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Abstract. Systems biology is the ever-growing field of integrating mole-
cular knowledge about biological organisms into an understanding at
the systems level. For this endeavour, automatic network reconstruction
tools are urgently needed. In the present contribution, we show how the
applicability of evolutionary algorithms to systems biology can be im-
proved by a domain-specific representation and algorithmic extensions,
especially a separation of network structure evolution from evolution of
kinetic parameters. In a case study, our presented tool is applied to a
model of the mitotic spindle checkpoint in the human cell cycle.

1 Introduction

Reverse engineering of biochemical networks, making sense of rapidly growing
molecular proteomics data, is a promising and important field at the crossroads
of optimisation and model selection. Supplementing human-curated models with
automatically generated, data-based models will enhance our understanding of
the function of cells as a whole, which is at the core of systems biology.

Evolutionary algorithms (EA) and especially genetic programming (GP) have
a long-established history as heuristic optimisation techniques [2,13,15]. Re-
cently, methodologies adapted from this field have been used to evolve artifi-
cial biochemical networks, capable of performing arithmetic calculations [7] or
specific behaviours such as oscillations and switching [10,17]. Others have used
similar techniques to reconstruct metabolic pathways from time series data of
chemical species [14]. While these attempts were successful for small networks,
they also highlighted the complexity of evolving larger networks.

To expand our capability of evolving networks, improvements on these algo-
rithms have to be investigated. In this contribution, we propose a separation
of structural evolution of the network from kinetic parameter evolution, which
yields a pronounced increase in the algorithm’s fitness performance. Our studies
show that this separation helps to prevent premature convergence when evolving
networks performing arithmetic calculations. We suppose this happens because
parameter fitting after each structural mutation smoothes their effect, which
is usually rather strong. In this way, network parameters can adapt to a new
topology before this topology is evaluated.
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Fig. 1. Biological principle of signalling in eukaryotic cells: from arriving stimuli to
specific cell response

Two other ideas are also investigated: the biologically-inspired mutation oper-
ator of species duplication, and the use of Akaike’s Information Criterion (AIC)
as a fitness function to evolve parsimonious models. By using the markup lan-
guage SBML, the tool described here can work directly on systems biological
problems, aiming at applications throughout this growing community.

In a case study, we apply our algorithm to a model of the human mitotic
spindle checkpoint. By allowing the algorithm to introduce additional reactions,
the performance of the model can be increased in comparison to a mere opti-
misation of parameters. Although biological plausibility is not considered, the
example serves as a proof of concept for further investigations.

2 Modelling and Evolving Biochemical Networks

Biochemical reaction networks found in pro- and eukaryotic cells represent im-
portant components of life. Despite their high degree of complexity, they are
hierarchically arranged in modular structures of astonishing order. The function
of a cell emerges from the interplay of connected reaction processes. Three essen-
tial types of biochemical networks can be distinguished: metabolic, cell signalling
(CSN), and gene regulatory (GRN) networks [1]. While metabolism consists of
coupled enzymatically catalysed reactions supplying energy, CSNs and GRNs
perform information processing of external and internal signals [6]. Malfunctions
or perturbations within these networks are the cause of many diseases.

We have built a software tool implementing an evolutionary algorithm that
evolves artificial biochemical networks performing pre-specified tasks. As a rep-
resentation format, the systems biology standard SBML [9] is used, the most



134 T. Lenser et al.

Fig. 2. Example solution and corresponding time series of input and output species for
the third root network, produced using the CellDesigner [11] tool

common interchange format for biochemical models. This provides us with the
opportunity to profit from an immense variety of tools developed for the analysis
and interpretation of such models. The evolutionary algorithm used here employs
eight different mutations:

– Addition / deletion of a species
– Addition / deletion of a reaction
– Connection / removal of an existing species to / from a reaction
– Duplication of a species with all its reactions
– Mutation of a kinetic parameter

While the first six and the last mutation have been used before, we are not
aware of work that has used species duplication for the kind of network evolution
discussed here. Crossover between networks is possible, but its effects are not
part of this work and it has been disabled for all presented experiments.

Fitness evaluation in the algorithm is done by integrating the ODE system
resulting from an individual model using the SBML ODE Solver Library [16], a
tool designed precisely for that task. The resulting multidimensional time series
is then compared to a target, and the weighted quadratic difference

f = 1/C

C∑

c=1

1/S

S∑

i=1

1/mc,i

N∑

j=1

(xc,i(tj) − yc,i(tj))2,

with mc,i =
T∑

j=1

(xc,i(tj) + yc,i(tj))/2, i = 1, . . . , S,

between the resulting time series x and the target time series y defines the fitness.
Here, i = 1, . . . , S runs over the set of evaluated species, and c = 1, . . . , C runs
over the fitness cases. Thus, fitness values are minimised, 0 being the absolute
lower bound. If a steady state value is regarded as the result of the computation,
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Fig. 3. Outline of the two-level evolutionary algorithm

a constant time series is the target and the first few timesteps are discarded.
When Akaike’s Information Criterion (see Section 4) is applied, the number of
free parameters in the model k (kinetic parameters plus free initial conditions)
and the number of data points n = CTS are incorporated and the fitness is
modified in the following way:

fAIC = 2k + (nlog(f)) + 2k(k + 1)/(n − k − 1)

In this case, fitness is still minimised but can be negative without lower bound.
Selection is elitistic, with a certain percentage of the population surviving to

the next generation, which is filled by mutants of survivors. It is possible to fit
kinetic parameter before evaluating the model structure, a technique described
in detail in the next paragraph. The software and all data shown in this paper
is available from the authors upon request.

3 Separating Structural from Parameter Evolution

The evolution of an artificial network model can be separated into two parts: On
the one hand, a set of species and reactions adequate for the task has to be found.
On the other hand, the parameters of this model structure have to be optimised.
The problem is analogue to model inference, where a dataset is used not only to
fit the parameters of a model, but rather to choose a model structure together
with a set of parameters. For nonlinear problems, this is still a largely unresolved
challenge. Here, we show that a separation of model-structure evolution from
parameter-fitting helps to prevent premature structural convergence.

In traditional GP approaches, parameters are usually evolved together with
programme structure. In our approach, we use the opportunity to differentiate
mutation and selection on the model structure from parameter fitting. To this
end, a two-level evolutionary algorithm was implemented (Fig. 3), where the
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Fig. 4. Average best-fitness with standard error over ten runs of the evolution of loga-
rithm networks. Left column: two-level EA, middle column: one-level for many genera-
tions (note the different scale), right column: one-level with a large population. Upper
row is without AIC, lower row uses AIC. Headers: p = population size, s = number of
survivors, I = number of generations.

upper level evolves a model structure in analogy to GP, while the lower level
takes care of the parameters with an evolution strategy (ES) [3].

In order to test the effect of this separation on the performance, we evolved
networks supposed to perform two tasks: calculating the third root and logarithm
of a positive real number. Here, “calculating” means that the input is set as ini-
tial concentration of species input, while the output is read from the steady state
concentration of species output. Therefore, the target time series for the output
species is simply the desired output value, constant over a period of time, where
the first few timepoints are excluded from the fitness evaluation. An example so-
lution for a third root network is shown in Fig. 2. While the third root has been
observed to be solvable but substantially more difficult than a square root net-
work [7], no precise solution to the logarithmic problem is known yet. Therefore,
the best possible approximation to the logarithm is sought. In this work, the main
focus is not put on the evolved networks, but rather on the evolutionary process.

Three different strategies were used, each with and without AIC:

1. Two-level evolution using ES for local fitting (upper level: (25+25)-elitist
selection, 29 generations, only structural mutations; lower level: (5,15)-ES,
99 generations, only parameter mutations)
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2. One-level evolution running for more generations ((25+25)-elitist selection,
29999 generations, structural and parameter mutations)

3. One-level evolution employing a larger population ((2500+2500)-elitist se-
lection, 299 generations, structural and parameter mutations)

The parameter settings were chosen such that the number of fitness evaluations
and the ratio of structural vs. parameter mutations are identical, enabling an
objective comparison. The one-level strategies invested the saved fitness evalu-
ations into more generations (2) or more individuals (3). In the ES, adaptive
stepsizes were disable to make the results comparable. Computations were car-
ried out as single-processor runs on a cluster of workstations equipped with two
Dual Core AMD Opteron(tm) 270 processors running Rocks Linux.

Results of the evolution of a logarithm-network (Fig. 4) show that the two-
level structure of the algorithm improves fitness development drastically in com-
parison to a larger number of generations, while it prevents the premature
convergence seen with a larger population. A large population seems to enable
the algorithm to guess a good initial network, but it is unable to improve upon
this. In contrast, the two-level approach improves the network continuously,
yielding significantly better results in the end.
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Fig. 5. Average best-fitness with standard error over 100 runs of the evolution of
third root networks. Left column: two-level EA, middle column: one-level for many
generations, right column: one-level with a large population. Upper row (log scale) is
without AIC, lower row uses AIC. Headers: see Fig. 4.
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Figure 5 shows the average fitness development for the third root task. Re-
sults are similar to Fig. 4, although not as pronounced. Again, the two-level
strategy drastically outperforms the setting with more generations, while its ini-
tial progress is slower than for a large population. However, the large-population
approach converges too early, while the two-level setting continuous to improve
in a smooth fashion. In this task, the networks were also required to be mass-
conserving, i.e. it was demanded that a feasible configuration of molecular masses
for the different species exists. This constraint might explain the slower rate of
convergence in comparison to the logarithm-trials.

As a control test, we performed a random search with the same parameters,
replacing mutations in the evolutionary algorithm with creation of new random
individuals. The EA drastically outperformed random search, resulting in fitness
values one order smaller after 750000 fitness evaluations (data not shown). Even
though random search finds good initial solutions, it cannot narrow its search
and thus lacks the ability to fine-tune the network for the desired calculation.

4 Using AIC to Evolve Parsimonious Models

Another focus of our investigations was the effect of using Akaike’s Information
Criterion (AIC) as a fitness measure. This measure weights the goodness-of-fit of
a model against the number of its free parameters. Given that more parameters
will lead to a better fit, but not always to a better explanation of a dataset,
AIC formalises a compromise between free parameters and data-fitting. For an
overview of information-theory model selection tools, including AIC, see [4].

To investigate AIC, we compared fitness values and free parameters after runs
with AIC with those without. Our results are mixed: while AIC has a tendency
to reduce model size (not shown), it can drastically affect fitness development,
especially for the one-level approaches (Fig. 4 and 5). It seems that AIC either
causes premature convergence to small models with bad function, or models
achieve the desired function while size increases. This effect is explained by
considering that AIC assumes stochastic data, which target time-courses here
are not. When models can be fitted perfectly to desired values, the goodness-of-fit
dominates the number of free parameters.

5 Species Duplication - A Soft Mutation Operator

A major problem with evolving biochemical networks seems to be the often
deleterious effect of structural mutations on network behaviour. Additions and
deletions of species and reactions usually change the resulting time series dras-
tically, especially for smaller networks. Therefore, we are looking for “softer”
mutation operators. Inspired by biology, one such operator is the duplication
of a species and all the reactions it participates in. When the rate constants of
all reactions producing the species are halved, this operator does not affect the
concentrations of non-mutated species. Later on, deletions and rate mutations
can exploit the additional freedom gained by duplication.
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Fig. 6. Average fitness development with standard error for logarithm networks, results
from 100 independent runs. Left: species addition and duplication together, middle:
only addition, right: only duplication. Also shown are the best 5 runs per setting (gray).
Global selection is (50+100)-elitistic, local fitting is a (1+10)-ES, and 50 generations
were calculated.

Our results (Fig. 6) show that even though species duplication alone is inferior
to addition of new species with random reactions, combining both operators does
not yield an inferior result. However, it is still open under which conditions the
combined approach improves the random addition of new species.

6 Case Study: The Human Cell Cycle Spindle Checkpoint

Segregation of newly duplicated sister chromatids into daughter cells during
anaphase is a critical event in each cell division cycle. Any mishap in this process
gives rise to aneuploidy that is common in human cancers and some forms of
genetic disorders [5]. Eukaryotic cells have evolved a surveillance mechanism for
this challenging process known as the spindle checkpoint. The spindle checkpoint
monitors the attachment of kinetochores to the mitotic spindle and the tension
exerted on kinetochores by microtubules and delays the onset of anaphase until
all the chromosomes are aligned at the metaphase plate [8].

To demonstrate the usefulness of our approach in systems biology, we ap-
plied combined structural- and parameter-optimisation to a recent model by
Ibrahim et al. [12] of the mitotic spindle checkpoint. This model, which is orig-
inally crafted by hand according to literature and laboratory data, describes in
details the concentration dynamics of 17 species, namely Mad2, Mad1, BubR1,
Bub3, Mad2∗, Mad1∗, BubR1∗, BubR1:Bub3, APC, Cdc20, MCC, MCC:APC,
Cdc20:Mad2, and APC:Cdc20, CENPE, Mps1 together with Bub1, and the kine-
tochore as a pseudospecies. Different kinetochores are represented by three com-
partments coupled by diffusion, each with the same 11 reaction rules. The last
four species represent input signals to the model, reflected in the rate constants
of certain reactions. The model corresponds to biological experimental results,
which characterise the main components of the mitotic checkpoint.
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Fig. 7. Schematic network model of mitotic spindle checkpoint. Figure taken from [12].

Table 1. Steady-state concentrations of APC:Cdc20 for four settings of the cell: All
kinetochores unattached (1), one attached (2), two attached (3), all three attached (4).
The unoptimised model has all parameters set to 0.1, the parameter optimised one has
the values from [12], and the structurally optimised model is the result of the procedure
described here. Note that the fitness function used is different to the one in [12].

Level 1 Level 2 Level 3 Level 4 Fitness
Desired value 0 0 0 0.3 0

Without optimisation 0.086154 0.0865285 0.0869323 0.0872706 27.0122
Parameter optimised 0.010924 0.011051 0.011359 0.298768 0.470562
Structure optimised 0.000106 0.000051 0.000037 0.29972 0.000077

As an optimisation target, the concentration of the central species APC:Cdc20
is supposed to be low as long as not all kinetochores are attached, but to rise
to a higher value when they all are. In [12], this target has been combined with
behaviour from knockout-experiments (which we do not consider here) to fit the
rate constants. Here, we test which results can be achieved when the algorithm
is allowed to add additional reactions. Any reaction given in the original model
cannot be deleted. In future, it will be interesting to loosen this, which could
lead to an evolutionary model reducer isolating only the important parts of a
given model.

Our results, summarised in Table 1, show that performance of the model has
improved compared to the optimisation of rate constants alone. In principle,
this could also help to uncover additional structure in the data and to propose
additional features of the system which can then be verified experimentally. To
achieve biological plausibility, these additional features have to be constrained,
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which has not been observed in this proof of concept. The best model evolved
contains only two additional reactions compared to the original,

BubR1Z → Mad1∗X + BubR1∗Y
BubR1∗X + Cdc20Y → Mad2X + Cdc20Y ,

but these require species from different compartments to interact, which is not
intended in the model. We are currently extending our work to include plausi-
bility constraints.

7 Conclusions

As our results for the third root and logarithm tasks indicate consistently, sepa-
rating structural network evolution from parameter evolution in a two-level al-
gorithm improves the fitness performance significantly. It can be expected that
the inclusion of an adaptive stepsize - which has been excluded here to focus
on the separation effect - will deepen this advantage. This result is especially
interesting as it is in contrast to traditional GP approaches, where parameters
are usually evolved simultaneously to the programme structure.

Results for species duplication show that this operator indeed has a beneficial
effect on the algorithm, but cannot be used alone, i.e. without the addition of
species with random connections. The right balance between creative potential
and soft adaptations in different stages of the run seems to be crucial here. For
Akaike’s Information Criterion, results were unexpected: instead of facilitating
the evolution of parsimonious models with a good fitness, evolved solutions were
either stuck to small size (usually in one-level approaches), or were of the same
size as models evolved without AIC. While the first aspect results from the
general tendency of one-level approaches to premature convergence, the second
aspect can be explained by the noise-free target data that was used, allowing an
almost perfect fit in which the size term in AIC is dominated by the logarithm
of goodness-of-fit.

In Section 6, we show that the demonstrated approach can be used to au-
tomatically improve realistic models. The next steps are clearly visible now:
plausibility constraints have to be included in order to restrict the evolution to
solutions that are biologically meaningful. With this in mind, interesting results
from this field can be expected in the near future.

Acknowledgements. We thank Stephan Diekmann and Eberhard Schmitt at
the FLI Jena for fruitful collaboration on the spindle checkpoint model, and
Anthony Liekens at the Technical University of Eindhoven for support with
the computations. Funding from the EU (ESIGNET, project no. 12789), Fed-
eral Ministry of Education and Research (BMBF, grant 0312704A) and German
Academic Exchange Service (DAAD, grant A/04/31166) is gratefully acknowl-
edged. The ESIGNET project also provided funding for the cluster computing
facility utilised for this work.



142 T. Lenser et al.

References

1. B. Alberts, A. Johnson, J. Lewis. Essential Cell Biology. Garland Publishing, 2003
2. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone. Genetic Programming, An

Introduction: On The Automatic Evolution of Computer Programs And Its Appli-
cations. Morgan Kaufmann, 1998

3. H. Beyer and H. Schwefel. Evolution strategies. Natural Computing 1:3-52, 2002
4. K.P. Burnham, D.R. Anderson. Model selection and inference : a practical

information-theoretic approach. Springer, 1998
5. E. Chung, R.-H. Chen. Spindle Checkpoint Requires Mad1-bound and Mad1- free

Mad2. Molecular Biology of the Cell 13, pp. 1501-1511, 2002
6. B.L. Cooper, N. Schonbrunner, G. Krauss. Biochemistry of signal transduction and

regulation. Wiley-VCH, 2001
7. A. Deckard and H.M. Sauro. Preliminary Studies on the In Silico Evolution of

Biochemical Networks. ChemBioChem 5:1423-1431, 2004
8. G. Fang. Checkpoint Protein BubR1 Acts Synergistically with Mad2 to Inhibit

Anaphase-promoting Complex. Molecular Biology of the Cell 13, pp. 755-766, 2002
9. A. Finney, M. Hucka. Systems biology markup language: Level 2 and beyond.

Biochem Soc Trans, 31(Pt 6):1472–1473, 2003.
10. P. François, V. Hakim. Design of Genetic Networks With Specified Functions by

Evolution in silico. PNAS 101:580-585, 2004
11. A. Funahashi, N. Tanimura, M. Morohashi, H. Kitano. CellDesigner: a process

diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1:159-
162, 2003

12. B. Ibrahim, S. Diekmann, E. Schmitt, P. Dittrich. Compartmental Model of Mi-
totic Spindle Checkpoint Control Mechanism. BMCBioinformatic, Submitted Pa-
per, 2006

13. J.R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press, 1992

14. J.R. Koza, W. Mydlowec, G. Lanza, J. Yu, M.A. Keane. Automatic Synthesis of
Both the Topology and Sizing of Metabolic Pathways using Genetic Programming.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pp. 57–65, Morgan Kaufmann, 2001

15. W.B. Langdon, R. Poli. Foundations of Genetic Programming. Springer, 2002
16. R. Machne, A. Finney, S. Muller, J. Lu, S. Widder, C. Flamm. The SBML ODE

Solver Library: a native API for symbolic and fast numerical analysis of reaction
networks. Bioinformatics 22(11), pp. 1406-7, 2006

17. S.R. Paladugu, V. Chickarmane, A. Deckard, J.P. Frumkin, M. McCormack, H.M.
Sauro. In Silico Evolution of Functional Modules in Biochemical Networks. IEE
Proceedings-Systems Biology 153(4), 2006


	Introduction
	Modelling and Evolving Biochemical Networks
	Separating Structural from Parameter Evolution
	Using AIC to Evolve Parsimonious Models
	Species Duplication - A Soft Mutation Operator
	Case Study: The Human Cell Cycle Spindle Checkpoint
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


