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Abstract

Models of RNA secondary structure folding are widely used to study evolution

in theory and simulation. However, systematic studies of the parameters involved

are rare. In this paper we study by simulation how RNA evolution is influenced by

three different factors, namely the mutation rate, scaling of the fitness function, and

distance measure. We found that for low mutation rates the qualitative evolutionary

behavior is robust with respect to the scaling of the fitness function. For efficient

mutation rates, which are close to the error threshold, scaling and distance measure

have a strong influence on the evolutionary behavior. A global distance measure

that takes sequence information additively into account lowers the error threshold.

When using a local sequence-structure alignment for the distance, we observed a

smother evolution of the fitness over time. Finally, in addition to the well known

error threshold, we identify another threshold of the mutation rate, called divergence

threshold, where the qualitative transient behavior changes from a localized to an

exploratory search.
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1 Introduction

Models of RNA secondary structure folding are widely used to study evolu-

tion in theory and simulation (see Schuster (2001) for an overview), since the

secondary structure is recognized as computationally tractable, while being at

the same time a realistic phenotype (Fontana and Schuster, 1998; Mathews

et al., 1999). In many simulation studies, however, only single experiments as

typical examples are presented, e.g., Fontana and Schuster (1998) and Huynen

et al. (1996).

In order to get a deeper understanding how simulated RNA evolution depends
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on chosen parameters, we study by simulation the influence of three factors,

namely mutation rate, scaling of the fitness function, and distance measure.

Evolutionary behavior is measured by the the change of average and best pop-

ulation fitness over time. Evolutionary success is measured as (average) fitness

obtained after a specific number of generations. Furthermore, we investigated

the probability that a mutation in a random individual (RNA strand) leads

to a quality gain, neutral mutation, or quality decay.

Our results suggest that the qualitative behavior of RNA evolution is robust

against various parameter changes, as long as the parameter setting is not

close to one of two boundaries, namely the well known error threshold (Eigen

and Schuster, 1977) and a threshold where the population switches from a

localized to an exploratory behavior. The actual mutation rate at which these

transitions occur depends on the chosen scaling and distance measure.

2 Material and Methods

2.1 Basic Model

For the simulation of evolutionary processes we make the following common

assumptions: we assume a well-stirred reaction vessel (sympatric population)

containing a finite number of RNA sequences that replicate with error. Repli-

cation error is modeled by point mutations. Our investigations are restricted

to RNA sequences of fixed length l, prohibiting insertion and deletion. The

replication rate of an RNA sequence is determined by a fitness function. The

fitness function f : Seq → R≥0 is a mapping that maps an RNA sequence

s ∈ Seq = {A,C,G, U}l to a fitness value f(s). The fitness determines the
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rate at which a sequence produces offspring. In our stochastic simulation, the

fitness is proportional to the probability that a copy (potentially with error)

is created from s during a specific time interval. Thus, the fitness determines

the number of expected offspring of s.

As usual in in silico RNA evolution, the fitness f(s) is defined as the distance

between the sequence s and a chosen fixed target sequence starget, scaled by a

scaling function fscale : R≥0 → R≥0:

f(s) ≡ fscale(d(s, starget)). (1)

The distance d is usually (e.g., Fontana and Schuster, 1998; Fontana et al.,

1993b) defined as the structural distance dsec of the secondary structures,

e.g., d(s, starget) ≡ dsec(ffold(s), ffold(starget)), where ffold : Seq → Sec is a

function that maps a sequence to its secondary structure. In addition to a

pure structural distance, we consider also sequence information and a local

sequence-structure alignment by Backofen and Will (2004).

The evolutionary dynamics of an initial population S0 = {S0
1 , . . . , S

0
λ} of λ ran-

domly generated RNA sequences is simply computed by Sg+1
i ← mutate(select(Sg), pmut),

where Sg
i ∈ Seq denotes the i-th individual at generation g, i ∈ {1, 2, . . . , λ},

Sg
i ∈ {A,C,G, U}l. Sequences are selected with a probability proportional

to their fitness: Prob(select(Sg) = Sg
i ) ∼ f(Sg

i ). Each site of an offspring

can mutate with probability pmut: mutate((s1, . . . , sl), pmut) = (s′1, . . . , s
′
l)

where Prob(sj = s′j) = 1 − pmut, Prob(sj 6= s′j) = pmut, j ∈ {1, . . . , l},

sj ∈ {A,C,G, U}, and l the length of the sequence to be mutated.
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2.2 Studied Factors

We studied how the evolutionary behavior depends on the following three

factors: mutation rate pmut, scaling function fscale and distance measure d.

The latter two are now explained in more detail.

Distance measure d: The distance measure d computes the distance between

two sequences. Here, we investigate the following four distance measures:

(1) Global structure alignment (Glob): The conventional global structure align-

ment is a structural distance measure, which calculates the distance solely

based on the secondary structures of the two sequences. The functions for

computing the secondary structures and the distance between secondary struc-

tures are made available by the Vienna RNA package 2 (Hofacker et al., 1994).

The measure is commonly used in many simulation studies of RNA evolution

(Fontana and Schuster, 1998):

d1(s, starget) = dsec(ffold(s), ffold(starget)) (2)

where dsec represents the function tree_edit_distance (Shapiro, 1988; Shapiro

and Zhang, 1990; Fontana et al., 1993a; Hofacker et al., 1994) and ffold the

function RNAfold with default parameters (Hofacker et al., 1994; Zuker and

Stiegler, 1981; McCaskill, 1990) of the Vienna RNA package (Version 1.4).

(2) Additive combined sequence and structure alignment (Add): Since the func-

tion of an RNA does not solely depend on its secondary structure but also on

its sequence, we investigate three distance measures that take sequence infor-

mation into account. The first one, d2, considers sequence information simply

by adding the (weighted) hamming distance between the sequence s and the

2 Available from: www.tbi.univie.ac.at/~ ivo/RNA/
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target sequence starget to the structural distance:

d2(s, starget) = [α dsec(ffold(s), ffold(starget)) + (1− α)dhamming(s, starget)] (3)

where the weight 0 ≤ α ≤ 1 is usually chosen as 0.5.

(3) Multiplicative combined sequence and structure alignment (Mult): In addi-

tion to the simple additive combined sequence and structure alignment we also

defined a distance measure where the hamming distance is multiplied with the

structural distance:

d3(s, starget) =
[dsec(ffold(s), ffold(starget)) + 1][dhamming(s, starget) + 1]− 1

l
.

(4)

Both measures are fairly unrealistic, but represent the most simple approach

to include sequence information. Furthermore they are easy to compute. An

additive combination might be justified, since different traits can also respond

to selection in an additive way, as shown by Beldade et al. (2002) in selection

experiments with butterflies. A multiplicative combination make sense, when

both traits are required for survival.

(4) Local sequence-structure alignment (LSSA): The local sequence-structure

alignment by Backofen and Will (2004) is more elaborated and realistic than

the previous measures. The alignment considers sequence and structure infor-

mation not independently like d2 and d3, but it aligns two sequences simulta-

neously considering structure and function. Locality in a sequence structure

alignment is defined by connectivity via the non-atomic bonds between com-

plementary bases and via the atomic backbone bonds. So, the aligned sub-

sequences need not to be connected in a sequence as in the local sequence

alignment. The optimal LSSA for two nested structures can be found by a
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dynamic programming algorithm, which takes the similarity of bases and of

bonds into account. Because the alignment returns a similarity measure, we

have to invert it in order to obtain a distance:

d4(s, starget) = l[1− 1

max
LSSA(s, ffold(s), starget, ffold(starget))]. (5)

The similarity measure LSSA represents the function lssa provided by the

software package Local Sequence Structure Aligment 3 (Backofen and Will,

2004). The transformation ensures that we get a distance measure in the

same range as the other three measures. The maximal similarty is defined

as the similarity between two identical copies of the target sequence max =

LSSA(starget, ffold(starget), starget, ffold(starget)). Note that LSSA is a local align-

ment that returns continuous values unlike the function tree_edit_distance

of the Vienna package returning integers.

Scaling function fscale: The scaling function maps a distance to a fitness

value. We considered five different scaling functions, which are illustrated in

Fig. 1. All scaling functions decrease monotonously. They differ only in the

shape of the slope:

(1) linear f 1
scale(d) = 100(1− d/l) , (6)

(2) exponential f 2
scale(d) = 1001−d/l , (7)

(3) rational f 3
scale(d) =

1

0.01 + d/l
, (8)

(4) sigmoid f 4
scale(d) = 1001−(d/l)σ

, (9)

(5) inverse f 5
scale(d) = 100− 100d/l + 1 . (10)

(FIGURE 1 APPROXIMATELY HERE)

The rational scaling, f 3
scale, is most commonly used in various studies. For the

3 Available from www.bio.inf.uni-jena.de.
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sigmoid scaling function f 4
scale(d) we chose σ = 2.73 such that the function is

approximately point symmetric in [0 : 76].

3 Results

All experiments use the following tRNA-like shape (Fig. 2) as the target struc-

ture ffold(starget) =

((((((...((((........)))).(((((.......))))).....((((.((....)))))).))))))....

and starget =

GGGCAGAUAGGGCGUGUGAUAGCCCAUAGCGAACCCCCCGCUGAGCUUGUGCGACGUUUGUGCACCCUGUCCCGCU

as the target sequence of length l = 76, which we took from Fontana and

Schuster (1998).

(FIGURE 2 APPROXIMATELY HERE)

3.1 Mutation Rate

Obviously, evolutionary success depends on the mutation rate. If there is no

mutation, evolution stagnates. At high mutation rates, there is no heredity,

since information cannot be transmitted to the next generation. Eigen and

Schuster (1977) have shown that there is an error threshold of the mutation

rate, above which information is lost. This error threshold becomes visible in

all evolutionary scenarios we investigated (Fig. 3). Its actual value depends on

the parameter setting of the respective scenario. Especially, the error threshold

depends on the distance measure d (Fig. 3 and Tab. 1). In the conventional

scenario (global structure alignment d1, rational scaling f 3
scale, sequence length
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Table 1

Mutation rates that resulted in highest fitness in the experiments shown in Fig. 3.

Furthermore, best and average fitness obtained after 10000 generations are shown.

However, note that fitness values are not comparable between experiments using

different distance measures.

Distance measure Best mutation rate Best fitness Average fitness

d1(s, starget) 0.022 71 (± 11.83) 26 (± 4.14)

d2(s, starget) 0.005 16 (± 9.54) 11 (± 6.68)

d3(s, starget) 0.02 52 (± 5.57) 26 (± 4.03)

d4(s, starget) 0.001 3.2 (± 0.35) 3.0 (± 0.33)

l = 76, population size λ = 100) the error threshold is about 0.02 (Fig. 3(a)).

When we add sequence information by using the additive sequence structure

alignment d2 instead of d1, the error threshold decreases significantly and be-

comes about 0.005 (Fig. 3(b)). This observation can be explained by the fact

that structure and sequence information has to be transmitted to the next gen-

eration. In other words, information that determines fitness can be destroyed

more easily by mutation, because a mutation may destroy the structure, the

sequence, or both.

(FIGURE 3 APPROXIMATELY HERE)

Interestingly, when sequence information is considered multiplicatively by us-

ing the multiplicative combined sequence and structure alignment d3 (Fig. 3(c)),

the error threshold is the same as in the conventional scenario, where se-

quence information is ignored (Fig. 3(a)). This phenomenon will be explaind

in Sec. 3.3.2, where the additive and multiplicative combinded sequence and
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structure alignment are compared with respect to their independent improve-

ment of sequence and structure information.

When sequence information is considered using the local sequence alignment

(LSSA) developed by Backofen and Will, we obtain the smallest error thresh-

old 0.001 (Fig. 3(d)). One reason for this effect is that in the LSSA small

deviations from the target structure lead to large decrease of similarity, which

is in agreement with our observation that applying LSSA results in the most

difficult evolutionary scenario.

At that point it is important to note that our error threshold denotes a value

of the mutation rate above which evolution does not progress. Usually, in

studies like those by Huynen et al. (1996) and Takeuchi et al. (2005), the

error threshold has been measured by assigning a high fitness to the master

sequence (or master structure), whereas assigning a much lower fitness to

all other sequences. In our study, however, we obtain the error threshold by

simulations starting with a randomly initialized population and measuring

the fitness gained after a finite time interval, because we are interested in the

influence of distance and scaling functions on the evolutionary behavior.

The error threshold found for d1 (global structure alignment) is in accordance

with the recent study by Takeuchi et al. (2005), who found an error thresh-

old around 0.045. Takeuchi et al. (2005) used a larger population size (10000

individuals), which leads to a slightly larger error threshold, because a larger

population can carry more unfit mutants (Nowak and Schuster, 1989). Ac-

cording to Nowak and Schuster (1989), the error threshold scales with 1/
√

λ

with the population size.

Divergence threshold: In addition to the error threshold, we observed a
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smaller “divergence threshold” of the mutation rate above which the average

structural distance to the target structure increases (with increasing mutation

rate), whereas the best structural distance to the structure decreases (im-

proves). Below this threshold, both, best and average distance to the target

structure decrease with increasing mutation rate. Note that in contrast to the

conventional error threshold, the divergence threshold is a phenomenon that

appears only at finite time, where the population has not yet converged. In

Fig. 4 the divergence threshold is illustrated for time g = 10000, where the

population is still in a transient state. We can see that the divergence thresh-

old (at about 0.001 – 0.003) and the error threshold (at about 0.02) mark

off three different regimes of evolutionary behavior. Note that the character-

istics of the exploratory regime between the two thresholds is studied, e.g., by

Huynen et al. (1996).

(FIGURE 4 APPROXIMATELY HERE)

3.2 Scaling of the Fitness Function

In order to investigate the effect of the scaling of the fitness function we

performed for each scaling function simulations for two different mutation

rates, pmut = 0.001 and pmut = 0.01, and measured the evolutionary success as

the best and average distance obtained after 100,000 generations (conventional

global structure alignment d1, population size λ = 100). Table 2 summarizes

the results, each obtained as an average over 10 independent runs.

For a low mutation rate pmut = 0.001, far below the optimal mutation rate

0.022, the behavior is fairly independent from the scaling function. The linear,

exponential, and rational scaling functions lead to the same best and average
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Table 2

Best and average structural distance obtained after g = 100000 generations for five

different scaling functions and two mutation rates; averaged over n = 10 indepen-

dent experiments for each parameter setting (standard error in brackets). Note that

fitness values cannot be compared between different scalings.

pmut = 0.001

Distance d1 Fitness f

Scaling best avg. best avg.

lin f1
scale(d1) 4.8 (± 0.53) 8.3 (± 0.72) 93.7 (± 0.72) 89.1 (± 0.95)

exp f2
scale(d1) 6 (± 1.0) 7.7 (± 0.95) 70 (± 4.10) 66 (± 3.84)

rat f3
scale(d1) 5.6 (± 0.83) 7.3 (± 0.84) 15 (± 2.36) 13 (± 2.21)

sig f4
scale(d1) 10.8 (± 0.85) 14.6 (± 0.70) 97.5 (± 0.55) 93.2 (± 0.57)

inv f5
scale(d1) 23 (± 0.86) 31.9 (± 0.62) 96.9 (± 0.22) 92.8 (± 0.33)

pmut = 0.01

Distance d1 Fitness f

Scaling best avg. best avg.

lin f1
scale(d1) 15 (± 1.20) 34.8 (± 0.52) 80 (± 1.58) 54.1 (± 0.69)

exp f2
scale(d1) 1.4 (± 0.43) 13.9 (± 0.71) 92 (± 2.35) 57 (± 1.85)

rat f3
scale(d1) 0.6 (± 0.43) 9 (± 1.3) 74 (± 13.22) 44 (± 7.98)

sig f4
scale(d1) 11 (± 1.4) 27 (± 3.11) 87 (± 9.69) 59 (± 6.68)

inv f5
scale(d1) 28.6 (± 0.85) 46.9 (± 0.47) 95.3 (± 0.29) 81.0 (± 0.48)
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distance to the target structure. The sigmoid scaling function leads also to

a relatively good evolutionary performance. Only the “pathological” inverse

scaling results in a drastically lower evolutionary success, which is reasonable,

since an improvement in distance of a good individual leads only to relatively

small improvement in fitness.

For a high and efficient mutation rate pmut = 0.01, which is close to the

optimum and error threshold, the scaling function crucially influences the

evolutionary behavior. Only the rational and exponential scaling functions

perform well, whereas the linear, sigmoid, and inverse scaling function lead to

best distance values 10 times worse than with the rational scaling function. In

summary, the shape of the scaling function matters when the mutation rate is

close to the error threshold. Note that all scaling functions investigated here

are strictly monotonous.

3.3 Distance Measure

3.3.1 Fitness Frequency Distribution

For n randomly created sequences we counted the frequency of a positive,

negative, and neutral fitness change after every possible one-point-mutation 4 .

Figure 5 shows that the different distance measures behave qualitatively in a

similar way: the probability to obtain a better individual decreases with the

fitness of the parent. On the contrary, the probability to create a less fit off-

spring increases with the fitness of the parent. Adding sequence information

4 The effect of large mutational distances has been studied by Wilke et al. (2003).

See Reidys et al. (2001) for a theoretical analysis of neutral networks.
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reduces the probability to obtain a neutral mutation (Figs. 5(b)-(d)), as could

be expected. The effect is smaller when sequence information is multiplica-

tively considered (compare Fig. 5(c) and Fig. 5(b)), which may correspond to

the lower error threshold of the additive structure and sequence distance. It

should be noted that the curve showing the fraction of neutral offspring for

LSSA (Fig. 5(d)) posses an unusual peak at fitness 2.4, which does not appear

when using the global structure alignment (Figs. 5(a)-(c)).

(FIGURE 5 APPROXIMATELY HERE)

3.3.2 Qualitative Comparison of Additive and Multiplicative Sequence and

Structure Alignment (d2, d3)

In this section, we compare the distance measures d2 and d3, where sequence

information is combined with the conventional global structure alignment by

adding and multiplying the hamming distance to the target sequence, respec-

tively. Previously we have shown (Fig. 3) that the error thresholds of additive

combination d2 is lower than the threshold of the global structure alignment

d1, while the error threshold of the multiplicative combination d3 is equivalent

to the global structure alignment d1. In order to investigate this effect in more

detail, Fig 6 shows, how structure and sequence contribute to the combined

fitness.

(FIGURE 6 APPROXIMATELY HERE)

In Figs. 6(b) and 6(d) we can see that the multiplicative combination quickly

optimizes the structural distance, while the hamming distance adapts only

very slowly (note the logarithmically scaled time axis). In contrast, when us-

ing an additive combination, sequence and structural distance are quickly
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optimized simultaneously (Fig. 6(a)). At mutation rate pmut = 0.01, which is

just below the error threshold of the multiplicative combination and above

the threshold of the additive combination, sequence and structure cannot be

optimized using the additive sequence and structure alignment (Fig. 6(c)), as

expected. In summary, only the additive combination really improves both, se-

quence and structure, in parallel; while the multiplicative combination ignores

the hamming distance, at first, and thus behaves like d1.

3.3.3 Qualitative Behavior of LSSA

When employing the local structure and sequence alignment (LSSA) to mea-

sure the distance of an individual to the target sequence, we obtained a quite

different quantitative and qualitative evolutionary behavior. First, evolution

is more difficult, which is reflected by a low error threshold (0.001 instead of

0.02 with d1 and d3, and 0.005 with d2). Second, the dynamics of the popula-

tion’s best and average fitness appears smoother compared to the other three

distance measures, which are based on the conventional global structure align-

ment (compare Fig. 7 with Figs. 4(b) and 4(c)). Punctuated equilibria did not

become visible: In the dynamics of the best or average fitness (Fig. 7), the

typical patterns of punctuated equilibria – namely plateaus of stasis, which

are interrupted by short periods of change – did not appear in our experiments

with one target sequence and a population size of λ = 100.

Because LSSA returns continuous values and not integers like the tree_edit_distance

from the Vienna package, it may be assumed that the smoother behavior is a

result of continuous values. We compared evolution on continuous characters

(leaving the result of LSSA unchanged) and discrete characters (rounding the
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result of LSSA). Figure 7 shows that the smoother behavior retains, even when

we round the outcome of LSSA to integers. In contrast, evolution on discrete

values of LSSA appears to be more difficult than on continuous.

(FIGURE 7 APPROXIMATELY HERE)

Although the fitness difference between the two experiments shown in Fig. 7

is not large, the evolution has not found a cloverleaf structure after 25000

generations. Among the five experiments we made with the parameters of

Fig. 7, a cloverleaf structure was found with continuous values four times and

with rounded values only once.

Preliminary studies with sequences of varying length where we also allowed

insertion and deletion of nucleotides resulted in higher evolutionary rates, i.e.

a faster increasing fitness, because insertions increase the probability for a

better local alignment (data not shown). Hence, sequence length increased,

when there is no parsimonious pressure that favors smaller sequences.

4 Conclusion and Outlook

We investigated the effect of mutation rate, scaling function, and distance

measure on the behavior of simulated RNA evolution. We demonstrated that

for low mutation rates the qualitative evolutionary behavior is fairly robust

with respect to the scaling of the fitness function, as long as we do not take

scaling functions like the inverse function f 5
scale into account, which is still

monotonous but where an improvement of a fit genotype results only in a tiny

improvement in fitness, such that a new fitter offspring genotype has only a

tiny selective advantage and can easily die out.
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Changing the distance measure by including sequence information, can drasti-

cally increase the difficulty of evolution, which has caused a more than ten-fold

decrease in the error threshold in our study. Hence, when taking the model of

RNA evolution for quantifying Eigen’s Paradox and studying the correspond-

ing problem of the origin of life, we have to be careful concerning the chosen

parameters, and be aware that they may have strong quantitative effects. Us-

ing the local sequence and structure alignment (LSSA) we even observed a

qualitative change, which was characterized by a smoother dynamics of the

best and average population fitness. For efficient mutation rates, which are

close to the error threshold, scaling and distance measure have a strong influ-

ence on the evolutionary behavior.

Finally, in addition to the well known error threshold, we identified another

threshold of the mutation rate, called divergence threshold, where the qualita-

tive behavior changed from a localized to an exploratory search. As opposed

to the error threshold, the divergence threshold becomes visible only during

the transient phase of evolution.

In summary, our results support studies like those by Fontana and Schuster

(1998) or Huynen et al. (1996), which showed only single experiments and

argue that these single experiments are typical and that the displayed behavior

is robust against parameter changes. However, the behavior is not arbitrarily

robust, which has been quantified by this study with respect to mutation rate,

scaling, and distance measure; e.g., it is not enough to demand that the scaling

function is monotonous, its shape is important, too.

In the future, the evolution of structure and function of variable length se-

quences requires further investigations. Sequences of arbitrary length will in-
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troduce a new level of complexity, where more aspects have to be considered,

such as, how to define deletion and insertion operators for mutation. From our

preliminary studies we expect a rich behavioral spectrum, in particular when

using a local sequence-structure alignment like LSSA together with variable

length sequences. Moving this way towards more realistic evolutionary models

will deepen our insight into the complexity of evolutionary dynamics.
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FIGURES

Figures are scaled as they may appear in the journal.
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Fig. 1. Illustration of the scaling functions investigated.
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(a) Glob: d1(s, starget)
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(b) Add: d2(s, starget)
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(c) Mult: d3(s, starget)
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(d) LSSA: d4(s, starget)

Fig. 3. Best and average fitness after g = 10000 generations vs. mutation rate

pmut. Population size λ = 100, fitness function f(s) = f 3
scale(di(s, starget)); mean of

20 (a) and 10 (b)-(d) independent experiments, respectively. The fluctuations in a

graph are due to the stochastic nature of the simulation model. They indicate the

stochastic measuring error. Error bars omitted for clarity.
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(a) Best and average distance after g = 10000, mean of

20 experiments
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(b) pmut = 0.001
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(c) pmut = 0.003

Fig. 4. Illustration of the divergence threshold pmut ≈ 0.001 for g = 10000: At

mutation rate pmut ≈ 0.001, the average distance to the target structure increases

while the best distance continue to decrease. The qualitative difference can be ob-

served by comparing two typical single experiments with (b) pmut = 0.001 and

(c) pmut = 0.003, respectively. Other parameters: “conventional” fitness function

f(s) = f3
scale(d1(s, starget)), population size λ = 100.
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(a) Glob: d1(s, starget), n = 100000
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(b) Add: d2(s, starget), n = 103031
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(c) Mult: d3(s, starget), n = 87704
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(d) LSSA: d4(s, starget), n = 16450

Fig. 5. Estimated probability to obtain an offspring with improved, neutral, or de-

creased fitness after a one-point-mutation of a randomly created parent vs. the

fitness of this parent (horizontal axis). Furthermore a fitness histogram of the ran-

domly generated sequences is plotted. Each figure is based on n samples.
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(a) Add: d2(s, starget), pmut = 0.003
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(b) Mult: d3(s, starget), pmut = 0.003
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(c) Add: d2(s, starget), pmut = 0.01
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(d) Mult: d3(s, starget), pmut = 0.01

Fig. 6. Contribution of structure and sequence to fitness. Left: additive combination

d2. Right: multiplicative combination d3. Upper: low mutation rate pmut = 0.003,

which was chosen just below the error threshold of the additive combination d2.

Lower: high mutation rate pmut = 0.01, which was chosen just below the error

threshold of the multiplicative combination d3. The figures show the time evolution

of the best population fitness together with the best value contributed by the struc-

tural distance and the hamming distance, respectively. The curves are averaged over

5 independent experiments for each parameter setting. Since pmut = 0.01 is above

the error threshold of the additive combined sequence structure alignment, there

is essentially no adaption in Fig. (c). Other parameters: rational scaling f 3
scale(d),

population size λ = 100. 27
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Fig. 7. Typical single experiments with local sequence structure alignment (LSSA)

and conventional rational scaling. The best structure after g = 25000 is

shown. (a) Fitness function f 3
scale(d4(s, starget)). (b) Discretized fitness function

f3
scale(round(d4(s, starget))). Other parameters: mutation rate pmut = 0.001, pop-

ulation size λ = 100, insertion and deletion not allowed.
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Captions

Caption 1

Illustration of the scaling functions investigated.

Caption 2

Target structure and sequence used in all experiments (taken from Fontana

and Schuster (1998)).

Caption 3

Best and average fitness after g = 10000 generations vs. mutation rate pmut.

Population size λ = 100, fitness function f(s) = f 3
scale(di(s, starget)); mean of

20 (a) and 10 (b)-(d) independent experiments, respectively. The fluctuations

in a graph are due to the stochastic nature of the simulation model. They

indicate the stochastic measuring error. Error bars omitted for clarity.

Caption 4

Illustration of the divergence threshold pmut ≈ 0.001 for g = 10000: At muta-

tion rate pmut ≈ 0.001, the average distance to the target structure increases

while the best distance continue to decrease. The qualitative difference can be

observed by comparing two typical single experiments with (b) pmut = 0.001

and (c) pmut = 0.003, respectively. Other parameters: “conventional” fitness
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function f(s) = f 3
scale(d1(s, starget)), population size λ = 100.

Caption 5

Estimated probability to obtain an offspring with improved, neutral, or de-

creased fitness after a one-point-mutation of a randomly created parent vs. the

fitness of this parent (horizontal axis). Furthermore a fitness histogram of the

randomly generated sequences is plotted. Each figure is based on n samples.

Caption 6

Contribution of structure and sequence to fitness. Left: additive combina-

tion d2. Right: multiplicative combination d3. Upper: low mutation rate

pmut = 0.003, which was chosen just below the error threshold of the additive

combination d2. Lower: high mutation rate pmut = 0.01, which was chosen

just below the error threshold of the multiplicative combination d3. The fig-

ures show the time evolution of the best population fitness together with the

best value contributed by the structural distance and the hamming distance,

respectively. The curves are averaged over 5 independent experiments for each

parameter setting. Since pmut = 0.01 is above the error threshold of the addi-

tive combined sequence structure alignment, there is essentially no adaption in

Fig. (c). Other parameters: rational scaling f 3
scale(d), population size λ = 100.
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Caption 7

Typical single experiments with local sequence structure alignment (LSSA)

and conventional rational scaling. The best structure after g = 25000 is

shown. (a) Fitness function f 3
scale(d4(s, starget)). (b) Discretized fitness func-

tion f 3
scale(round(d4(s, starget))). Other parameters: mutation rate pmut = 0.001,

population size λ = 100, insertion and deletion not allowed.
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