ N+ is a construct

ΠCSN = (V, V ′, E, M, n)

where V and V ′ are two alphabets; without loss of generality #,¬, * /∈ V ∪ V ′.
Furthermore, E and M specify channels and modules. The regular set

S = V + ⊗
(

{#} ⊗ ((V ′)+ ∪ {¬} ⊗ (V ′)+ ∪ {*})
)∗

describes the syntax for string-objects. The leftmost substring from V + holds
the protein identifier, followed by a finite number of protein property substrings
from (V ′)+ which are separated by #. For example, consider the string-object
C :D#p#*#¬q identifying protein (complex) C :D with specified property p,
a second arbitrary property (*), and without property q. Each protein prop-
erty substring expresses a specific additional information about the protein, for
instance whether it is activated with respect to a certain function or carries a
ligand at a certain binding site. Two kinds of meta symbols are allowed. The sym-
bol ¬ excludes the subsequent property but permits all other properties at this
substring position. The placeholder * stands for an arbitrary (also unknown or
unspecified) protein property substring. This way, uncertainty about the prop-
erties of proteins can be explicitly expressed. String-objects can be processed
inside modules and they can move between modules along predefined channels
(edges). The finite set of modules

M = {M1, . . . , Mn}

defines functional reaction units where multisets of string-objects can be mod-
ified by regulated rewriting. A module need not be embedded into a physical
membrane, it just represents a space where reactions can occur. Multiple mod-
ules are allowed to share the same physical space. Modules are intended to form
small units that fulfill well-defined functions. Each module Mi is defined as a
tuple:

Mi = (Ri1, . . . , Riri
, fi1, . . . , firi

, Ai) where

Rij ∈ 〈S〉 × 〈S〉 is a reaction rule composed of two finite multisets

fij : 〈S〉 −→ N is a function corresponding to kinetics of reaction Rij

Ai ∈ 〈S〉 is a multiset of axioms representing the initial contents of Mi



The set of channels is defined as

E ⊆ {1, . . . , n} × {1, . . . , n} × P(S × {g : 〈S〉2 −→ N}) × N where

eij = (i, j, Iij , dij) ∈ E

represents a directed channel from module Mi to module Mj. String-objects are
allowed to pass the channel if they match the filter interface denoted by the
construct

Iij ⊆ {(w, gw,ij) | w ∈ S ∧ gw,ij : 〈S〉2 −→ N}.

The elements of Iij correspond to the notion of filter patterns (receptors) w and
concentration gradients gw,ij between source module Mi and destination module
Mj . Function gw,ij marks the maximum capacity of the channel for string-objects
matching the pattern w, depending on the contents of Mi and Mj . For simplicity,
we assume that all filter interface patterns of channels beginning at the same
module are pairwise disjoint to each other:

⋂

j∈{1,...,n} Match(supp(Iij)) = ∅ ∀i ∈

{1, . . . , n} where Match : P(S) −→ P(S) is defined in the next subsection. The
support of the construct Iij is defined in analogy to multisets. The natural
number dij attached to each channel defines its time delay. Each passing string-
object takes this amount of time when moving from module Mi to module Mj .

Matching and Matching Strategies

String-objects may contain excluding symbols ¬ and wild-cards * to express par-
tially incomplete knowledge about protein properties. Selecting string-objects for
reactions and deciding which string-objects are allowed to pass a channel requires
a definition of matching. Matching evaluates whether or not string-objects fit to
each other, considering their identifiers and all possible combinations of protein
property substrings resulting from their wild-carded patterns. We can distinguish
between several matching strategies that differ by their handling of uncertainty.
Extreme versions of matching are characterised by a loose and a strict strategy.
A prerequisite of matching string-objects is their common number of property
substrings.

In the symmetric relation Match loose, two string-objects match iff there is
at least one common wild-card free representation. The loose strategy requires
a minimum degree of similarity between objects with incomplete information.
Uncertainty is interpreted as arbitrary replacements within the search space
given by S.

Match loose ⊆ S × S

Match loose =
⋃

m∈N

{(p#p1#p2 . . . #pm, s#s1#s2 . . . #sm) | (p = s) ∧

∀j ∈ {1, . . . , m} : [(pj = sj) ∨ (pj = *) ∨ (sj = *) ∨

((pj = ¬q) ∧ (sj 6= q)) ∨ ((sj = ¬q) ∧ (pj 6= q))]}



In contrast, the strict matching strategy follows the opposite intention. The
two participating string-objects are interpreted as a pattern and a candidate
for matching. Matching only occurs when the candidate s#s1#s2 . . .#sm is
a concretion of the pattern p#p1#p2 . . . #pm. The strict strategy embodies a
matching with maximum degree of similarity between string-objects. Because of
the different roles of the matching partners, the strict matching relation is not
necessarily symmetric.

Matchstrict ⊆ S × S

Matchstrict =
⋃

m∈N

{(p#p1#p2 . . .#pm, s#s1#s2 . . .#sm) | (p = s) ∧

∀j ∈ {1, . . . , m} : [(pj = sj) ∨ (pj = *) ∨ ((pj = ¬q) ∧ (sj 6= q))]}

Let the regular set S be a syntax description for string-objects. Matching of
a single string-object w ∈ S to the search space generated by S is defined by

Match(w) = {s ∈ S | (w, s) ∈ Matchx}

with x = loose or x = strict. Consequently, we define the matching of a language
L ⊆ S by the function Match : P(S) −→ P(S) with

Match(L) =
⋃

w∈L

Match(w).

Definition of System Behaviour

This subsection describes the dynamical behaviour of P systems ΠCSN. The
multiset Li(t) denotes the contents of module Mi at time t ∈ N. Li(t) is assumed
to be empty for t < 0. It represents the configuration of the module controlled
by a global clock and leads to the definition of the system step:

Li(0) = Ai

L′
i(t) = Li(t) ⊖ Educts i(t) ⊎ Products i(t)

Li(t + 1) = L′
i(t) ⊖ Outgoingi(t) ⊎ Incoming i(t)

A system step consists of four stages of modification, each of which is carried
out synchronously in all modules. Firstly, the multiset of reaction educts is de-
termined and removed from the module contents Li(t). Controlled application
of local reaction rules transforms these educts into a multiset of products, which
is added to the module contents without time delay. A subset of the new mod-
ule contents can enter outgoing channels to move to (other) modules. Finally,
arriving string-objects that have passed channels towards the module complete
its contents.

Let Rij = (FA, FB) ∈ 〈S〉 × 〈S〉 be a reaction rule in module Mi with
supp(FA) = {a1, . . . , ap} and supp(FB) = {b1, . . . , bq}. In terms of a chemical
denotation, the rule Rij can be written as



FA(a1) · a1 + . . . + FA(ap) · ap −→ FB(b1) · b1 + . . . + FB(bq) · bq

where FA(a1), . . . , FA(ap) encode stoichiometric factors of educts a1, . . . , ap, and
FB(b1), . . . , FB(bq) stoichiometric factors of products b1, . . . , bq, respectively. All
educt strings that match to the pattern ak are provided by Match(ak). A com-
bination of educt strings from Li(t) matching the left hand side of Rij forms
a multiset of string-objects used to apply the reaction once. Since the kinetic
law, described by the scalar function fij , returns the number of applications of
reaction rule Rij within one step, the multiset of string-objects extracted from
Li(t) to act as educts for Rij can be written as Educts ij(t):

Educts ij(t) =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fij
(

{(e1,∞), . . . , (ep,∞)} ∩ Li(t)
)

·

{

(e1, FAij
(a1)), . . . , (ep, FAij

(ap))
}

Considering educts of all reaction rules Ri1, . . . , Riri
in module Mi, we achieve

Eductsi(t) =
⊎

j∈{1,...,ri}

Eductsij(t).

Equivalently, the multiset of products obtained from reaction rule Rij is deter-
mined by the multiset Products ij(t):

Products ij(t) =
⊎

e1∈Match(a1)

. . .
⊎

ep∈Match(ap)

fij
(

{(e1,∞), . . . , (ep,∞)} ∩ Li(t)
)

·

{

(b1, FBij
(b1)), . . . , (bq, FBij

(bq))
}

Considering products of all reaction rules Ri1, . . . , Riri
in module Mi, we achieve

Productsi(t) =
⊎

j∈{1,...,ri}

Productsij(t).

Although the multiset difference always returns non-negative multiplicities, also
in case of a lack of educt-objects, the number of product-objects is only deter-
mined by Bij . This effect could be compensated by extension of multiset multi-
plicities to negative integers as well. This way, the requirement of mass-balance
could formally be sustained without additional formalism. For sufficiently large
numbers of proteins, however, this effect is negligible.

After performing the reactions, the multisets of outgoing and incoming string-
objects are specified using L′

i(t) and filter interfaces Iij . Let

Outgoingij(t)=L′
i(t)∩

{

(v,gw,ij(L
′
i(t),L

′
j(t)))

∣

∣v∈S∧w∈supp(Iij)∧v∈Match(w)
}



the multiset of transferred string-objects along the channel from Mi to Mj . We
define:

Outgoingi(t) =
⊎

j∈{1,...,n}

Outgoingij(t)

Incomingi(t) =
⊎

k∈{1,...,n}

Outgoingki(t − dki)

Generated Language

This subsection specifies the configuration of system ΠCSN at time t and finally
the generated formal language L(ΠCSN). The contents Li(t) of all modules Mi

form the essential part of the system configuration. Since string-objects can
take several time steps to pass channels, the system configuration at time t also
subsumes all multisets Outgoingij(τ) with τ = 0, . . . , t− 1. The configuration of
module Mi at time t is a construct

Ci(t) =

(

Li(t),
(

Outgoingij(τ)
)

j=1,...,n

τ=0,...,t−1

)

.

Furthermore,

CΠCSN
(t) = (C1(t), . . . , Cn(t)).

ΠCSN generates the language

L(ΠCSN) = supp

(

∞
⊎

t=0

(

n
⊎

i=1

Li(t)

))

,

the set of string-objects that occur in any module during infinite execution of
the system.

4 System Properties

P systems of the framework ΠCSN feature a combination of properties which are
relevant to describe and analyse CSNs. Bringing together notions of substruc-
tured string-objects, configurable modules interconnected by channels, and a for-
malisation of deterministic dynamical system behaviour, the proposed approach
lends itself to applications beyond classification of computational power. Further
studies are focused on the evolutionary development from small low-structured
subunits towards much more complex networks with shared resources. Estab-
lishing correlations between physical structures and biological functions is a key
issue here. In preparation of these objectives, we have designed ΠCSN with the
following properties.



Modularity: System composition of a finite number of interacting modules
follows the idea of defined functional subunits. Modularisation can be seen
as a powerful tool to represent the inherent structure of a complex system,
its organisation, and its basic principles. Each module performs a specific set
of reactions in an autonomous manner. Communication between modules is
separated from reaction processes.

Static System Topology: Established CSNs own a static topology based on
modules and directed channels resulting in a graph structure. Each of the
channels acts as a filter with regard to both qualitative and quantitative as-
pects. Configurable patterns represent receptors to accept or reject proteins
with specific properties. Maximum capacity as well as time delay reflect
physical restrictions. In CSNs, channels often form cascades consisting of
several stages with different protein ligands, complexes or activation state.

Ability to Identify Objects / Substructures: Each single (protein or lig-
and) molecule handled within the system is treated as an individual object.
It identifies the underlaying protein and provides information about addi-
tional specific properties. Since reactions within CSNs often keep proteins
but modify their properties, consideration of substructural information is
essential in the model in order to handle combinatorial networks.

Flexibility in Level of Abstraction: The concept of substrings containing
information about specific protein properties gives the system a high degree
of flexibility in the level of abstraction. Wild-carded and excluding patterns
enable coping with uncertainty. The way how incomplete information can be
processed by reaction and transduction spans a wide range of detailedness.
Consequences of uncertainty to the system behaviour become obvious.

Determinism: The system ΠCSN is constructed to work in a deterministic man-
ner. Subsequent execution of system steps leads to a unique path through
configurations. In terms of the computational path, determinism implies con-
fluence.

Computational Tractability: Determinism and finite system components fa-
cilitate simulations in silico. All aspects of the system description and system
behaviour are formalised for ΠCSN. Sets, multisets, and functions used within
the system are polynomially decidable with regard to the number of objects.
Software tools like computer algebra systems can serve for further analysis.

Computational Completeness: The ability to use P systems as models for
computation can be seen as a fundamental aspect in the field of membrane
computing [9]. Investigations about their (sub)classes of computability de-
pending on certain combinations of system properties and restrictions mo-
tivate theoretically inspired contributions to the field. Reaction networks
are known to be computational complete, constructively shown in [7]. Each
module Mi of ΠCSN forms such a reaction network.



5 Example: Signal Transduction in the Yeast Pheromone

Pathway

The pheromone response pathway in Saccharomyces cerevisiae (yeast hereafter)
is among the best understood signalling pathways in eukaryotes. Its constituents
(proteins) and their interactions have been subject of a great variety of studies,
and the overall picture of how these act together in the pathway is rapidly
emerging (see [1] for a review). Yeast cells exist in two mating types, MATa and
MATα, which secrete pheromones to stimulate mating behaviour in the opposite
type. Effects of this stimulation are the arrest of the cell cycle, changes in the
expression of around 200 genes, and even an elongation of the cell in the direction
of its mating partner.

To show the suitability of the P system formalism to model cell signalling
networks, we have decided to convert the comprehensive yeast pheromone path-
way model by Kofahl and Klipp [6] into our framework. The pathway consists
of different modules: the G-protein-coupled receptor (M1, corresponding to re-
ceptor activation and G-protein cycle in [6]), formation of the scaffold protein
(M2), MAPK cascade (M3), Fus3 phosphorylation cycle (M4), and responses of
the cell to the activation of the pathway (not modelled here).

In the module M1, the receptor protein Ste2 is activated by α-Factor
pheromone. In response to activation of Ste2, the trimeric G-protein breaks
into its α and βγ subunits, of which the latter passes on the signal. The “service
module” M2 binds the three components of the MAPK cascade (Ste11, Ste7 and
Fus3) to the scaffold protein Ste5, which is then bound by Gβγ. Ste20 can now
bind to this complex (creating complex C), where it phosphorylates Ste11 and
thus triggers the MAPK cascade (M3). In this cascade, Ste11 activates Ste7,
which in turn activates Fus3. Activated Fus3 is then split off (leaving complex
C′) and moves into the nucleus. Unphosphorylated Fus3 can again bind to C′,
creating a cycle which amplifies the response.

Πpheromone = (V, V ′, E, M, 4)

V = {Ste2, α, Gβγ, Gα, Ste5, Ste11, Ste7, Fus3, Ste20, C, C′, :}

V ′ = {a, GDP, GTP, p}

M = {M1, M2, M3, M4}

E = {(1, 3, I13, d13), (3, 1, I31, d31), (2, 3, I23, d23),

(3, 2, I32, d32), (3, 4, I34, d34)}

I13 = {(Gβγ, g13(L
′
1(t), L

′
3(t)) = ⌊kg13

[Gβγ]
L′

1
(t)⌋)}

I31 = {(Gβγ, g31(L
′
3(t), L

′
1(t)) = ⌊kg31

[Gβγ]
L′

3
(t)⌋)}

I23 = {(Ste5:Ste11:Ste7:Fus3,
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Fig. 1. Module diagram and reaction scheme of the yeast pheromone pathway. At
bidirectional arrows, the upper rule corresponds to the rightward direction. Due to the
combinatorial complexity, not all sequences of phosphorylation and only one dissocia-
tion of complex C are shown in M3.

g23(L
′
2(t), L

′
3(t)) = ⌊kg23

[Ste5:Ste11:Ste7:Fus3]
L′

2
(t)⌋)}

I32 = {(Ste5:Ste11:Ste7:Fus3,

g32(L
′
3(t), L

′
2(t)) = ⌊kg32

[Ste5:Ste11:Ste7:Fus3]
L′

3
(t)⌋)}

I34 = {(C#p#p#p#p, g34(L
′
3(t), L

′
4(t)) = ⌊kg34

[C#p#p#p#p]
L′

3
(t)⌋)}

M1 = (R11, R12, R13, R14, R15, f11, f12, f13, f14, f15, A1) with

R11 = Ste2#¬a + α −→ Ste2#a

R12 = Ste2#a −→ Ste2#¬a

R13 = Gβγ:Gα#GDP + Ste2#a −→ Gα#GTP + Gβγ + Ste2#a

R14 = Gα#GTP −→ Gα#GDP

R15 = Gβγ + Gα#GDP −→ Gβγ:Gα#GDP



f11(L1(t)) =
⌊

k11[Ste2#¬a]L1(t)[α]L1(t)(1/V2
1)
⌋

f12(L1(t)) =
⌊

k12[Ste2#a]L1(t)(1/V1)
⌋

f13(L1(t)) =
⌊

k13[Gβγ:Gα#GDP]L1(t)[Ste2#a]L1(t)(1/V2
1)
⌋

f14(L1(t)) =
⌊

k14[Gα#GTP]L1(t)(1/V1)
⌋

f15(L1(t)) =
⌊

k15[Gβγ]L1(t)[Gα#GTP]L1(t)(1/V2
1)
⌋

A1 = {(α, 6 · 1017), (Ste2#¬a, 1018), (Gβγ:Gα#GDP, 1018)}

M2 = (R21, R22, R23, R24, R25, R26, f21, f22, f23, f24, f25, f26, A2) with

R21 = Ste5 + Ste11 −→ Ste5:Ste11

R22 = Ste5:Ste11 −→ Ste5 + Ste11

R23 = Ste7 + Fus3 −→ Ste7:Fus3

R24 = Ste7:Fus3 −→ Ste7 + Fus3

R25 = Ste5:Ste11 + Ste7:Fus3 −→ Ste5:Ste11:Ste7:Fus3

R26 = Ste5:Ste11:Ste7:Fus3 −→ Ste5 + Ste11 + Ste7 + Fus3

f21(L2(t)) =
⌊

k21[Ste5]L2(t)[Ste11]L2(t)(1/V2
2)
⌋

f22(L2(t)) =
⌊

k22[Ste5:Ste11]L2(t)(1/V2)
⌋

f23(L2(t)) =
⌊

k23[Ste7]L2(t)[Fus3]L2(t)(1/V2
2)
⌋

f24(L2(t)) =
⌊

k24[Ste7:Fus3]L2(t)(1/V2)
⌋

f25(L2(t)) =
⌊

k25[Ste5:Ste11]L2(t)[Ste7:Fus3]L2(t)(1/V2
2)
⌋

f26(L2(t)) =
⌊

k26[Ste5:Ste11:Ste7:Fus3]L2(t)(1/V2)
⌋

A2 = {(Ste5, 9.5 ·1016), (Ste11, 9.5 ·1016), (Ste7, 2 ·1016), (Fus3, 2 ·1016)}

M3 = (R31, R32, R33, R34, R35, R36, R37, R38,

f31, f32, f33, f34, f35, f36, f37, f38, A3) with

R31 = Ste5:Ste11:Ste7:Fus3 + Gβγ −→ Ste5:Ste11:Ste7:Fus3:Gβγ

R32 = Ste5:Ste11:Ste7:Fus3:Gβγ −→ Ste5:Ste11:Ste7:Fus3 + Gβγ

R33 = Ste5:Ste11:Ste7:Fus3:Gβγ + Ste20 −→ C#¬p#¬p#¬p#¬p

R34 = C#*#*#*#* −→ Ste5:Ste11:Ste7:Fus3:Gβγ + Ste20

R35 = C#¬p#¬p#*#* −→ C#¬p#p#*#*

R36 = C#¬p#p#¬p#* −→ C#¬p#p#p#*

R37 = C#¬p#p#p#¬p −→ C#¬p#p#p#p

R38 = C#¬p#p#p#p −→ C#p#p#p#p

f31(L3(t)) =
⌊

k31[Ste5:Ste11:Ste7:Fus3]L3(t)[Gβγ]L3(t)(1/V2
3)
⌋

f32(L3(t)) =
⌊

k32[Ste5:Ste11:Ste7:Fus3:Gβγ ]L3(t)(1/V3)
⌋

f33(L3(t)) =
⌊

k33[Ste5:Ste11:Ste7:Fus3:Gβγ ]L3(t)[Ste20]L3(t)(1/V2
3)
⌋



f34(L3(t)) =
⌊

k34[C#*#*#*#*]L3(t)(1/V3)
⌋

f35(L3(t)) =
⌊

k35[C#¬p#¬p#*#*]L3(t)(1/V3)
⌋

f36(L3(t)) =
⌊

k36[C#¬p#p#¬p#*]L3(t)(1/V3)
⌋

f37(L3(t)) =
⌊

k37[C#¬p#p#p#¬p]L3(t)(1/V3)
⌋

f38(L3(t)) =
⌊

k38[C#¬p#p#p#p]L3(t)(1/V3)
⌋

A3 = {(Ste20, 6 · 1017)}

M4 = (R41, R42, R43, R44, f41, f42, f43, f44, A4) with

R41 = C#p#p#p#p −→ C′#p#p#p + Fus3#p

R42 = C′#p#p#p + Fus3#¬p −→ C#p#p#p#¬p

R43 = C#p#p#p#¬p −→ C′#p#p#p + Fus3#¬p

R44 = C#p#p#p#¬p −→ C#p#p#p#p

f41(L4(t)) =
⌊

k41[C#p#p#p#p]L4(t)(1/V4)
⌋

f42(L4(t)) =
⌊

k42[C
′#p#p#p]L4(t)[Fus3]L4(t)(1/V2

4)
⌋

f43(L4(t)) =
⌊

k43[C#p#p#p#¬p]L4(t)(1/V4)
⌋

f44(L4(t)) =
⌊

k44[C#p#p#p#¬p]L4(t)(1/V4)
⌋

A4 = {(Fus3, 6 · 1017)}

While most parts of the model given in [6] were directly adapted, a few slight
changes had to be introduced. Concentrations, which were given in nM in the
original, were converted into molecule numbers. In order to compensate for this
effect on the reaction kinetics, these were extended by the volume Vi of each
module as a normalisation constant. Values for all parameters kij appearing in
the reaction kinetics are not given here, but can be calculated from the data
given in [6]. In accordance with the original model, reaction kinetics consist of
mass-action formulations, which have to be rounded in order to yield integer
values as results.

6 Discussion

An important aspect of the system is its capability to deal with the combinatorial
complexity arising when proteins incorporating multiple sites for modification
and binding are involved. The usage of wild-cards and exclusions allows a com-
pact formulation of systems that would be substantially larger if only atomic
objects were considered. This major advantage could even be extended by the
introduction of generic logical expressions into the protein descriptions.

It is important to mention two potential limitations of the system. On the
one hand, the reaction kinetics mechanism might produce imprecise results in
case of small object numbers, due to the fact that educts of multiple reactions



can sum up to more proteins than currently present. As a possible solution,
we propose the extension of the multiset definition to negative multiplicities, so
that modules can formally contain negative numbers of objects. In this case, the
kinetic formulation would ensure any educt with a negative multiplicity could
not participate in a reaction, but rather would have to be refilled again. On
the other hand, a potential constraint comes from the way in which the kinetic
functions are applied to each combination of proteins matching the right side
of a reaction rule. In order to work precisely, this approach requires the kinetic
functions to be linear. Therefore, it is advisable not to use wild-carded reaction
rules with non-linear kinetics. Both of these points require further research to
maximise the system’s usability.

The choice of the matching strategy strongly influences the system behaviour.
Strict matching implies maximum specificity of the reactions. In contrast, to in-
volve a large pool of protein configurations, a loose matching should be preferred.
Special application scenarios can be tackled by additional matching strategies.

7 Conclusions

The introduced model ΠCSN intends to combine advantages of P systems with
mechanisms observed in cell signalling networks. It is conceived as a descrip-
tion, analysis, and prediction tool for ongoing studies about the evolutionary
development of protein structures, their properties, interactions, and resulting
network functions. To this end, we have integrated string-objects and a modular
architecture into a deterministic framework. In future, simulations as well as
theoretical investigations will lead the way towards a deeper understanding of
the correlation between CSN structure and function.
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14. G. Păun, Y. Sakakibara, T. Yokomori. P Systems on Graphs of Restricted Forms.

Publicationes Mathematicae 60, 2002
15. D. Pescini, D. Besozzi, G. Mauri, C. Zandron. Dynamical probabilistic P systems.

International Journal of Foundations of Computer Science 17(1):183-195, 2006
16. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice Hall, 1961
17. G. Rozenberg, A. Salomaa (Eds.). Handbook of formal languages 1-3. Springer-

Verlag Berlin, 1999
18. Y. Suzuki, H. Tanaka. Symbolic chemical system based on abstract rewriting and

its behavior pattern. Artificial Life and Robotics 1:211-219, 1997


