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Abstract

In systems biology a large number of new algorithms are developed that extract information
from high throughput genomics and proteomics data. In order to evaluate these new algo-
rithms, we have developed an arti£cial gene expression data source, which is able to deliver
an arbitrary large amount of arti£cial gene expression data, where the underlying network is
precisely known in all details. Here, we describe the system, which can generate arti£cial
gene expression networks including protein-protein interaction dynamics, transcriptional
and post-transcriptional regulation, explicit modeling of RNA and protein concentration,
and dimerization (RNA-RNA, protein-protein, RNA-protein). Dimers and RNA can func-
tion as regulators like proteins. We demonstrate the structural properties and dynamical
behavior of the generated networks. Depending on the parameter settings given by the user,
our method generates regulatory systems that exhibit a wide spectrum of network structures
and dynamical behaviors.

1 Introduction

High-throughput genomics and proteomics experimental methods generate a growing amount
of systematic data of biological cells under controlled conditions. This data allows to derive
automatically models of dynamical cellular processes, such as gene regulation, by using com-
puter based data analysis and hypothesis generating methods. Within the £eld of systems biol-
ogy, a growing amount of algorithms for the analysis and reconstruction of genetic regulatory
networks have recently been proposed, such as boolean based algorithms [5, 7], continuous ap-
proaches [2, 3, 16], and probabilistic frameworks [10, 17]. These algorithms take experimental



data (such as RNA abundance measures from gene expression pro£ling, protein concentrations
from protein 2-D gels, or further information from bioinformatics databases) as input and de-
liver estimates on the regulatory interaction among genes.

Besides the fact that most of them lack a precise formal speci£cation of what they are supposed
to do in the £rst place, it is also very dif£cult to evaluate their explicative power based on real
biological or arti£cial data [3, 9, 13]. The matter appears to be even more dif£cult, because there
is not enough real data available for a satisfying evaluation. Nevertheless, the performance of a
method on a small number of real world problems is often used as an argument for its quality,
which is dangerous from a methodological point of view. On the other hand, arti£cial data,
such as data generated from random boolean networks, is criticized for not re¤ecting the real
biological problem [6].

Our aim therefore is to generate arti£cial data that are similar to biological data. Our strategy
to achieve this is to create realistic (i.e., biologically plausible) “life-like” arti£cial regulatory
networks as a data source. We assume that if we build a dynamical network model that incorpo-
rates many mechanisms found in natural regulatory networks, then the resulting data will also
re¤ect the nature of genetic regulatory systems.

In the £rst part of this paper we introduce a new architecture (framework) that allows to generate
a large variety of arti£cial gene regulatory networks. The architecture is ¤exible, such that it
allows to integrate new biological knowledge easily. In the second part, the properties of our
method are investigated by looking at the structure of the networks generated with the new
architecture and demonstrating the dynamical behavior of the resulting systems.

2 Framework

Our goal is to build a generator for complex dynamical networks that should be regarded as syn-
thetic replicas of real biological genetic regulatory systems. Besides being biological plausible,
the generator should be modular, ¤exible, and extendable. Furthermore, the generated networks
have to show suf£cient complexity and heterogeneity in order to exhibit realistic dynamical be-
havior. Modularity and extendibility are required to integrate new biological knowledge, easily.

Therefore, our architecture is implemented as an object-oriented system: All regulatory effects
are fully encapsulated in one class. In order to introduce a new model of transcriptional regu-
lation, only one class has to be rewritten. Moreover, it is possible to replace the implemented
deterministic ODE approach by a stochastic simulation.

Our general strategy is to generate the arti£cial regulatory network in three steps: (1) generate
the structure of the network (a hyper graph), (2) generate the functional behavior (an algebraic
formula), and (3) generate the kinetic parameters.

The result is, both, a description of the network and a function f describing the dynamics
of the arti£cial regulatory network, e.g., in terms of differential equations of the form ẋ =
f(x). Currently, the format of the network description follows the XML speci£cation, and the
graphics is produced in portable description format (PDF). The dynamical function is generated
as source code for C, C++, and Octave [4].



2.1 Generation of the Network Structure

The generated arti£cial systems consist of two types of components: genes and substances.
A substance is an RNA, a protein, or a dimer. Genes produce RNA. RNA produces proteins.
RNA and proteins can react to form dimers. The production of RNA (transcriptional regulation)
and proteins (translational regulation) can be regulated by RNA, proteins, and dimers. In the
dynamical model, as described in the following section (Sec. 2.2), the concentration of RNA,
proteins, and dimers can change. Genes are considered as persistent entities, which serve as
transcription units for RNA. For each coding RNA a translation unit exists representing the
translation of this RNA to its respective protein. Here, we assume that each gene codes for only
one RNA. Two different genes can code for the same RNA. In this case, the transcriptional reg-
ulation can be different for each gene, but the translational regulation of the protein production
of this RNA is the same. In our graphical representations (e.g., Fig. 1) the transcription of a
gene (RNA production) and the translation of RNA (protein production) are subsumed in one
node, called production unit.

The network structure is generated in the following way (for a detailed formal description see
ref. [6]): (1) After creating RNAs and proteins more complex substances are created from
these. For each gene, an RNA is chosen as its primary transcript and for some RNA a protein
is chosen as product of the translation. It is possible for an RNA to have no product. The
fraction of these non-coding RNA can be speci£ed by the user. (2) For each gene, the in-degree
is randomly selected and divided into two portions: in-degree for transcriptional regulation and
translational regulation, respectively. (3) The algorithm £nds appropriate regulator substances
for each transcription and translation unit, respectively, according to the parameter settings
speci£ed by the user, e.g. in-degree and out-degree distribution.

This algorithm apparently depends on quite a large number of parameters: The number of genes
N , the number of RNA nrna, the number of proteins nprot, the fraction of non-coding RNA α,
the number of homo-dimers nhom, the number of hetero-dimers nhet, the probability that two
RNA form a dimer, the fraction of genes that self-regulate αself , the fraction of external sub-
stances that are not gene products αext, the in-degree and out-degree distributions Kin,out, the
probability that an RNA acts as a regulator prna, and the fraction of transcriptional regulation
αtkr. Fortunately, the parameters have an intuitive biological meaning so that they can be cho-
sen relatively easily, cf. [6]. The parameterization of the dynamical components will be more
dif£cult, as we will see in the following section.

2.2 Dynamical Behavior

The dynamical behavior of the arti£cial gene expression network is described by a set of or-
dinary differential equations (ODEs) of the form ẋ = f(x),x ∈ Rn,x ≥ 0 (n: number of
substance). There is one scalar state variable xs for each substance s describing its current
concentration. The ODE system is built according to the network structure as generated by
the algorithm described in the previous section. There is a unique mapping from the network
structure to the ODE system, the details of which are shown in ref. [6]. The general form of the
equation for an RNA or protein s reads:
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That is, we assume that the change in the concentration of a substance is the sum of changes
through production of this substance (represented by π) reduced by the sum of all changes
through building dimers 〈s, q〉 with this substance and by decay

(

dxs

dt

)

decay
. Additionally, there

can be an external in¤ow or out¤ow
(

dxs

dt

)

ext
. The equation for a dimer 〈s, q〉 follows analo-

gously.

Equation (1) de£nes the framework to formulate the dynamical behavior of the system. To get
the £nal ODE system, all terms in the equation have to be formulated as concrete kinetic de-
scriptions of the corresponding processes. The decay terms, e.g., can be written as £rst order
reactions

(

dxs

dt

)

decay
= δsxs(t) with a constant decay rate δs. In our approach, biological knowl-

edge about the regulation of gene expression can be incorporated by de£ning the production
terms for RNA and proteins. There are many approaches to model this regulatory process, e.g.,
by sigmoid functions of the weighted sum of the concentrations of the regulator substances [3],
by S-systems [8], or by a switch-like mechanism [11]. We implemented two types of dynamics:
Type 1: a sigmoid function of the weighted sum of inputs like in ref. [3], and Type 2: a gener-
alized version of a switch-like mechanism described by ref. [11]. The latter allows to formulate
boolean-like interactions with continuous, steep sigmoid functions.

Type 1 Dynamics: In this case, for the transcription of an RNA s, each of its production terms
(dxs

dt
)π is de£ned as follows:

(

dxs

dt

)

π

= dmax × sig
(

b+
l
∑
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)

. (2)

Here, x1, . . . , xl are the concentrations of the regulators, wi . . . , wl the respective weights of the
regulatory in¤uence in the production π, dmax is the maximal transcription rate, b is the basal
transcription rate, and the function sig is de£ned as a sigmoid:

sig(u) =
1

1 + e−u
. (3)

For the translation where an RNA m acts as a template to form a protein s, the production term
is similar, but with an additional factor xm(t), which models the essential dependency of the
translation process from the concentration of the translated RNA:

(

dxs

dt

)

π

= dmax × xm(t)× sig
(

b+
l
∑

i=1

wi × xi(t)
)

. (4)

Type 2 Dynamics: For the production terms in Type 2 dynamics we £lter each weighted input
xi by applying a sigmoid hi:

x′i =

{

hi(wi, xi) if wi ≥ 0,

1− hi(wi, xi) otherwise,
(5)

hi(wi, xi) =
|wi|x

qi

i

|wi|x
qi

i + φ
qi

i

(6)

where qi and φi de£ne the shape of the sigmoid. For suitable choices of q i and φi the shape of
the sigmoid is steep enough for the x′i to behave like a 0 − 1 (boolean) switch approximation



of the xi. Using £ltered inputs we can build arbitrary boolean-like production terms, where the
basic boolean-like operators using the already £ltered inputs x ′1, x

′
2, are de£ned as follows:

NOT(x′1) = 1− x′1, (7)

AND(x′1, x
′
2) = x′1 × x′2, (8)

OR(x′1, x
′
2) = x′1 + x′2 − x′1 × x′2. (9)

This de£nition ensures that the result of applying an operator to £ltered inputs, is again usable
as £ltered input for another operator.

2.3 Generation of Arti£cial Data

After creating the network and its dynamics in terms of an ODE system, the ODEs have to be
numerically integrated in order to generate data. Two types of data are usually used in large scale
analysis of the gene expression machinery: time series and single measurements after a de£ned
time interval, e.g., at steady state. Both types of data are delivered by our system. In general,
there are various ways for carrying out experiments. For example, knockout experiments, where
we deactivate a gene; or over-expression experiments, where we amplify the production of a
gene product. Technically, this kind of experiments can easily be performed with the generated
arti£cial networks. It is just a matter of setting variables representing rate constants of RNA
production to zero (knockout) or to higher values (over-expression).

3 Properties of the Generated Regulatory Systems

Given parameters for the number N of genes and for the distribution K of in-degrees (uniform
or normal distribution), the algorithm delivers an arti£cial regulatory system where the graphical
representation has N nodes and the distribution of the in-degrees follows K.

The algorithm delivers an arti£cial regulatory system, i.e., a set S of substances and a set G of
genes (the genome). It assigns a primary transcript to each gene (an RNA) and a protein to each
coding RNA. For every transcription and translation process a set R ⊆ S of suitable regulators
is computed.

There is a unique mapping from this regulatory system to a simpli£ed graph (V,E), called
in¤uence graph, describing only regulatory in¤uences among genes. The in¤uence graph is the
target of most gene network reconstruction methods and is de£ned as follows: There is an edge
(g1, g2) ∈ E between two genes g1, g2 ∈ V iff there is a regulatory in¤uence from gene g1 to
the transcription of gene g2 or from g1 to the translation of the primary transcript of gene g2.
An edge of this type signals that gene g1 produces a regulatory substance that is involved in
the transcription process of g2 or in the translation process of the primary transcript of g2. The
regulatory substance can be a primary transcript (RNA), a protein, or a dimer.

In addition to the in¤uence graph, our algorithm derives an ODE system from the regulatory
system. There is one equation of the form Eq. (1) for each substance describing the evolution
of its concentration over time. The regulatory substances of transcription and translation appear
in the production terms described in Eq. (2) and Eq. (4), respectively.



3.1 Structural Properties

The algorithm that generates the network structure is a greedy algorithm. Therefore, it does
not guarantee that all user settings (e.g., fraction of self-regulators) are met precisely. But an
analysis of the in-degree and out-degree distribution of a large amount of randomly generated
networks showed that even when the number of genes is small (e.g., N < 4), the expected
deviation from the user settings is below 5% (see ref. [6] for detailed results).

Figure 1: Top: Example of a generated network. The £gure gives an impression of the structure
of a generated regulatory network with 15 genes. Genes are represented by squared shaped
nodes (nodes with many outputs, hubs, are diamond shaped). Circular nodes represent external
substances (proteins). A label like U3:m7 denotes the production unit U3, which produces
RNA m7 and protein P3. Solid lines denote transcriptional regulation, dotted lines denote
translational regulation. An edge is labeled with the respective regulator substance. Bottom:
The corresponding in¤uence graph where only genes and their interactions are shown. Usually,
the aim of a reconstruction method for regulatory networks is to £nd this kind of structure. Note
that two different genes can produce the same RNA.



Figure 1 shows an example of a generated network that consists of 15 genes and the correspond-
ing in¤uence graph, which consists only of the genes and their interactions. Our system delivers
the generated network and its in¤uence graph in a format, which can be easily visualized using
xvcg [14].

3.2 Dynamical Properties

In order to study the dynamical properties of our arti£cial gene networks, we generated net-
works for different parameter settings, simulated their behavior by numerically integrating their
ODEs (using lsode [12]) and investigated the sensitivity of the networks to deletion and over-
expression experiments.

Using Type 1 dynamics (sigmoid function of the weighted sum of inputs), we observed that
the system almost always approached an asymptotically stable £xed point, where genes are
expressed at different levels ranging over several magnitudes of order (Fig. 2). A similar behav-
ior has been observed in other arti£cially created reaction networks, such as random catalytic
networks [15] or binary string arti£cial chemistries [1].
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Figure 2: Examples of the dynamical behavior of Type 1 dynamics (top) and Type 2 dynamics
(bottom). For all regulatory systems the same parameter settings (beside the de£nition of the
dynamic type) were used. All systems consisted of 15 genes.

Using Type 2 dynamics (switch-like mechanism), about one third of the generated networks ex-
hibited more complex, oscillatory dynamics as exempli£ed by Fig. 2. Furthermore, our exper-
iments showed that Type 2 dynamics lead to networks that are more sensitive to perturbations,
such as the deletion of a single gene as demonstrated by Fig. 3. Because of a lack of sensitivity



of Type 1 dynamics, Type 2 dynamics should be preferred when perturbation experiments are
carried out.

3.3 Example: Deletion Experiment

To give an impression of how to produce an arti£cial regulatory system with our architecture
and in order to show how to use this system to create arti£cial gene expression data, we now
describe a deletion experiment. A deletion experiment can be conducted in £ve steps:

1. De£ne the parameters for generating the network structure and the kinetic description.
This can be done by using our web-interface or — for £ne-tuning and batch-jobs — via a
parameter-£le in XML.

2. Apply our generator (JAVA-program) to those parameters. It will output the arti£cial
regulatory system and the description of the ODE system (as c- or octave-source). A
typical resulting network structure is depicted in Fig. 1.

3. Give the ODE system to an ODE solver by compiling the c-source code and linking the
result to the ODE solver’s runtime system [12]. This can be done via the web-interface.
Alternatively you can solve the ODE system within octave [4].

4. De£ne the experiment. For this purpose, the user provides a plain text-£le, e.g.,
experiment.dat:

start 0
end 1200.0
inc 1
t 440 a_m0 0
t 1040 a_m0 1

The meaning of these £ve lines is: solve the ODE system from t = 0 to t = 1200 in
steps of 1, with RNA m0 (and thus all genes producing this RNA) being deactivated from
t = 440 until t = 1040.

5. Carry out the experiment:

solve -ts experiment.dat

where solve is the ODE solver program compiled in Step 3 and the parameter -ts
signals that a time-series according to the de£nition in the £le experiment.dat shall
be computed. The results are saved in plain text-£les and can be visualized as exempli£ed
by Fig. 3.

In summary, the above procedure produces a regulatory network, its in¤uence graph, graphical
visualizations of both, an ODE system, an executable simulator for conducting experiments,
and time series or steady state data.
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Figure 3: Example of oscillatory dynamics and a deletion experiment. At t0 = 440 gene m0
is “deleted” by inhibiting the production of its RNA. Thus its concentration (denoted by the
dashed line) vanishes slowly due to protein degradation and the dilution ¤ux. At t1 = 1040 the
inhibition of the gene is released. (Type 2 dynamics)

4 Summary and Conclusion

We have presented a new system that is able to create complex arti£cial regulatory networks
exhibiting high biological detail. Nevertheless, the underlying architecture is modular and ex-
tensible. The resulting regulatory networks are represented as computer programs, which can
be executed in order to obtain concentration pro£les of simulated gene activity. These data can
provide a solid base for validation and evaluation of reverse bioengineering methods that aim at
extracting information from gene expression data.

Our simulation results showed that it is not easy to randomly create a regulatory system that
behaves like a biological system. We have carefully modeled many relevant details of the bi-
ological system, such as protein-RNA dimerization and post-transcriptional regulation, which
usually are not considered in other systems for test data generation. Even if all single compo-
nents are modeled accurately, the overall behavior of a randomly created network often does
not exhibit the complexity of the natural system.

The basic structure of our model seems to be appropriate. But it remains an open question
how to orchestrate the right interplay between the components in order to reach a nature-like
dynamics. For that we have to £nd the structural principles behind this interplay. Two different
approaches appear to be feasible for this endeavor: We can follow a more engineering-type ap-
proach by identifying conditional probability functions where the distribution for a rate-constant
depends on other already selected rate-constants. Alternatively, we can imitate the natural evo-
lutionary process that has lead to biological regulatory systems. Following this approach, arti£-
cial regulatory systems are evolved according to a £tness function that depends on the dynam-
ical behavior of the networks. In our opinion, the latter approach shows the most promise for
creating arti£cial test systems that can serve as appropriate representatives of natural regulatory
systems.



Availability: Arti£cial regulatory networks can be generated via a web interface available at
www.informatik.uni-jena.de/csb/genreg.
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