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In chemical computing, the result of a computation appears as an
emergent global behavior based on local reaction rules. Forpro-
gramming chemical systems a theoretical method to cope with
that emergent behavior is desired. In this paper, we demonstrate
how the chemical organization theory can help in designing and
understanding chemical computing systems. After providing a
recipe for mapping logic circuits to chemical reaction rules, we
discuss reaction networks implementing various logic circuits:
an XOR, a flip-flop, and a controllable oscillator. The theory de-
composes reaction networks into a hierarchy of closed and self-
maintaining sub-networks (called organizations) using stoichio-
metric information only. The dynamical behavior of a reaction
system is then explained as a movement between organizations.
We show how the theoretical analysis provides insight into the
potential behavior of chemical reaction systems. The encour-
aging results suggest that the theory of chemical organizations
contributes to a theoretical framework for chemical computing.

Key words:chemical programming, artificial chemistry, chemical infor-
mation processing, organic computing, controlling emergence, amor-
phous computing, complex networks, distributed systems, molecular
computing
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1 INTRODUCTION

By employing a large number of simple components interacting with each
other in an orchestrated way, biological systems invented avariety of in-
formation processing mechanisms, which are robust, self-organizing, adapt-
able, decentralized, asynchronous, fault-tolerant, and evolvable. These mech-
anisms of biological information processing are now exploited to cope with
the fast-growing complexity of technical information processing systems [23,
29, 30]. Since all known life forms process information using chemical pro-
cesses [19], the chemical reaction metaphor has been proposed as a source
of inspiration for a novel computation paradigm [4, 12]. Using chemical re-
actions for formal computations has initially been suggested by Banâtre and
Métayer [4]. In their GAMMA system [5], a chemical reactionis defined as a
rewriting operation on a multiset, mimicking a well-stirred reaction vessel. In
order to capture the spatial context of chemical systems, chemical rewriting
systems have been extended to the chemical abstract machine(CHAM) [9], P-
Systems [24, 25] (stressing the importance of membranes), andMGS[15, 21]
allowing arbitrary topologies [3].

In a chemical reaction process, the solution of a computation appears as an
emergent global behavior based on a manifold of local interactions [6]. For its
heavy nonlinearity such behavior is hard to analyze and in general impossible
to predict by methods that are more efficient than simulations.

Yet emergent behavior occurs in biological systems, for example, by com-
bining simple biochemical signaling pathways [10]. As recently demon-
strated by Tsuda, Aono, and Gunji withPhysarum[28], the discrepancy be-
tween local and global behavior may also be problematic in practice. There
is also a common agreement that a satisfying theory of emergence is lack-
ing [22].

This paper contributes to the establishment of a theoretical analysis of
emergent behavior in chemical computing, which should leadto a deeper
understanding of the micro-macro link between reaction rules and resulting
behavior. The ability to predict how a chemical program (e.g., a list of re-
action rules) behaves is a prerequisite for programming by construction [32].
Note that there is a fundamentally different approach for creating chemical in-
formation processing systems, namely programming by evolution [8, 11, 17].
This latter approach is not considered here. However, our methods might be
applied to analyze the outcome of an evolutionary approach.

We suggest chemical organization theory [13, 26] as a tool helping to con-
struct (program) and analyze (describe and understand) chemical computing
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systems. Chemical organization theory allows to decomposea reaction net-
work into a hierarchy of self-maintaining sub-networks, called organizations.
Following the line of [2] and in contrast to methods like Ref.[18], the theoret-
ical analysis assumes only stoichiometric information,i.e., the structure of the
reaction network. Although other algebraic approaches divide biochemical
reaction network into sub-networks,e.g., in terms of functional modules [7],
a rigorously proven relation between sub-networks and potential emergent
dynamics is usually lacking. Since emergent properties appear in a dynami-
cal situation, the theoretical method for analyzing emergence must take it into
consideration.

Inspired by Fontana and Buss [14], Dittrich and Speroni di Fenizio [13]
defined a chemical organization as a set of molecular speciesthat is (alge-
braically) closed and (stoichiometrically) self-maintaining. It is important to
note that when we talk about organizations, we abstract details like concentra-
tion levels or the spatial distribution of a chemical species. On this relatively
high level of abstraction, a system state is characterized only by the molecular
species present and we can describe the dynamics of a system more qualita-
tively, namely, as a movement between sets of species, instead of a movement
in a more complex state space [26].

Borrowing the notion of chemical organizations defined as closed and
self-maintaining sets of molecular species, we demonstrate in this paper how
the algebraic analysis of chemical reaction networks helpsto understand the
emergent dynamical behavior of (artificial) chemical computing. In Section 2,
we describe the concepts from chemical organization theoryneeded here,
adopted from Ref. [13]. A general procedure of converting a logic circuit
into a chemical reaction network is described in Section 3. Like others (cf.,
[1, 28, 31]), a simple non-linear logical operationXOR is implemented first,
in Section 4. In Section 5, the target example of logical operation is scaled up
by linking multipleNAND gates. Another example is a flip-flop logic circuit
(Section 6) and a controllable oscillator (Section 7). Bothcircuits contain a
simple feedback loop, which is an important building block in biological sig-
naling networks to achieve robustness [27] or multi-stationarity. Finally, in
Section 8, we discuss the potential of the theory as a theoretical base for the
analysis of emergent chemical computing.

2 CHEMICAL ORGANIZATION THEORY

The target of chemical organization theory are reaction networks. A reac-
tion network consists of a set of moleculesM and a set of reaction rules
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R. Therefore, we define a reaction network formally as a tuple〈M,R〉 and
call this tuple an algebraic chemistry in order to avoid conflicts with other
formalizations of reaction networks.

Definition 1 (algebraic chemistry [13]). Given a setM of molecular species
and a set of reaction rules given by the relationR : PM (M)×PM (M). We
call the pair〈M,R〉 analgebraic chemistry, wherePM (M) denotes the set
of all multisets with elements fromM.

A multiset differs from an ordinary set in that it can containmultiple copies
of the same element. A reaction rule is similar to a rewritingoperation [3] on
a multiset. Adopting the notion from chemistry, a reaction rule is written
asA → B where bothA andB are multi sets of molecular species. The
elements of each multi set are listed with “+” symbol betweenthem. Instead
of writing {s1, s2, . . . , sn}, the set is written ass1 + s2 + · · · + sn in the
context of reaction rules. We also rewritea+a → b to 2a → b for simplicity.
Note that “+” is not an operator but a separator of elements.

A set of molecular species is called an organization if the following two
properties are satisfied: closure and self-maintenance. A set of molecular
species is closed when all reaction rules applicable to the set cannot produce
a molecular species that is not in the set. This is similar to the algebraic
closure of an operation in set theory.

Definition 2 (closure [14]). Given an algebraic chemistry〈M,R〉, a set of
molecular speciesC ⊆ M is closed, if for every reaction(A → B) ∈ R

with A ∈ PM (C), alsoB ∈ PM (C) holds.

The second important property, self-maintenance, assures, roughly speak-
ing, that all molecules that are consumed within a self-maintaining set can
also be produced by some reaction pathways within the self-maintaining set.
The general definition of self-maintenance is more complicated than the def-
inition of closure because the production and consumption of a molecular
species can depend on many molecular species operating as a whole in a
complex pathway.

Definition 3 (self-maintenance [13]). Given an algebraic chemistry〈M,R〉,
let i denote thei-th molecular species ofM and thej-th reaction rules is
(Aj → Bj) ∈ R. Given the stoichiometric matrixM = (mi,j) that corre-
sponds to〈M,R〉 wheremi,j denotes the number of molecules of speciesi

produced⋆ in reactionj, a set of molecular speciesS ⊆ M is self-maintaining,

⋆ Formally, this can be defined asmi,j = #(i ∈ Bj) − #(i ∈ Aj), where#(i ∈ Aj)
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if there exists a flux vectorv = (vA1→B1
,. . . , vAj→Bj

,. . . ,vA|R|→B|R|
)T sat-

isfying the following three conditions:

1. vAj→Bj
> 0 if Aj ∈ PM (S)

2. vAj→Bj
= 0 if Aj /∈ PM (S)

3. fi ≥ 0 if si ∈ S where(f1, . . . , fi, . . . , f|M|)
T = Mv.

These three conditions can be read as follows: When thej-th reaction is
applicable to the setS, the fluxvAj→Bj

must be positive (Condition 1). All
other fluxes are set to zero (Condition 2). Finally, the production ratefi for
all the molecular speciessi ∈ S must be nonnegative (Condition 3). Note
that we have to find only one such flux vector in order to show that a set is
self-maintaining.

Taking closure and self-maintenance together, we arrive atan organization:

Definition 4 (organization [13, 14]). A set of molecular speciesO ⊆ M that
is closed and self-maintaining is called an organization.

We visualize the set of all organizations by a Hasse diagram,in which
organizations are arranged vertically according to their size in terms of the
number of their members (e.g. Figure 1). Two organizations are connected
by a line if the lower organization is contained in the organization above and
there is no other organization in between.

2.1 Dynamics

For deriving the Hasse diagram of organizations no detailedknowledge con-
cerning the dynamics is required. Only stoichiometric information,i.e., the
set of reaction rules, is sufficient. Therfore we refer to that part of chemical
organization theory as the static part.

In the “dynamical part”, the set of organizations is used to describe the
dynamics of a reaction system as a movement between organizations. The
strength of this method lies in the analysis of chemical processes where molec-
ular species appear (i.e., their concentration becomes positive) and dissappear
(i.e., their concentration becomes zero) at some point in time. The move-
ment between organizations can take place spontaneously (down-movement)
or can be trigered by external events,e.g. by adding some input molecules.
For further details see Ref. [13].

denotes the number of occurrence of speciesi on the lefthand side of reactionj and#(i ∈ Bj)

the number of occurrence of speciesi on the righthand side of reactionj.
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Finally, a relevant theorem from Ref. [13] states that givena differential
equation describing the dynamics of a chemical reaction system and the al-
gebraic chemistry corresponding to that system. Assume further a fixed point
(i.e., stationary state) of that differential equation, then theset of molecules
with positive concentrations in that fixpoint is an organization. In other words,
we can only obtained a stationary behavior with a set of molecular species that
are both closed and self-maintaining.

3 A RECIPE FOR A CHEMICAL LOGIC CIRCUIT

In this section we present a procedure for designing chemical reaction net-
works implementing a logic circuit (see Table 1 for a non-formal recipe). A
logic circuit is a composition of logic gates. As such it can be fully described
by a set of boolean functions and boolean variables, forminga boolean net-
work [16]. Let the boolean network be defined by a set ofM boolean func-
tions and a set ofN (≥ M ) boolean variables:

{b1, . . . , bM , . . . , bN} (1)

where{bj|1 ≤ j ≤ M} are determined by the boolean functions (internal
variables) and the remaining variables{bj |M < j ≤ N} are the input vari-
ables of the boolean network. The set of boolean functions is

{bi = Fi(bq(i,1), . . . , bq(i,ni)) | i = 1, . . . , M} (2)

wherebq(i,k) indicates the boolean variable listed as thek-th argument of the
i-th function. Since thei-th boolean functionFi takesni boolean variables as
arguments, there are2ni possible inputs. Thus the truth tableTi for function
Fi has2ni rows andni + 1 columns:

Ti :







ti1,1 · · · ti1,ni
ti1,ni+1

...
. . .

...
...

ti2ni ,1 · · · , ti2ni ,ni
ti2ni ,ni+1






(3)

wheretih,k ∈ {0, 1} is the boolean value of thek-th argument in theh-th
input case for thei-th boolean function. The (ni + 1)-th column contains the
output ofFi.

Given the boolean network, an algebraic chemistry〈M,R〉 is designed as
follows. For each boolean variablebj we assign two molecular speciess2j−1

ands2j representing the value0 and the value1 in it, respectively. Thus the
set of molecular speciesM contains2N molecular species as follows:
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M = {s2j−1, s2j | j = 1, . . . , N} (4)

The set of reaction rules can be decomposed into two sets of reactions:

R = L ∪ D. (5)

Set of reactionsL is derived from the logical operations of the boolean func-
tions withL =

⋃M
i=1 L

i whereLi is a set oflogical reactionsassociated with
the truth tableTi of boolean functionFi. For each input caseh (each row of
the truth table), one reaction rule is created:

Li = {Ai,h → Bi,h | h = 1, . . . , 2ni}. (6)

The lefthand side is a set ofreactantsAi,h = {ai,1,h + · · · + ai,k,h + · · · +

ai,ni,h} whereai,k,h is a molecular species representing the boolean vari-
able that is taken as thek-th argument of functionFi and thusbq(i,k). Since
two molecular speciess2q(i,k)−1 ands2q(i,k) are assigned to boolean variable
bq(i,k) depending on its content, the truth tableTi is used to select from the
two. If the entrytih,k of the truth table is equal to0, bq(i,k) must be set to0 in
theh-th input case, and thuss2q(i,k)−1 is chosen as the reactant. Otherwise,
ai,k,h is s2q(i,k):

ai,k,h =

{

s2q(i,k)−1 if tih,k = 0 ,

s2q(i,k) if tih,k = 1 .
(7)

Similarly, the righthand side is a set ofproductsBi,h = {bi,h}, and

bi,h =

{

s2i−1 if tih,ni+1 = 0 ,

s2i if tih,ni+1 = 1 ,
(8)

since the(ni + 1)-th column of truth tableTi contains the output.
The other component of setR is the set ofdestructive reactionsD. Since

binary states of a boolean variablebj are coded with two molecular species
s2j−1 ands2j , the state becomes undefined when both or neither of the species
are present. In order to avoid such a case, the two opposite molecular species
are defined to vanish upon collision:

D = {s2j−1 + s2j → ∅|j = 1, . . . , N}. (9)

The resulting algebraic chemistry〈M,R〉 implements the logic circuit
without any input specified. The input variables of the boolean network
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{bj|M < j ≤ N} must be initialized externally because they are not set
by the boolean functions. The initialization of the input variables is encoded
by an inflow reaction, which is a zero-order reaction producing substances
from the empty set. If an input variablebj is initialized to0, for example, the
algebraic chemistry is changed to〈M, (R ∪ {∅ → s2j−1})〉. It is possible
for more than one variable to be initialized in this manner asit is possible for
more than one molecular species to be injected by the influx.

3.1 Implementing logic circuits with periodic attractors

At last, we would like to point out that while converting boolean networks into
chemical reaction networks, feedback loops need special treatment. When
considering boolean networks in general, the network can form feedback
loops by connecting an output to an input so that the input is dependent on the
output. This configuration can give rise to attractors having a period greater
than one so that the system starts to oscillate between two (or more) states.
An example of such a periodic attractor is an oscillator. When an oscillator is
implemented with a reaction network, the complementary molecular species
are generated alternatively and decay instantaneously. Todelay the complete
destruction of the two species, an amplification process hasto be introduced
for variables that change in the periodic attractors. A detailed description of
the implementation can be found in Section 7.

4 CASE STUDY I: A CHEMICAL XOR

To demonstrate how chemical organization theory can be usedfor chemical
computing, an (artificial) chemical reaction network is designed to implement
anXOR logic gate.

TheXOR logic gate is defined as a set of three boolean variables{a, b, c}

and a set of one boolean function{Fc} where the function is:c = Fc(a, b),
and the truth table is:

a b c

Tc :









0 0 0

0 1 1

1 0 1

1 1 0









(10)

Since boolean variablec is the internal variable which is determined by
a boolean function, the set of boolean variable should be listed as{c, a, b}
according to the recipe in Section 3. Boolean variables and molecular species
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Input: Boolean network given by two sets: a set ofM boolean functions
{F1, . . . , FM} and a set ofN boolean variables{b1, . . . , bM , . . . , bN}.
Variables{b1, . . . , bM} are determined by the boolean functions (internal
variables); the remaining variables{bM+1, . . . , bN} are input variables of
the boolean network.
Output: Algebraic chemistry〈M,R〉 (a set of molecular speciesM and a
set of reaction rulesR) representing the boolean network without any input
variable specified.a

Algorithm:
1. For each boolean variablebj :

(a) Add two molecular species,bj andBj , toM;b

(b) Add onedestructive reactionof the formbj + Bj → ∅ toR;

2. For each boolean functionFi:
(a) Create the truth table ofFi with 2ni input cases

(whereni is the arity ofFi);

(b) For each input case, create alogical reaction.c

i Lefthand side (reactants) corresponds to the input ofFi.
ii Righthand side (products) consists of one molecular species repre-

senting the respective boolean output ofFi.

aSpecifying an input variable of the boolean network is codedby an inflow reaction.
bAs a naming convention of molecular species in this paper, the lowercase species repre-

sents value0 in the boolean variable, and the uppercase stands for1.
cFor example, theXOR-function is converted into reactions as follows:

b2 b3 b1 = F1(b2, b3)

0 0 0
0 1 1
1 0 1
1 1 0

⇒

Reactants → Products
b2 + b3 → b1

b2 + B3 → B1

B2 + b3 → B1

B2 + B3 → b1

TABLE 1
Recipe for mapping a boolean circuit to a chemical reaction network.
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are ordered alphabetically for readability, however. Furthermore, the variable
name is adopted as an index of functions.

Given the definition of theXOR boolean network, an algebraic chemistry
〈MXOR,RXOR〉 is generated to implement the logic gate. Since there areN =

3 boolean variables, the set of molecular species consists ofsix molecular
species:

MXOR = {a, A, b, B, c, C} (11)

where the lower- and uppercase version of the variable name are assigned to
the boolean variable of that name. For example, molecular speciesa repre-
sents boolean variablea = 0, andA stands fora = 1.

The set of reaction rulesRXOR is decomposed into two parts:

RXOR = LXOR ∪ DXOR (12)

whereLXOR is a set of reactions for the logical operation andDXOR is a set
of destructive reactions. Since there is only one function in the boolean net-
work,LXOR = Lc

XOR whereLc
XOR is a set of logical reactions constructed from

the boolean functionFc. From the truth tableTc, four logical reactions are
derived:

LXOR = Lc
XOR = {a+ b → c, a +B → C, A + b → C, A+B → c}. (13)

The Hasse diagram in Figure 1 (A) shows the hierarchy of organizations of
the reaction network that includes only the logical reactionsLXOR. Twenty-
eight sets of molecular species are found to be organizations. The remaining
36 sets do not satisfy either the closure or the self-maintenance property.

The set{a, b}, for example, is not an organization because it is not closed.
The reactiona + b → c is applicable and produces a new molecular species
c that is not a member of the set{a, b}. The set{a, b, c} is closed but not an
organization because it is not self-maintaining. A production rate vectorf is
calculated as follows:

f =



















fa

fA

fb

fB

fc

fC



















= Mv =



















−1 −1 0 0

0 0 −1 −1

−1 0 −1 0

0 −1 0 −1

1 0 0 1

0 1 1 0



























v1

0

0

0









=



















−v1

0

−v1

0

v1

0



















(14)

where a stoichiometric matrixM is multiplied by the flux vectorv with
v1 > 0 satisfying the condition 1 and condition 2 from the definition of self-
maintenance. The third condition cannot be satisfied because the production
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ratesfa for molecular speciesa andfb for molecular speciesb cannot be
greater or equal than0 at the same time.

In this particular case of the reaction network, all organizations consist of
combinations of molecular species that do not react with each other. A set
of molecular species where no reaction can take place† is obviously closed
and self-maintaining. Provided that a set contains molecular species with no
reactions among them, Condition 1 of Definition 3 is automatically fulfilled.
According to Condition 2 of Definition 3, a zero flux vectorv = 0 is mul-
tiplied by the stoichiometric matrixM . The result is a zero production rate
vectorf = 0. The zero vector fulfills Condition 3 of Definition 3, and thus
all conditions for self-maintenance are satisfied.

With the species set of an organization being closed and self-maintaining,
it is more likely to observe the presence of molecular species of an orga-
nization than of any other species combination in the reaction vessel. If
the dynamics of the reaction network is modelled using ordinary differen-
tial equations, there exists a related organization for every fixed point of the
system [13].

The second part of the setRXOR is a set of destructive reactions:

DXOR = {a + A → ∅, b + B → ∅, c + C → ∅}. (15)

CombiningDXOR andLXOR the algebraic chemistry〈MXOR,RXOR〉 imple-
ments theXOR logic gate without any input specified. Its Hasse diagram
of organizations is shown in Figure 1 (B). The number of organizations is
reduced from 28 to 15.

Now we set the input variables of the boolean networka andb to initiate
the computational process. For the initialization, an inflow reaction is added
to the reaction network. We start with providing one input only, leaving the
other input variable undefined. Figure 1 (C) shows the results for the four
resulting algebraic chemistries〈MXOR, (RXOR∪{∅ → a})〉, 〈MXOR, (RXOR∪

{∅ → A})〉, 〈MXOR, (RXOR ∪ {∅ → b})〉, and〈MXOR, (RXOR ∪ {∅ → B})〉,
respectively. We can see that providing one input signal hasfurther reduced
the behavioral freedom of the reaction system. Only three combinations of
molecular species are left, which may be encountered in the reaction vessel
as a stationary state. Furthermore we can see that – in this special case –
the output is not determined from a stoichiometric point of view since, in
all four Hasse diagrams, sets containingc andC are found to be closed and
self-maintaining.

† This means that there is no reaction whose lefthand side is a subset of that set. This includes
also zero-order (influx) and first-order (e.g. dilution flow)reactions.
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FIGURE 1
Hierarchy of organizations for the chemical reaction network implementing anXOR

logic gate. (A) The network consists only of the logical reactions LXOR. (B) De-
structive reactionsDXOR are added to exclude contradictions. The resulting algebraic
chemistry〈MXOR,RXOR〉 implements theXOR logic gate without any input specified.
(C) One input is defined by adding one influx reaction. (D) Adding the second input.
The hierarchy of organizations collapses from (A) to (D), with the desired output as
the only organization left in (D).

When we finally provide both inputs, the Hasse diagram of organizations
collapses so that only one organization remains for every input condition (Fig-
ure 1 (D)). This implies that, no matter how we chose the dynamics, no other
molecular species than those of the organization can be sustained in the re-
action vessel regardless of the initial state. We can see that the remaining or-
ganization contains the desired output molecular speciesc or C, respectively.
The analyzed algebraic chemistries are〈MXOR,RXOR ∪ {∅ → a, ∅ → b}〉,
〈MXOR,RXOR ∪ {∅ → a, ∅ → B}〉, 〈MXOR,RXOR ∪ {∅ → A, ∅ → b}〉, and
〈MXOR,RXOR ∪ {∅ → A, ∅ → B}〉.

4.1 Dynamical Simulation
To validate the results from applying organization theory to theXOR reaction
network, stochastic simulations are performed using the simulator packages
MGS[15, 21] andCopasi[20].

Figure 2 shows a typical simulation run. The influx is defined as an irre-
versible constant flux with kinetic parameter set to1. For all other reactions,
we chose irreversible mass action kinetics. The parametersfor the destructive
reactionsDXOR are set tok = 0.1, and those for the logical reactionsLXOR are
set tok = 0.001. At several simulation times, the input is changed in order
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FIGURE 2
Dynamic behavior of the chemical reaction network implementing anXOR logic gate.
The time course of all 6 molecular species is shown. Irreversible mass action kinetics
are assumed for all reactions. Reaction rates are set tok = 0.001 for logical reactions.
Reaction rates of destruction reactions are set tok = 0.1. For all irreversible constant
influxes (e.g., ∅ → A), the rates are set tok = 1. The reaction system is stochastically
simulated with the biochemical network simulatorCopasi[20] using a compartment
size of 1 ml. See text for details.

to observe the switching of theXOR gate. Initially, there exist no molecular
particles in the reactor, and two influxes ofa andb are present. This corre-
sponds to the case in which both the input variablesa andb are set to0. Since
molecular speciesc is generated, the output is computed toc = 0.

At simulation time 100 s, the content of input variableb is switched to
1 by replacing the influx of molecular speciesb with the influx ∅ → B.
The molecular particlesb andc, whose concentrations are still high from the
previous computation, deteriorate and finally vanish. The desired outputC
does not appear until the time point of approximately 200 s. Then, instead
of a, the molecular speciesA is applied as an input starting from simulation
time 300 s. The remaining molecules of speciesa andC from the previous
computation decay first and the desired answerc appears in the end.

As seen from the dynamical simulation, the computational result repre-
sented by the qualitative final state of the reaction vessel is independent of
the initial state. The applied continuous input is the only factor deciding on
the final state. The output molecules are generated continuously while un-
desired species are removed from the reaction vessel by collisions with their
anti-particles. When applying two inputs, the analysis of the reaction network
revealed that only one organization exists, predicting only one species com-
position (the species of that organization) to be closed andself-maintaining,
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FIGURE 3
Results of the theoretical analysis of the chemical reaction network implementing

the logic circuit consisting of multiple gates. (A) Circuitdiagram of anAND gate
with two NAND gates. (B) The network consists of six logical reactionsLAND and
four destructive reactionsDAND . (C) An influx is added to define one input. (D)
Another inflow is added so that both inputs are defined. Despite the combination of
two chemical logic gates, only the organization containingthe desired output species
is left in (D).

and thus likely to be observed in the reactor. The stochasticsimulation con-
firms the result.

5 CASE STUDY II: MULTIPLE LOGIC GATES

Extensibility and scalability is an advantage of conventional logic gates. Mul-
tiple logic gates can be easily connected to realize different forms of computa-
tion. In this section, we demonstrate the connectivity of chemical logic gates
and scalability of the theoretical analysis. As an example,we implement an
AND and anOR gate by combiningNAND gates.

5.1 AND Gate by Connecting Two NAND Gates
An AND gate can be constructed by sequentially connecting twoNAND gates
(Figure 3 (A)). The single logicNAND gates are chemically implemented in
the same way as theXOR gate in the previous example.

The boolean network is defined by a set of four boolean variables{a, b, c, d}

and a set of two boolean functions{c = Fc(a, b), d = Fd(c)}. The firstNAND

is associated withFC and the second is withFD. The truth tableTC for the
first NAND gate has four rows. On the other hand, the truth tableTD of the
secondNAND gate has only two rows, since the functionFD requires only one
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argument. The algebraic chemistry〈MAND ,RAND〉 is constructed as follows:

MAND = {a, A, b, B, c, C, d, D} (16)

and
RAND = LAND ∪ DAND = (Lc

AND ∪ Ld

AND ) ∪ DAND (17)

where

DAND = {a + A → ∅, b + B → ∅, c + C → ∅, d + D → ∅},

Lc
AND = {a + b → C, a + B → C, A + b → C, A + B → c},

Ld
AND = {2c → D, 2C → d}.

The two reaction rules inLd
AND are equivalent to aNOT operation.

The algebraic chemistry〈MAND ,RAND〉 with six reactions and four de-
structive outflows is analyzed for organizations (closed and self-maintaining
sets of molecular species), and the result is shown as the Hasse diagram in
Figure 3 (B) depicting a hierarchy of organizations in the reaction network.
The algebraic chemistry implements theAND gate without any input speci-
fied. Initialization of input variablesa andb is represented by adding inflows
to the set of reactions. In Figure 3 (C), hierarchies of organizations in the
reaction network are shown when one inflow is provided. Hassediagrams
in Figure 3 (D) show the hierarchy of organizations in the reaction network
with two input fluxes in which both input variables are defined. The same
discussion as in the previousXOR logic gate example can be applied. When
both inputs are provided, only one organization remains forevery input con-
dition and the organization contains the desired output molecular speciesd or
D, respectively. The theoretical analysis suggests thatAND behavior emerges
regardless of an initial state and regardless of the dynamics chosen (cf. Sec-
tion 2.1).

5.2 OR Gate by Connecting Three NAND Gates
Another example of connecting chemical logic gates is anOR circuit with
threeNAND gates (Figure 4 (A)). The logic circuit can be defined by five
boolean variables{a, b, c, d, e} and three boolean functions{c = Fc(a), d =

Fd(b), e = Fe(c, d)}. The algebraic chemistry〈MOR,ROR〉 implementing
the logic circuit (without any input specified) consists of ten molecular species:

MOR = {a, A, b, B, c, C, d, D, e, E}. (18)

The set of reaction rules is

ROR = LOR ∪ DOR = (Lc
OR ∪ Ld

OR ∪ Le
OR) ∪ D (19)

15



{ }a, b, C, D, e {a, B, C, d, E} { }A, b, c, D, E }A, B, c, d, E{

0{ }

{ }

{ c} { C} { e} E{ } { d} { D}

c, E{ } }{C, e C, E}{ { d, e} d, E{ } { D, e} {D, E}c, e

c
e

a

b d
OR

,
OR = (

OR OR
)

{A, c, e} A, c, E{ }

}A, c{

B, d, E{ }}B, d, e{

B, d}{

a, C{ }

}a, C, e{ a, C, E}{ }b, D, e{ b, D, E}{

}b, D{

0 a 0 b

0 B0 A

0 0 B0 A0 b 0 a 0 A 0 b0 B

D

)( , ) ( )

A

CB

) )

()

}{
OR

(,OR

}
OR,( OR

{

}{OR(,OR

{,OR OR
)}

}a ,{{{ }, { , } , })
OR

(,OROR,OROROROR, OR
(

M R L D

R

RM

M R

RM

M

RMRMRMM R

FIGURE 4
Results of the theoretical analysis of a chemical reaction network implementing the

logic circuit consisting of multiple gates. (A) Circuit diagram of anOR gate with three
NAND gates. (B) The network consists of eight logical reactionsLOR and five destruc-
tive reactionsDOR. (C) An influx is added. (D) Two inflows are added, specifying
two input values. Despite the combination of three chemicallogic gates, only the
organization including the desired output species is left in (D).

where

Lc
OR = {2a → C, 2A → c},

Ld
OR = {2b → D, 2B → d},

Le
OR = {c + d → E, c + D → E, C + d → E, C + D → e},

DOR = {a + A → ∅, b + B → ∅, c + C → ∅, d + D → ∅, e + E → ∅}.

Given the algebraic chemistry, the reaction network is analyzed with chem-
ical organization theory and the result is shown in Figure 4 (B). In Figure 4 (C)
and (D), Hasse diagrams depicting the hierarchy of organizations in the chem-
ical reaction network including influxes are shown. As the other cases, one
inflow is not enough to determine the output since output molecular species
e andE are both found to be a member of the organizations. Defining a
value for both input variables, by adding two influxes to the reaction network,
reduces the number of organizations in the network to one, and the only or-
ganization consists of the desired combination of molecular species.

It is interesting to note that in our current implementationof a chemical
OR gate, the output is not determined by a single input flux like∅ → B

(b = 1), while inputa is unspecified (Figure 4 (C), right). Theoretically, for
b = 1 the output should be 1, independently ofa. We can now use chemical
organization theory to search for chemical networks that are also able to cope
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FIGURE 5
Analysis of a chemical reaction network implementing an RS flip-flop circuit with

respect to its emergent behavior at the systems level. (A) Circuit diagram of the RS
flip-flop. (B) Truth table describing its behavior. (C) Hierarchy of organizations of
the reaction network. (D) An influx is added to define one input. (E) Two inflows are
added, specifying two input values. The analysis using chemical organization theory
reveals that we can expect a dynamical behavior corresponding to the operation of a
flip-flop circuit. See text for details.

with unspecified inputs (not shown here).

6 CASE STUDY III: A CHEMICAL FLIP-FLOP

In this section, we apply our approach to a more complicated example: the
flip-flop logic circuit. As opposed to the previous example, aflip-flop circuit
is bistable, which is achieved by two feedback connections.When we analyze
the organizations of our chemical instantiation of the flip-flop, the bistability
of the circuit will also become apparent. This allows us to explain the dy-
namical behavior of the chemical flip-flop in terms of chemical organization
theory on an abstract level, which does not need to refer to concentration
levels.

The RS (Reset and Set) flip-flop circuit consists of twoNAND gates con-
nected in parallel as shown in Figure 5 (A). The behavior can be described
by the truth table as shown in Figure 5 (B). The output of one logic gate is
connected to one of the two inputs of the other gate, forming afeedback loop.
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The “set” operation(S̄, R̄) = (0, 1) changes the outputQ to 1, and the “reset”
operation(S̄, R̄) = (1, 0) setsQ to 0. When both inputs are set to1, the output
is kept as in the previous state. The one-bit information whether the outputQ
has been0 or 1 is stored by the “hold” operation, i.e.(S̄, R̄) = (1, 1). Nor-
mally, the input(S̄, R̄) = (0, 0) is prohibited because the circuit will go into
a state whereQ = 1 andQ̄ = 1. Application examples for the flip-flop are
memory and counter circuits.

The flip-flop logic circuit can be defined by the set of four boolean vari-
ables{a, b, c, d} and the set of two boolean functions{c = Fc(a, d), d =

Fd(b, c}. Variablesa andb are input variables for the boolean network and
the internal variables arec andd. According to the recipe described in Sec-
tion 3, the algebraic chemistry〈MRSff ,RRSff 〉 is constructed. The set of
molecular species consists of eight molecular species

MRSff = {a, A, b, B, c, C, d, D}. (20)

The set of reaction rules is composed of three sets

RRSff = LRSff ∪DRSff = (Lc
RSff ∪ Ld

RSff ) ∪ DRSff (21)

where

Lc
RSff = {a + d → C, a + D → C, A + d → C, A + D → c},

Ld
RSff = {b + c → D, b + C → D, B + c → D, B + C → d},

DRSff = {a + A → ∅, b + B → ∅, c + C → ∅, d + D → ∅}.

When we apply our analysis to the algebraic chemistry〈MRSff ,RRSff 〉

implementing the RS flip-flop without any input specified, we found 25 or-
ganizations consisting of up to two molecular species, which do not react
(Figure 5 (C)). If values of the two input variables are defined, two influxes
are added to the set of reaction rulesRRSff so that four algebraic chemistries
are analyzed〈MRSff ,RRSff ∪{∅ → a, ∅ → b}〉, 〈MRSff ,RRSff ∪{∅ →

a, ∅ → B}〉, 〈MRSff ,RRSff ∪ {∅ → A, ∅ → b}〉, and〈MRSff ,RRSff ∪

{∅ → A, ∅ → B}〉. As seen in Figure 5 (E), the number of organizations
found in the network is reduced to two or three for each input case. Since
the output speciesc, C, d, andD are in the set of the reactants, no reaction
occurs when those species are not present in the reaction vessel. Thus, the
smallest organization contains only the two inflow species.Above it, the des-
ignated output species are included in the organizations. This implies that the
presence of the output speciesc, C, d, or D in the reaction vessel is neces-
sary for the flip-flop operation. In other words, the input molecular species
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alone cannot generate the organization representing an operational mode of
the flip-flop.

The operation of the flip-flop can be described by transitionsbetween or-
ganizations containing output species: The set and reset operation move the
reaction system to the states corresponding to organization {a, B, C, d} (set)
and{A, b, c, D} (reset). Recall that for the set and reset operation we add
{∅ → a, ∅ → B} and{∅ → A, ∅ → b} to the set of reaction rules, respec-
tively.

For the hold operation (including∅ → A, ∅ → B), the flip-flop has two
stable states represented by the organizations{A, B, C, d} and{A, B, c, D}.
If the reaction vessel had been in organization{a, B, C, d} previously, it
will move into organization{A, B, C, d}; and if it had been in organization
{A, b, c, D} before, it will move into organization{A, B, c, D}. Symboli-
cally speaking, the lowercase input species is replaced by its uppercase due
to the input change, but the output state remains unchanged.

For the sake of completeness, the cases in which only one influx is added to
the network are shown in Figure 5 (D). A set of molecular species that no reac-
tion rule (including decay reaction) is applicable is an organization because no
molecular species is produced (closed) or consumed (self-maintaining). The
smallest organizations contain only the input species withthe influx. Adding
one species that does not interact with the input species forms another orga-
nization. Since adding another species makes a reaction rule applicable and
molecular species are used up with no reproduction, there exists no organiza-
tion of size greater than two.

6.1 Dynamical Simulation

In order to validate the discussion of the previous section we performed stochas-
tic simulations (usingMGS[15, 21] andCopasi[20]) of reaction systems im-
plementing the chemical flip-flop. Figure 6 shows a typical simulation run.
The influx is defined as an irreversible constant flux with kinetic parameter set
to 1. For all other reactions we chose irreversible mass action kinetics. The
kinetic parameters are set to0.1 for the second-order reactions that produce
output speciesc, C, d, orD. For destructive reactions, the kinetic parameters
are set to0.001. During the first “hold” phase (0 - 100 s), the concentration
of C andd remain high. In the following “reset” phase (100 - 200 s), the
input reactions∅ → A and∅ → b are added to “reset” the system so that
the output variablec is set to0. The concentration ofC andd decreases
gradually and speciesc andD accumulate in the reaction vessel. The sys-
tem eventually reaches a state in which only members of the organization
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FIGURE 6
Dynamic behavior of the chemical reaction network implementing a RS flip-flop logic
circuit. The top figure shows the time course of the input speciesa, A, b, andB. The
bottom figure shows the concentrations of the output species. Irreversible mass action
kinetics is assumed for all reactions. The kinetic parameters are set tok = 1 for all
zero-order reactions (e.g., ∅ → A). The kinetic parameter is set tok = 0.001 for
destructive reactions. For the other second-order reactions producing output species
c, C, d, or D, the kinetic parameter isk = 0.1. The reaction system is stochastically
simulated with the biochemical network simulatorCopasi[20] using a compartment
size of 10 ml.

{A, b, c, D} are present as expected from the algebraic analysis. In the next
phase (200 - 300 s), the input flow ofb is replaced by that ofB, ∅ → B,
to “hold” the output of the previous phase. Although the input species have
changed, no qualitative change is detected in the bottom graph. Finally, in the
last phase (300 - 400 s), the “set” operation is executed by changing the influx
∅ → A to ∅ → a. The transition to the state represented by the organization
{a, B, C, d} is observed.

Although the same input species are injected in the two “hold” phases, the
states of the reaction vessel in terms of molecular species present are different
depending on the initial conditions. The bistable behaviorof the flip-flop cir-
cuit is implemented dynamically by the chemical reaction system, which we
have expected from our theoretical analysis in the previoussection. The reac-
tion network with the two influxes∅ → A and∅ → B has two organizations
with four species: The system state in the first “hold” phase corresponds to the
organization{A, B, C, d}, and the members of the organization{A, B, c, D}

20



are present during the second “hold” phase.

7 CASE STUDY IV: AN OSCILLATOR

The final case study should elucidate how our method behaves when applied
to boolean circuits exhibiting periodic attractors. With adirect feedback, a
NAND logic gate can be configured as a controllable oscillator. Analyzing
this system shows that the two alternating states are represented by only one
organization in the corresponding chemical system. The organization is the
union of the sets of molecular species representing each of these states. We
will show that, compared to organizations representing fixed points, the orga-
nization representing an oscillation contains “contradicting” molecular pairs
like a andA.

Figure 7 (A) shows a circuit diagram of the oscillator with aNAND gate
(decomposed into anAND and aNOT gate) and a truth table describing the
oscillatory behavior. A feedback loop is formed by feeding the output from
theNOT gate to one of the inputs. The dynamical behavior has two operational
modes depending on the value of the input variablea, which is the open input
of the circuit. Whena = 0, output variabled and the linked input variableb
become1, independently of an initial value of the other variableb.

The stationary state withb = d = 1 is one operational mode of the circuit,
while the other is an oscillation between two states. Setting a = 1 causes the
output variabled and linked variableb to alternate between0 and1. Provided
thatb contained0 at timet, output variabled becomes1. Since variabled is
connected to variableb, the contents of variableb at timet + 1 is switched to
1 which isb̄ at timet. When the value ofb becomes1 at timet, variabled will
get a value of0, and so does variableb at timet + 1. Repeating the process
successively, the value of boolean variablesb andd will oscillate between0
and1 for each time step.

7.1 Chemical Implementation without Amplified Feedback

The oscillator can be defined by a set of three boolean variables{a, b, c} and
a set of two boolean functions{c = Fc(a, b), b = Fb(c)} . According to the
recipe given in Section 3, an algebraic chemistry〈Mosc1,Rosc1〉 is designed
as follows:

Mosc1 = {a, A, b, B, c, C} (22)

and

Rosc1 = Losc1 ∪ Dosc1 (23)
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FIGURE 7
Result of analyzing a chemical reaction network implementing a controllable os-

cillator using chemical organization theory. (A) Circuit diagram and the dynamical
oscillatory behavior described as a truth table. (B) Catalytic reactionsCosc2 for am-
plifying feedback signals are introduced into the set of reactionsRosc2. (C) When an
influx ∅ → A is added, a set{A, b, B, c, C, e, E} is also found to be an organiza-
tion which could be interpreted as the oscillatory behaviorsince pair-wise molecular
species (e.g., b andB) are both in the organization. The destructive reactionsDosc2

allow alternative dis-/appearance of the two species.

where

Losc1 = {a + b → c, a + B → c, A + b → c, A + B → C, c → B, C → b},

Dosc1 = {a + A → ∅, b + B → ∅, c + C → ∅}.

The algebraic chemistry〈Mosc1,Rosc1〉 implements the oscillator circuit
without inputa specified so far. Without input, there are five organizations
each containing not more than one molecular species:{∅}, {a}, {A}, {b},
and{B} As a result, there cannot be any oscillation.

The same is true, as expected, when the input variablea is initialized
to 0. In that case the algebraic chemistry is modified to〈Mosc1, (Rosc1 ∪

{∅ → a})〉. There are two organizations{a} and{a, B, c}. The latter set of
molecules corresponds to the expected (stationary) behavior of the boolean
circuit.

Fora = 1 the boolean circuit oscillates. When considering the correspond-
ing algebraic chemistry〈Mosc1, (Rosc1 ∪ {∅ → A})〉, the set{A} is found
to be the only organization. Hence, given dynamics, no matter how we ini-
tialize the reaction system, only molecules of speciesA and nothing else will
inevitably remain after some transient, and there is obviously no oscillation
possible. The reason for this behavior is that, apart from{A}, there is no set
of molecular species that is self-maintaining. The lack of self-maintenance
is due to the destruction of molecules through the reactionsb + B → ∅and
c + C → ∅, as long as there are molecules of typeb, B, c, andC left.
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7.2 Chemical Implementation with Amplified Feedback
The preceding investigation showed that the naively derived chemical sys-
tem cannot oscillate like the boolean circuit because the necessary molecular
species are not self-maintaining. A solution to this problem is to counteract
the consumption of molecules by introducing an amplification mechanism for
each periodically changing variables, as already noted in Section 3.1

We chose variableb to be amplified, which is realized by a catalytic re-
action. The new algebraic chemistry〈Mosc2,Rosc2〉 contains two additional
molecular speciese andE, which are produced instead ofb andB, respec-
tively (i.e., they replaceb andB in the previous reaction rules). Molecular
speciesb andB are now produced by catalytic reactions of the forme → e+b

andE → E + B. We can see thatb andB can now be consumed by other
reactions without causing a drain of the output of theNAND gate.

The resulting chemistry is defined as follows: the set of molecular species
is

Mosc2 = {a, A, b, B, c, C, e, E} (24)

and the set of reaction rules is

Rosc2 = Losc2 ∪ Cosc2 ∪ Dosc2 (25)

whereCosc2 is a set of catalytic reactions. The set of logical reactionsbe-
comes

Losc2 = {a + b → c, a + B → c, A + b → c, A + B → C, c → E, C → e},

and the set of catalytic reactions is

Cosc2 = {e → e + b, E → E + B}.

Since there are four pairs of molecular species in the algebraic chemistry, the
set of destructive reactions is now

Dosc2 = {a + A → ∅, b + B → ∅, c + C → ∅, e + E → ∅}.

Given the algebraic chemistry〈Mosc2,Rosc2〉 implementing the control-
lable oscillator, chemical organization theory is appliedto find organizations
in the reaction network. The result of the analysis is shown in Figure 7 (B)
as a hierarchy of organizations. The algebraic chemistry isextended by an
influx to analyze the case in which variablea is initialized to0 or 1. Figure 7
(C) shows the hierarchies of organizations found in the extended reaction net-
works. The smallest organizations for both input cases are composed of the
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FIGURE 8
Dynamical oscillatory behavior of the chemical reaction network involving a feed-

back loop as shown in Figure 7. The loop is implemented with a catalytic reaction
producing an input species using an output species as an catalyst. The upper figure
shows the dynamical concentration changes of the speciesB andb, and those of the
other species are shown in the lower figure. For all first- and second-order reactions,
irreversible mass action kinetics is assumed, and the kinetic parameter is set to0.01.
An influx is assumed as an irreversible constant flux with a kinetic parameter of0.001.
The compartment volume is set to 10 ml.

single molecular species with influx because no reaction occurs without a
feedback signal. For each input case, the biggest organizations correspond to
the operational modes of the oscillator.

When influx∅ → A is added to the reaction network, the biggest orga-
nization is the set{A, b, B, c, C, e, E}. This implies that the pair-wise
molecular species likeb andB or c andC are sustained in a reaction ves-
sel even though the two pair-wise molecules decay instantlyupon collision
due to the destructive reactions such asb + B → ∅. An interpretation of the
situation is the oscillating operational mode. Due to the amplified feedback
reaction, coexistence of the pair-wise species is now possible.

Dynamical Simulation

To confirm the interpretation of the persistence of the pair-wise species in
an organization, we stochastically simulated the reactionvessel usingCopasi
[20]. As an initial state of the reaction vessel, it is necessary to have a positive
concentration of non-input molecular species because input moleculesa and
A cannot produce anything else without other molecular species (cf. Figure 7
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(D)). We chose the concentration of molecular speciesB as approximately
25 molecules per ml. The dynamical concentration profile in thereaction
compartment is shown in Figure 8. Alternative appearance ofthe pair-wise
molecular speciesb andB in the upper graph ord andD in the lower graph
is apparent.

In general, we can say that a boolean circuit that has periodic attractors
(e.g., a circuit that can oscillate) will lead to chemical organizations that con-
tain “contradicting” molecular pairs such asb andB. Thus we can take those
organizations as indicators for oscillatory behavior. However, our theory does
not allow to say more about the nature of that oscillation. Actually, it is possi-
ble that for specific rate laws chosen, we might obtain a stationary state in the
chemical system, whereas the corresponding attractor of the boolean network
is periodic. Under which circumstance this is the case and how periodic at-
tractors appear in the light of chemical organization theory has to be studied
theoretically in more detail in the future.

8 CONCLUDING REMARKS

In this paper, we propose a theoretical analysis method thathelps to discover
and implement computing capabilities in (artificial) chemical reaction net-
works. Given a list of molecular species and a list of reaction rules, the reac-
tion network is decomposed into a hierarchy of closed and self-maintaining
sub-networks called organizations. We have shown that the hierarchy of or-
ganizations helps to assess the emergent dynamical behavior of the chemical
reaction network under study. When the approach is applied to a reaction net-
work implementing anXOR logic gate, the hierarchy of organizations helps
to predict its emergent dynamical behavior. Defining different inputs leads to
different organizations corresponding to the various states of the gate. Even
though a few of the logic gates are connected, the hierarchy of organizations is
helpful for analyzing the emergent dynamical behavior. As another example,
a flip-flop logic circuit in which twoNAND gates are connected to each other
via feedback loops is implemented by a chemical reaction network. From the
theoretical analysis, the bistability is reflected by two organizations found in
the network. Using chemical organization theory, we were able to explain the
properties of the chemical flip-flop in a new, comprehensibleway by referring
to the Hasse diagram of organizations (Figure 5). Furthermore the “construc-
tive” dynamics of the flip-flop could be described as a movement between
organizations (Figure 5 (E)). This description is more compact than a clas-
sical description referring to the 8-dimensional concentration state space, as
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demonstrated in Section 6.1.
Oscillatory behavior causes chemical organizations containing “contradic-

tory” molecular pairs such asa andA. In this light it should be noted that the
chemical system is more complex than the original boolean circuit because
an on- and off-signal can be present at the same time. Furthermore, variables
can be unspecified, e.g. representing an unspecifed “open” input. Even in
that case, the dynamics of the chemical system is well defined, as opposed to
the boolean network.

When designing a system with numerous small, extensively interacting
components, its global behavior cannot easily be predictedfrom the known
local interactions. A general theory of emergence is desirable not only for an-
alytical purposes but also for engineering such systems. Iflocal interactions
are restricted to processes that are expressible as chemical reaction rules, the
theory of chemical organization helps to determine the system’s repertoire of
potential behavior patterns. Since only network structureis considered for the
analysis, non-chemical reaction networks, e.g. social interaction networks,
can also be investigated. The encouraging results presented in this paper sug-
gest that the theory of chemical organizations is a promising candidate to
contribute to a general theoretical framework to master self-organization in
complex chemical-like information systems.
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[19] Küppers, B.O. (1990).Information and the Origin of Life. MIT Press, Cambridge, MA.

[20] Mendes group at VBI and Kummer group at EML research, (2005). COPASI: Homepage.
Retrieved May 31, 2005, fromhttp://www.copasi.org/.

[21] Michel, O., Giavitto, J.L., Cohen, J., and Spicher, A.,(2005). The MGS home page.
Retrieved Nov 14, 2005, fromhttp://mgs.lami.univ-evry.fr/.

[22] Müller-Schloer, C. (2004). Organic computing: On thefeasibility of controlled emer-
gence. InProceedings of the 2nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, CODES+ISSS2004, pages 2–5. ACM Press,
New York.
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[24] Păun, G. (2000). Computing with membranes.J. Comput. Syst. Sci., 61(1):108–143.
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