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Abstract

Chemical organization theory has been proposed to provide a new perspective to study complex dynam-
ical reaction networks. It decomposes a reaction network into overlapping sub-networks called organiza-
tions. An organization is an algebraically closed and self-maintaining set of molecular species. The set of
organizations form a hierarchical “organizational structure”, which is here a lattice. In order to evaluate
the usefulness of this approach we apply the theory to five models of immune response to HIV infection.
We found four different lattices of organizations, which can be used as a first classification of the models.
Furthermore, each organization found can be assigned to a functional state of the system. And finally,
the lattice of organizations can be used to explain a treatment strategy on a more abstract level, i.e. as
a movement from one organization into another.

Zusammenfassung

Die Theorie chemischer Organisationen eröffnet einen neuen Weg um komplexe dynamische Reaktion-
snetzwerke zu analysieren. Dazu wird das Netzwerk in überlappende Teile, Organisationen genannt,
zerlegt. Eine Organisation ist eine bezüglich der Reaktionsregeln algebraisch abgeschlossene und selbst-
erhaltende Menge molekularer Spezies. Die Menge aller Organisationen eines Systems bildet eine hier-
arische “Organisationsstruktur”. Um die Nützlichkeit diese Ansatzes zu bewerten, haben wir fünf Modelle
der Immunantwort bei HIV-Infektion untersucht. Dabei haben wir vier verschiedene Organisationsstruk-
turen gefunden, die zur Klassifikation der Modelle und ihrem potenziellen Verhalten verwendet werden
können. Jeder gefundenen Organisation konnte ein Systemzustand zugeordnet werden. Ferner kann die
Organisationsstruktur dazu verwendet werden, eine Medikationsstrategie auf einer abstrakteren Ebene
zu erklären, nämlich als Bewegung von einer Organisation in eine andere.
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1 Introduction

Biochemical reaction networks in
living cells are highly intercon-
nected. In order to tackle their
complexity, network theory has
been successfully applied in their
analysis [2]. A systematic anal-
ysis of many biological organ-
isms revealed design principles in
metabolic networks that enhance
robustness and fault-tolerance of
these systems [16]. Structural
features contributing towards ro-
bustness in biological systems are
for example feedback loops, re-
dundancy, and modularity [28].
Such properties are vital for liv-
ing organisms as they continu-
ously have to adapt to an ever-
changing environment. Because
a failure of metabolite produc-
tion can be fatal, analysis of
metabolic networks with respect
to the minimum set of reactions
necessary to maintain the produc-
tion leads to an understanding of
the fragility of the system [17].
Adaptive properties of biologi-
cal processes are structurally sup-
ported by biochemical reaction
networks [3]. Although interac-
tions within biochemical networks
also include physiological effects,
conformational change, and spa-
tial constitution (c.f. [8]), topolog-
ical features of the reaction net-
work have been emphasized for re-
liable information processing [18].
Furthermore it should be noted
that natural organisms have been
used as a source of inspiration
for implementing artifical infor-
mation processing systems [9, 10].

Precise description of the dy-
namical behavior of these systems
requires knowledge of the kinet-
ics and the parameters for each
reaction. However, several as-
pects of the dynamical behav-
ior can already be inferred from
the static structural information
of the reaction network [1]. Cor-
relations between the stability of
steady states and the stoichio-

metric matrix have been stud-
ied by Clarke [6, 7]. Under
steady state assumptions, feasi-
ble flux distributions of metabolic
networks are also obtained from
the stoichiometry information [25,
26]; and conclusions about equi-
librium states and their unique-
ness can then be drawn using
methods developed by Feinberg
and Horn [14]. Further assum-
ing a maximum bacterial growth
rate, a metabolic network recon-
structed from genome sequence
data has been tested with exper-
imental data [13]. When mod-
elling biochemical reaction net-
works with petri nets [23, 24],
the concepts of liveness, reachabil-
ity, t-invariants, and p-invariants
imply potential dynamical behav-
iors [19].

An advantage of these ap-
proaches is that kinetic parame-
ters, which are scarce in biological
data, are not required. The analy-
sis method investigated in this pa-
per and described in the next sec-
tion, operates on the same level
of abstraction. That is, an alge-
braic analysis of the reaction net-
work explains the dynamical be-
havior of the system. As a demon-
stration of how the theory con-
nects network structure with dy-
namical behavior, biochemical re-
action networks underlying HIV
immunology models are investi-
gated.

2 Chemical Orga-

nization Theory

Inspired by Fontana and
Buss [15], chemical organiza-
tion theory has been intro-
duced [11, 27] aiming at an under-
standing of dynamical complex
biochemical processes just tak-
ing stoichiometry into account.
An organization is defined as a
set of molecular species that is
(algebraically) closed and (dy-

namically) self-maintaining. The
first property, closure, ensures
that applying any reaction rule to
members of an organization gen-
erates its members only; the sec-
ond property, self-maintenance,
is a theoretical capability of an
organization to maintain all of
its members. Those two prop-
erties, independent of the type
of reaction dynamics assumed,
stabilize qualitative states of a re-
action vessel: Neither new molec-
ular species appear, nor does any
existing molecular species disap-
pear. When the theory is applied,
a reaction network is decomposed
into overlapping sub-networks,
forming a partial hierarchy of
organizations. The hierarchy is
used to describe the potential dy-
namical behavior of the reaction
system as a movement between or-
ganizations. Only stoichiometric
information is required to iden-
tify all organizations, making the
method well suited for biologi-
cal networks where kinetic data
is often scarce. In contrast to
other methods, no steady state
assumptions are made so that
dynamical behaviors of accumu-
lating mass are also considered.
Note also that using the closure
property alone can already pro-
vide a powerful tool to get insight
into the structure and function of
a large network consisting of sev-
eral thousands of compounds [12].

The organizations of the reac-
tion networks studied in this pa-
per form a lattice. A lattice is an
algebraic structure that consists
of a set of elements and two op-
erations, union and intersection;
such that given any two elements
of the lattice, both their union
and their intersection are elements
of the lattice. A lattice can be
visualized with a Hasse-diagram.
Here the vertical position of an
organization is determined by the
number of molecules it contains.
The largest organization, which
always exists in a finite lattice,
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can be found at the top of the
Hasse-diagram. At the bottom,
we can see the smallest organiza-
tion. Two organizations are con-
nected by a line if the upper or-
ganization contains all species of
the lower organization and there
is no other organization in be-
tween them. The Hasse-diagram
represents the hierarchical organi-
zational structure of the reaction
network under study.

A theorem links the dynamics
of the system with the lattice of
organizations by stating that each
fixed point of the dynamical sys-
tem is an instance of an organiza-
tion. As such the organizational
study can be used to find out
what possible sets of molecules
might be contained in a steady
state. In our example the result-
ing steady states where already
well known, and as such the re-
sults are not surprising. Yet, as
predicted, they were all instances
of organizations; practically con-
firming the possibility to use the
theory as a first analysis of a sys-
tem.

3 Results

Applying chemical organization
theory to chemical reaction net-
works reveals the organizational
structure of the model. Since
virus (HIV) dynamics are mod-
eled with a set of ordinary dif-
ferential equations (ODEs), trans-
lation of the models into a col-
lection of chemical reaction rules
is necessary. The results of ana-
lyzing five viral dynamics models
with chemical organization theory
are summarized in Table 1. The
level of abstraction increases from
left to right. Moving from right
to left requires additional infor-
mation, e.g., reaction kinetics to
construct an ODE model from the
network model. Depending on the

purpose of the model, the appro-
priate level must be chosen care-
fully. Exact quantitative analysis
of the model behavior is possible
with ODE models, but estimat-
ing kinetic parameters is critical
as pointed out in [30].

3.1 Basic Model

The HIV infection process in-
volves mainly three molecular
species: uninfected T cells x, in-
fected T cell y, and free virus par-
ticles v. Provided that the concen-
tration of each species is specified
by x, y, and v, respectively, the in-
fection dynamics can be modeled
as follows [21]:

ẋ = λ − dx − βxv

ẏ = βxv − ay

v̇ = ky − uv.

Since the deterministic ODE
model is contrived on a basis
of interactions between molecular
species, the infection process can
be represented as a form of chem-
ical reaction network. Since un-
infected T cells are produced at a
constant rate λ, molecular species
x is considered as an input species,
resulting in the reaction rule: ∅ →
x. Each species is assumed to de-
cay in the ODE model. As a re-
action rule, each species is trans-
formed into the empty set: x → ∅,
y → ∅, and v → ∅.

The infection with HIV trans-
forms an uninfected T cell x into
an infected cell y, which is denoted
by the term βxy. This interaction
can be represented by the reaction
rule: x+v → y+v. Since variable v

is not changed by that term, virus
species v is also included in the
righthand side of the reaction rule.
The last term to consider is ky

representing the virus replication
in the infected cell: y → y + v.1

Computing the closed and
self-maintaining sets of molecular

species in the HIV infection net-
works reveals the existence of two
organizations. The smaller or-
ganization consisting of only un-
infected T cell x can be inter-
preted as the state without virus
infection. The larger organiza-
tion contains all three molecular
species and corresponds to the in-
fected state. From mathematical
analysis [21] it is known that the
ODE model has two equilibrium
states. These two states corre-
spond to the two organizations of
the network. This demonstrates
that chemical organization theory
delivers a proper analysis of the
reaction network regarding its dy-
namical behavior.

3.2 CTL response

The HIV infection model is ex-
tended to include immune re-
sponses [21] by adding a new de-
cay term for the infected T cell y:

ẏ = βxy − ay − pyz

where variable z represents the
concentration of the cytotoxic
T Lymphocyte (CTL) species z.
The dynamics of CTL is given as:

ż = cyz − bz.

Upon detection of infected T cells
y, CTL proliferates at rate cyz.

In addition to the reaction
rules from the previous model, a
decay reaction for CTL z and two
further reactions are derived from
the ODE model. The collision
of infected T cell y and CTL z

can have two outcomes: annihila-
tion of infected cells (y + z → z)
or proliferation of the CTL cells
(y + z → y + 2z). Analyzing
the reaction network of nine re-
actions, the hierarchy of organiza-
tions contains three levels. The
new species z is only involved in
the largest organization. The two
lower organizations are identical

1Since infected T cell y decays and, at the same time, produces virus v, we can simply write y → v instead of two reactions. With

respect to the theory, it does not change the result.
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with the organizations of the pre-
vious model. The top organiza-
tion corresponds to the equilib-
rium of the ODE model in which
CTL immune response is contin-
uously activated. According to
a mathematical analysis [21], the
activation of the immune system
may be temporal if the concentra-
tion of the infected cell is smaller
than a threshold value. This
equilibrium with infected cells but
without immune response is con-
tained in the middle organization.
The smallest organization at the
bottom of the hierarchy represents
the state with no infection.

3.3 Memory CTL

An ODE model with four molecu-
lar species is constructed in [29]:
uninfected CD4+ T cells x, in-
fected CD4+ T cells y, CTL pre-
cursors w, and CTL effectors z.
The concentration of each species
is specified by x, y, w, and z, re-
spectively. The dynamics is as fol-
lows:

ẋ = λ − dx − βxy

ẏ = βxy − ay − pyz

ẇ = cxyw − cqyw − bw

ż = cqyw − hz.

A set of chemical reaction rules
is derived from the ODE model.
Since the virus species is omitted
in the model, the virus infection
occurs when infected cells attach
to the uninfected: x + y → 2y.
The CTL precursor differentiates
to CTL effector on contact with
virus infected T cells: y + w →
y + z, and the CTL effector kills
infected T cells: y + z → z. In
accordance with the term cxyw,
proliferation of the CTL precursor
is also dependent on both infected
and uninfected T cells: x+y+w →
x + y + 2w. Despite the changes
in the model, we found no major
differences in the reaction network

with respect to the organizational
structure.

3.4 Quiescent Cell

Since the target T cell must be ac-
tivated to be susceptible to infec-
tion, a model including the resting
cell has been analyzed in [5] and
was simplified in [4] as follows:

Q̇ = λ − dQQ − θ(v + B)Q

ẋ = sθ(v + B)Q − dx

−(1 − κ)kvx

ẏ = (1 − κ)kvx − ay

v̇ = ky − uv.

Variable Q represents the concen-
tration of quiescent cell species Q

and variable B represents the con-
centration of any other antigen B

than HIV v2. The quiescent cell is
activated by both HIV and other
antigens into an uninfected T cell
at rate θ(v + B), and the activa-
tion is written in a form of reac-
tion rules as follows: Q + v →
x+v, Q+B → x+B. Additionally,
the chemical reaction network de-
rived from the ODE model is com-
posed of the infection process by
HIV (x+v → y+v), virus prolifer-
ation (y → y+v), decay reactions,
and an influx of Q.

Analyzing the reaction net-
work with the theory of chemical
organizations reveals four organi-
zations. Since it is the quiescent
cell which has an influx, the small-
est organization is the set {Q}.
Directly above it, there are two
distinct organizations. The one
with four molecular species cor-
responds to the activation of the
quiescent cell by HIV v and the
infection of activated T cells x.
Once the quiescent cell is trans-
formed into the uninfected T cell,
the HIV infects the T cell. At the
same time, the infected T cell is
necessary for the virus to repro-
duce. Thus, the infected T cell

y is also part of the organization
so that the species set becomes
closed and self-maintaining. The
other organization indicates the
activation of the quiescent cell by
the other antigen B. Both organi-
zations contain the activated form
of the T cell x. They only dif-
fer in the antigen responsible for
the infection. The analysis using
organization theory allows to dis-
tinguish between the two infection
scenarios.

3.5 Drug Effect

Perelson et al. [22] developed a vi-
ral dynamics model to analyze the
effects of two antiretroviral drug
treatments. The reverse tran-
scriptase inhibitor, blocking the
infection with HIV, is represented
in the model as coefficient 1 − κ

(0 ≤ κ ≤ 1). High efficacy of
the drug corresponds to κ ≈ 1.
We should note that the perfect
inhibitor is represented by κ =
1, and the set {x} is the only
organization although it is im-
practical to assume perfect inhibi-
tions. The second antiviral drug,
the protease inhibitor, impairs the
protein synthesis process in the
cell with efficacy η so that infected
T cell y produces non-infectious
virus vNI : y → y + vNI . When
the inhibition failed with proba-
bility 1 − η, the HIV reproduc-
tion reaction becomes as follows:
y → y + vI where vI represents
normal infectious free virus.

Considering also the extreme
values of drug efficacy η, there are
three different networks with re-
spect to the proliferation of HIV
giving rise to three different or-
ganizational structures. In case
the drug is not applied to the
patient or does not have any ef-
fect (η = 0), only the infectious
virus is generated. This is iden-
tical case with the HIV infec-
tion model discussed before. The

2The ODE model considers also drug therapy with a reverse transcriptase inhibitor, and the efficacy of the drug is represented by

0 ≤ κ ≤ 1.
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smallest organization is the set
containing only uninfected T cell
x, and above it, free virus par-
ticle v and infected T cell y are
joined to form the organization.
By setting η = 1, perfect inhibi-
tion of the infectious virus prolif-
eration is modeled and only the
non-infectious virus is produced
from the infected T cell. The
organization corresponding to the
virus infected state is, in this
case, composed of non-infectious
virus vNI instead of the infec-
tious type. Statistically speak-
ing, however, reproduction pro-
cesses of both infectious and non-
infectious virus are present in the
dynamical reaction system, and
the efficacy parameter is set to a
value within 0 < η < 1 to model
the practical situation. If both
of the reactions are included in
the network simultaneously, the
set containing both infectious and
non-infections virus is found to be
an organization.

4 Discussion

In this study we have shown that
different models of immune re-
sponse to HIV infection possess
different lattices of organizations.
As we can see in Table 1, a lattice
provides a quick overview of the
model’s structure and its poten-
tial dynamics. We can see which
kind of species together can con-
stitute a steady state, namely ex-
actly those forming an organiza-
tion.

The difference in organiza-
tional structure (naturally) re-
flects the way the model has been
extended. For example, chang-
ing the basic model by adding the
immune response (Table 1, Row
1 and 2) results in a new orga-
nization to appear, which repre-
sents the infection antagonized by
the immune response z. Extend-
ing the model does not necessar-
ily change the lattice structure,

as shown by the CTL memory
model (Table 1, Row 3). The
intention of the modelers is to
emphasize effects of CTL mem-
ory precursor w for long-term vi-
ral load control mediated by CTL.
The ODE model is designed for a
steady state to contain both the
CTL precursor and CTL effector
z. This design principle is realized
in the organizational structure as
the largest organization to contain
both the precursor and the effec-
tor.

The fourth model is an exam-
ple for extending Model A such
that the organizations are not ar-
ranged in a chain in the Hasse di-
agram. The main concern of the
model developers is to include qui-
escent cells Q, but the reason of
the lattice structure not being in
a chain is the general antigen B

in addition to HIV virus particle
v. From the organizational struc-
ture, both antigens B and v ap-
pear with activated T cell x. Only
v of the two antigens is associated
with infected T cell y, as intended
by the model design.

Through the last model (Ta-
ble 1, Row 5), we demonstrate
how parameters could be han-
dled in the static reaction net-
work analysis. The quantity of
some parameters determines the
reaction network structure lead-
ing to different results of the static
analysis. The efficacy of pro-
tease inhibitors represented by η

is our example. Infected T cell
y probabilistically produces infec-
tious virus vI or non-infectious
virus vNI as shown in the reaction
network model of ODE Model E.
Seeing the reaction as a stochastic
process, the network structure al-
ternates between them. When an-
alyzing such a network with chem-
ical organization theory, three
cases are considered depending on
the value of η. Two of them are
described as the success and the
failure of the protease inhibitions
represented by η = 0 and η =

1, respectively. The other case
0 < η < 1 takes a probabilistic
view such that both reactions (in-
fections and non-infections virus
proliferation) occur in the whole
system. We obtained lattices that
differ only in their species compo-
sition. The other important pa-
rameter in this model κ, the ef-
ficacy of reverse transcriptase in-
hibitors, affects the results of our
analysis in a trivial way.

Here, we would like to show
that the strategy of a drug treat-
ment can be explained on a rel-
atively high (i.e. less detailed)
level of abstraction using the lat-
tice of organizations, namely as
a movement from an organiza-
tion representing an ill state to
an organization representing a
healthy state (see Ref. [20] for de-
tails). In Figure 1 two strate-
gies are illustrated for the model
of Wodarz and Nowak [29]. The
first one tries to move the sys-
tem into the smallest organiza-
tion {x}, where no virus is present
at all. An alternative strategy
may move the system into the
largest organization, where the
virus is present, but also an im-
mune system response controlling
the virus. There are drugs avail-
able that can bring down the
virus load by several orders of
magnitude. If by this procedure
the virus could be completely re-
moved, the system would move
into the smallest organization, be-
cause the set {x, w, z} is not self-
maintaining and thus the sys-
tem moves down into organiza-
tion {x}. However, it has been
observed that although the virus
load can be decreased below de-
tection limit, the virus cannot be
fully removed. Hence, after stop-
ping the treatment the virus will
reappear. Therefore, the actual
strategy described by Wodarz and
Nowak is not to move the system
into the lowest organization, but
into the highest organization. In
practice, this is achieved by apply-
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ing the drug periodically allowing
the immune defense to increase
[29].

It is important to note that
choosing the right level of abstrac-
tion depends on what should be
explained. The lattice of organi-
zations is a suitable level of ab-
straction for describing the overall
strategy. However, how an actual
drug treatment should look like in
order to move the system into the
largest organization cannot be an-
swered by chemical organization
theory. For this we have to chose
a more detailed level of abstrac-
tion, e.g., the ODE model, which
provides information on how the
system can move from one orga-
nization to another.

In summary we can conclude
from our study that the theory
of chemical organizations appears
as a useful tool, which creates a
first, rough map of the structure
and potential dynamical behavior
of a reaction system. The ob-
tained scaffold, i.e. the lattice
of organizations, can guide fur-
ther more detailed analysis, which
may study the dynamics within
or in-between organizations using
classical tools from dynamical sys-
tems theory. The results of more
detailed studies can in turn be ex-
plained and summarized with re-
spect to the lattice of organiza-
tions resulting in a global picture.
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Bild 1: Illustration of two treatment strategies. Strategy 1 tries to remove HIV entirely from the system. Strategy
2 aims at establishing a long-term CTL-mediated control of viral load.
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Tabelle 1: Three levels of model abstraction. The level of abstraction increases from left to right, and additional
information is required to lower the abstraction level. At the highest abstraction level, we take organizations (sets
of molecular species that are closed and self-maintaining) to understand and describe the dynamical behavior. See
text for details.

ODE Model Reaction Network Model Organizational Structure

A: (M. A. Nowak, C. R. M. Bangham:
Science 272, 5258 (1996), 74–79. )
ẋ = λ − dx − βxv

ẏ = βxv − ay

v̇ = ky − uv

∅ → x

x → ∅
y → ∅
v → ∅

x + v → y + v

y → y + v

{x,y,v}

{x}

B: (M. A. Nowak, C. R. M. Bangham:
Science 272, 5258 (1996), 74–79. )
ẋ = λ − dx − βxv

ẏ = βxv − ay − pyz

v̇ = ky − uv

ż = cyz − bz

∅ → x

x → ∅
y → ∅
v → ∅
z → ∅

x + v → y + v

y + z → z

y + z → y + 2 z

y → y + v

{x,y,v,z}

{x,y,v}

{x}

C: (D. Wodarz, M.A. Nowak:
PNAS 96, 25 (1999), 14464–14469. )
ẋ = λ − dx − βxy

ẏ = βxy − ay − pyz

ẇ = cxyw − cqyw − bw

ż = cqyw − hz

∅ → x

x → ∅
y → ∅
w → ∅
z → ∅

x + y → 2 y

y + z → z

y + w → y + z

x + y + w → x + y + 2 w

{x,y,w,z}

{x,y}

{x}

D: (D. S. Callaway, A. S. Perelson:
Bull. Math. Biol. 64 (2002), 29–64. )

Q̇ = ξ − fQ − θ(v + B)Q
ẋ = sθ(v + B)Q − dx

−(1 − κ)βxv

ẏ = (1 − κ)βxv − ay

v̇ = NT δy − uv

∅ → Q

Q → ∅
x → ∅
y → ∅
v → ∅

x + v → y + v

y → y + NT v

Q + v → sx + v

Q + B → sx + B

{Q,x,y,v,B}

�
�

��

HHHH
{Q,x,y,v}

{Q,x,B}

�
�
�

HHH

{Q}

E: (A.S. Perelson, et al.:
Science 271, 5255 (1996), 1582–1586. )
ẋ = λ − dx − (1 − κ)kvIx

ẏ = (1 − κ)kvIx − δy

v̇I = (1 − η)NT δx − cvI

v̇NI = ηNT δy − cvNI

P = 1 − η

∅ → x

x → ∅
vI → ∅

vNI → ∅
x + vI → y + vI

y → y + vI

P = η

∅ → x

x → ∅
vI → ∅

vNI → ∅
x + vI → y + vI

y → y + vNI

{x,y,vI,vNI}

{x}

{x,y,vNI}

{x}

{x,y,vI}

{x}

{x}

0 ≤ κ < 1, 0 < η < 1

η = 0, η = 1,
0 ≤ κ < 1 0 ≤ κ < 1

κ = 1
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