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Abstract— Biochemical information processing found in nature
is known to be robust, self-organizing, adaptive, decentralized,
asynchronous, fault-tolerant, and evolvable. A couple of ap-
proaches are already using the chemical metaphor, such as,
Gamma, MGS, amorphous computing, membrane computing,
and reaction-diffusion processors. However, in accordance with
Conrad’s tradeoff principle, programming a chemical computer
appears to be difficult. Therefore, in order to further exploit the
mentioned properties new programming techniques are required.
Here we describe how chemical organization theory can serveas
a tool for chemical programming. The theory allows to predict
the potential behavior of a chemical program and thus supports
a programmer in the design of a chemical-like control system.
The approach is demonstrated by applying it to the maximal
independent set problem. We show that the desired solutionsare
predicted by the theory as chemical organizations. Furthermore
the theory uncovers “undesirable” organizations, representing
uncompleted halting computations due to insufficient amount of
molecules. Finally we discuss an architecture for a “chemical
virtual machine”.

I. I NTRODUCTION

With respect to computation, dissimilarity between con-
ventional computers and brains can be studied in the light
of programmability and evolvability [1]. Digital computers
are the realization of a highly programmable computational
model, while the brain is not programmable or at least less
programmable. High programmability is achieved by conven-
tional computer languages, implying constraints on a system’s
operations [2]. However, evolvability is remarkably impaired
since a small random change of a program causes the system
to behave entirely differently or, in most cases, to stop working
due to invalid operations. The robustness of a deliberately
programmed systems against internal modification or even
environmental change is one of the factors organic computing
is aiming at [3]. Looking at the nature or natural organ-
isms, evolvability is inevitable to cope with the ever-changing
environment. Evolutionary processes are the main force for
biological organisms to adapt to the environmental change.
The brain model as a neural network is characterized by
the continuous evolution of connections between its neurons.
The achievement of high evolvability has contributed to the
successful existence of biological systems.

Considering any computational system, efficiency in compu-
tation is also important. For natural systems, for example,time

to process perceived information is critical. In engineering,
systems are carefully designed for fast computation and low
energy consumption. A computational system is regarded to
be programmable, evolvable or adaptable, and computational
efficient. However, Conrad’s trade-off principle [4] states that
it is impossible to achieve those three properties at the same
time at high level. Hence, outstanding achievement of com-
putational efficiency on a basis of programmable components
results in little evolutionary adaptable systems. In otherwords,
programmability is the cost for efficiency and adaptability
found in biological information processing [4]. It should be
noted that the discussion about the trade-off is rather informal
and conceptual.

Since all known life forms process information using chem-
ical processes [5], the chemical reaction metaphor has been
proposed as a source of inspiration for a novel computation
paradigm [6], [7]. In chemical computing, the solution appears
as an emergent global behavior based on a manifold of local
interactions [8]. For its heavy nonlinearity such behavior
is hard to analyze and in general impossible to predict by
methods that are more efficient than simulations (proof by
reduction to the halting problem). There is also a common
agreement that a satisfying theory of emergence is lacking [9].
Since a prerequisite for programming by construction is the
ability to predict how a chemical program (e.g., a list of
reaction rules) behaves [10], a theoretical analysis of emergent
behavior in chemical computing is necessary. This analysis
should lead to a deeper understanding of the micro-macro
link between reaction rules and resulting behavior. We have
suggested chemical organization theory [11] as a tool helping
to construct (i.e., program) and analyze (i.e., describe and
understand) chemical computing systems, which might also
contribute towards establishing a theory of (chemical) emer-
gence [12]. In this paper, we show how chemical organization
theory helps programming distributed processes of chemical
computing. The maximum independent set problem serves as
an example.

Before we briefly review chemical organization theory we
note that we are interested in approaches where chemistry
stimulates the development of new computational paradigms.
These approaches can be distinguished whether real or artifi-
cial chemistries are used.Real chemical computingemploys



real molecules and chemical processes to compute. For ex-
ample, the simplest nonlinear functionXOR can implemented
with reaction-diffusion behavior of palladium chloride [13] or
with the context sensitive enzyme malate dehydrogenase [14].
Here we focus onartificial chemical computingwhere the
chemical metaphor is utilized to program or to build electronic
computational systems. This takes the chemical metaphor as
a design principle for new software or hardware architec-
tures built on conventional silicon devices. Artificial chemical
computing, thus, includes constructing chemical-like formal
system in order to model and master concurrent processes [15],
[16], [7].

II. CHEMICAL ORGANIZATION THEORY

The target of chemical organization theory are reaction
networks. A reaction network consists of a set of molecules
M and a set of reaction rulesR. Therefore, we define a
reaction network formally as a tuple〈M,R〉 and call this
tuple an algebraic chemistry in order to avoid conflicts with
other formalizations of reaction networks.

Definition 1 (algebraic chemistry [11]):Given a setM of
molecular species and a set of reaction rules given by the
relation R : PM (M) × PM (M). We call the pair〈M,R〉
an algebraic chemistry, wherePM (M) denotes the set of all
multisets with elements fromM.
A multiset differs from an ordinary set in that it can contain
multiple copies of the same element. A reaction rule is similar
to a rewriting operation [15] on a multiset. Adopting the
notion from chemistry, a reaction rule is written asA → B
where bothA andB are multi sets of molecular species. The
elements of each multi set are listed with “+” symbol between
them. Instead of writing{s1, s2, . . . , sn}, the set is written as
s1 + s2 + · · · + sn in the context of reaction rules. We also
rewrite a + a → b to 2a → b for simplicity. Note that “+” is
not an operator but a separator of elements.

A set of molecular species is called an organization if
the following two properties are satisfied: closure and self-
maintenance. A set of molecular species is closed when all
reaction rules applicable to the set cannot produce a molecular
species that is not in the set. This is similar to the algebraic
closure of an operation in set theory.

Definition 2 (closure [17]): Given an algebraic chemistry
〈M,R〉, a set of molecular speciesC ⊆ M is closed, if
for every reaction(A → B) ∈ R with A ∈ PM (C), also
B ∈ PM (C) holds.

The second important property, self-maintenance, assures,
roughly speaking, that all molecules that are consumed within
a self-maintaining set can also be produced by some reac-
tion pathways within the self-maintaining set. The general
definition of self-maintenance is more complicated than the
definition of closure because the production and consumption
of a molecular species can depend on many molecular species
operating as a whole in a complex pathway.

Definition 3 (self-maintenance [11]):Given an algebraic
chemistry 〈M,R〉, let i denote thei-th molecular species
of M and the j-th reaction rules is(Aj → Bj) ∈ R.

Given the stoichiometric matrixM = (mi,j) that corresponds
to 〈M,R〉 wheremi,j denotes the number of molecules of
speciesi produced1 in reactionj, a set of molecular species
S ⊆ M is self-maintaining, if there exists a flux vector
v = (vA1→B1

,. . . , vAj→Bj
,. . . ,vA|R|→B|R|

)T satisfying the
following three conditions:

1) vAj→Bj
> 0 if Aj ∈ PM (S)

2) vAj→Bj
= 0 if Aj /∈ PM (S)

3) fi ≥ 0 if si ∈ S where(f1, . . . , fi, . . . , f|M|)
T = Mv.

These three conditions can be read as follows: When the
j-th reaction is applicable to the setS, the flux vAj→Bj

must be positive (Condition 1). All other fluxes are set to
zero (Condition 2). Finally, the production ratefi for all the
molecular speciessi ∈ S must be nonnegative (Condition 3).
Note that we have to find only one such flux vector in order
to show that a set is self-maintaining.

Taking closure and self-maintenance together, we arrive at
an organization:

Definition 4 (organization [11], [17]): A set of molecular
speciesO ⊆ M that is closed and self-maintaining is called
an organization.

We visualize the set of all organizations by a Hasse diagram,
in which organizations are arranged vertically according to
their size in terms of the number of their members (e.g.
Fig. 1). Two organizations are connected by a line if the lower
organization is contained in the organization above and there
is no other organization in between.

Finally, a relevant theorem from Ref. [11] states that given
a differential equation describing the dynamics of a chemical
reaction system and the algebraic chemistry correspondingto
that system, then the set of molecular species with positive
concentrations in a fixed point (i.e., stationary state), if there
exists a fixed point, is an organization. In other words, we
can only obtain a stationary behavior with a set of molecular
species that are both closed and self-maintaining.

III. A R ECIPE FORCHEMICAL PROGRAMMING

In this section we present a procedure for designing chem-
ical reaction networks solving the maximal independent set
problem (see Table I for a short recipe). Let an undirected
graphG = 〈V, E〉 be defined by a set ofN vertexes:

V = {v1, . . . , vN} (1)

and a set of edgesE. When two vertexesvp and vq are
connected, the pair of the vertexes are in the set:(vp, vq) ∈
E. Note that the order of the pair is insignificant, that is,
(vp, vq) = (vq , vp). A set of vertexI ⊂ V is independent if no
two vertexes in the set are adjacent:(∀vp, vq ∈ I : (vp, vq) /∈
E). An independent set is maximal if no vertex can be added
to the set and the set is still an independent set. A chemical
reaction system is programmed to find a maximal independent
set in an undirected graph.

1Formally, this can be defined asmi,j = #(i ∈ Bj)−#(i ∈ Aj), where
#(i ∈ Aj) denotes the number of occurrence of speciesi on the lefthand
side of reactionj and#(i ∈ Bj) the number of occurrence of speciesi on
the righthand side of reactionj.



Given the undirected graphG, an algebraic chemistry
〈M,R〉 is designed as follows. For each vertexvj , we assign
two molecular speciess0

j ands1

j representing the membership
of the vertex in the maximal independent set. The subscript
of the species name corresponds to the index number of the
vertex. High concentration, higher than a threshold chosento
be smaller than any positive coordinate of any fixed point,
of speciess1

j means that the vertexvj is included in the
maximal independent set. High concentration of speciess0

j

represents that the vertexvj is not included in the maximal
independent set. Thus the set of molecular speciesM contains
2N molecular species:

M = {s0

j , s
1

j | j = 1, . . . , N} (2)

The set of reaction rulesR is constructed by assembling
reactions for each vertex:

R =

N⋃

i=1

Ri =

N⋃

i=1

(V i ∪ N i ∪ Di). (3)

For each reaction setRi, there are three sorts of reactions. The
first two sorts are adapted from two predicates constituting
a program for any distributed processor to solve maximal
independent set problem under a central scheduler [18]. A
reaction rule to produce speciess1

i is the first:

V i = (

ni
︷ ︸︸ ︷

s0

j + s0

k + · · · + s0

l → nis
1

i ) (4)

where ni is the number of vertexes connected to vertex
vi and vj , vk, . . . , vl are these neighboring vertices, that is,
(vi, vj), (vi, vk), . . . , (vi, vl) ∈ E. The left hand side of the
reaction containsni terms, and this reaction is interpreted
as follows: When no neighboring vertex is included in the
maximal independent set, the target vertexvi should be
included in the set.

The negation of this predicate is considered by a set ofni

reactions:

N i = {s1

j → s0

i |(vi, vj) ∈ E}. (5)

This is the second type of the reactions, which produce species
s0

i from any species corresponding to the neighboring vertexes
with superscript1. This rule can be interpreted as follows: If
there exists at lease one neighboring vertex included in the
maximal independent set, then the target vertexvi should be
excluded from the maximal independent set (otherwise the
definition of the maximal independent set would be violated).
Generating speciess0

i forces vertexvi not to be included in
the set.

The last component of setRi is adestructive reaction. Since
the membership of the maximal independent set is a binary
state, the state becomes undefined when neither or both of
the species are present. In order to avoid the latter case, the
two opposite molecular species are defined to vanish upon
collision:

Di = s0

i + s1

i → ∅. (6)

TABLE I

RECIPE FOR MAPPING AN UNDIRECTED GRAPH TO A CHEMICAL

REACTION NETWORK.

Input: Undirected graphG = 〈V, E〉 whereV is a set ofN vertexesV =
{v1, . . . , vN} and E is a set of edges. When two vertexesvp and vq are
connected,(vp, vq) ∈ E.
Output: Algebraic chemistry〈M,R〉 (a set of molecular speciesM and a
set of reaction rulesR) representing the chemical program to solve maximal
independent set problem.
Algorithm:
1. For each vertexvj :
(a) Add two molecular species,s0

j ands1

j , to M;a

(b) Add onedestructive reactionof the forms0

j + s1

j → ∅ to R;
(c) Add one reaction toR of the form:

(· · · + s0

i + . . . → njs1

j )

wherenj is the number of edges connected to vertexvj and(vj , vi) ∈ E.
(d) Add a set ofnj reactions toR:

{s1

i → s0

j |(vi, vj) ∈ E}.

aAs a naming convention of molecular species in this paper, the superscript
indicates the membership for the maximal independent set.

Note that the algebraic chemistry is defined such that
molecules react only if they are located on the same vertex or
are neighbors. Thus, the resulting (artificial) chemical system
can be interpreted as a spatially distributed compartmentalized
reaction system, where a compartmentj holds only the two
chemical species representing a vertexvj , namelys0

j and s1

j

and where the topological structure of the compartments is
equivalent to the undirected graph.

Algorithms to solve the maximal independent set problem
are theoretically studied (e.g., [19]) and discussed especially
in the context of distributed processors [18], [20]. In the next
section, we exemplify how the chemical organization theory
helps to understand the potential dynamical behavior of the
chemical program for the maximal independent set problem.

IV. EXAMPLE OF CHEMICAL PROGRAMMING TO SOLVE

MAXIMAL INDEPENDENTSET PROBLEM

To demonstrate how chemical organization theory can be
used to understand the potential behavior of a chemical
program, various reaction networks are designed for specific
instances of the maximal independent set problem in accor-
dance with the recipe shown in Table I.

A. Linear graph with three nodes

Provided that an undirected graphG = 〈V, E〉 consists of
three vertexes and those vertexes are connected linearly as
shown in Fig. 1 (A):

G = 〈V = {v1, v2, v3}, E = {(v1, v2), (v2, v3)〉. (7)

Following the recipe, an algebraic chemistry〈M,R〉 is con-
structed. The set of molecular speciesM consists of six
species because the graph containsN = 3 vertexes:

M = {s0

1
, s1

1
, s0

2
, s1

2
, s0

3
, s1

3
}. (8)



Our naming convention for the species is that the subscript
of the species name is associated with the index of the graph
vertex and that the superscript stands for the membership of
the maximal independent set. For example, speciess1

2
stands

for vertexv1 is included in the maximal independent set, and
s0

2
represents otherwise for the same vertex.
For each vertexv1, v2, and v3, reaction rules are con-

structed. The destructive reactions are:

D =
3⋃

i=1

Di = {s0

1
+ s1

1
→ ∅, s0

2
+ s1

2
→ ∅, s0

3
+ s1

3
→ ∅}.

The reaction rules to produce positive membership species are
composed of three reactions:

V =
3⋃

i=1

V i = {s0

2
→ s1

1
, s0

1
+ s0

3
→ 2s1

2
, s0

2
→ s1

3
}

Finally, the non-membership species are also produced:

N =

3⋃

i=1

N i = {s1

2
→ s0

1
, s1

1
→ s0

2
, s1

3
→ s0

2
, s1

2
→ s0

3
}

The whole set of reactionsR results in:

R = V ∪ N ∪ D

= {s0

2
→ s1

1
, s1

2
→ s0

1
, s0

1
+ s0

3
→ 2s1

2
,

s1

1
→ s0

2
, s1

3
→ s0

2
, s0

2
→ s1

3
, s1

2
→ s0

3
,

s0

1
+ s1

1
→ ∅, s0

2
+ s1

2
→ ∅, s0

3
+ s1

3
→ ∅} (9)

The algebraic chemistry is analyzed for hierarchical organi-
zational structure within the reaction network. When applying
chemical organization theory (Section II), the chemical reac-
tion network is decomposed into a hierarchy of overlapping
sub-networks, called organizations. These organizationspro-
vide an overview of the potential (emergent) behavior of the
system because only a set of molecular species forming an
organization can be stable [11]. Furthermore, the dynamicsof
the system can be explained as a transition between organiza-
tions instead of a movement in the potentially more complex
state space.

In our example, the reaction network〈M,R〉 possesses five
organizations:

O = {∅, {s0

1
}, {s0

3
}, {s0

1
, s1

2
, s0

3
}, {s1

1
, s0

2
, s1

3
}} (10)

Figure 1 (B) visualizes these organizations as a Hasse diagram.
In passing we note that the organizations do not form a lattice,
because there is not a unique largest organizations.

The two largest organizations represent the two desired
solution to the maximal independent set problem, namely
“010” and “101”. This guartees that a dynamical reaction
system implementing that algebraic chemistry can have sta-
tionary states representing the desired solutions (cf. [11]) and
that other solutions that consists of species that are not an
organization can not stably exist.

Interestingly the analysis has also uncovered three smaller
organizations. These organizations represent uncompleted
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Fig. 1. Analysis of a chemical program with organization theory. (A) Graph
structure and (B) hierarchy of organizations within the chemical reaction
network for the maximal independent set problem for the linear 3-vertex
graph.
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Fig. 2. Analysis of a chemical program with organization theory. (A) Graph
structure and (B) hierarchy of organizations within the chemical reaction
network for the maximal independent set problem for the circular 3-vertex
graph.

computation due to a lack of molecules. For example, the
empty organization trivially implies: if there are no molecules
in the system, no molecule will enter the system and there
will be no computation. If we setup our chemical computing
system such that these small organizations are avoided (e.g.,
by adding enough initial molecules), the system must produce
a solution.

We can now ask whether these solutions, organizations
{s0

1
, s1

2
, s0

3
} and{s1

1
, s0

2
, s1

3
}}, are stable or whether the system,

once they have been found, might move spontaneously down
to a smaller organization below them. In general, this type
of question requires to investigate the dynamics, such as, rate
constants, in detail. Here, however, we can see already by
looking at the reaction rules that organization{s1

1
, s0

2
, s1

3
}}

must be stable, because all reactions are mass-conserving so
that the empty organization (the only organization below) can
never be reached. The situation with organization{s1

1
, s0

2
, s1

3
}}

is more complicated, because it contains also the small organi-
zations{s0

1
} and{s0

3
}. So we can not use the same argument

as before. The stability of that organization depends on the
kinetics applied (not shown here).

B. Circular graph with three nodes

The similar discussion is applicable to the circular graph
structure. For instance, three vertexes are connected as de-
picted in Fig. 2 (A) to form a circular structure. The undirected
graph can be defined as follows:

G = 〈V = {v1, v2, v3}, E = {(v1, v2), (v2, v3), (v1, v3)}〉.
(11)
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Fig. 3. Analysis of a chemical program with organization theory. (A) Graph
structure with six vertexes and seven edges. (B) The largestorganizations
within the chemical reaction network for the maximal independent set problem
for the graph. Each organization with the size of six corresponds to a solution
to the maximal independent set problem.

According to the recipe, an algebraic chemistry is constructed,
and the resulting algebraic chemistry is following:

M = {s0

1
, s1

1
, s0

2
, s1

2
, s0

3
, s1

3
} (12)

and

R = {s0

2
+ s0

3
→ 2s1

1
, s1

2
→ s0

1
, s1

3
→ s0

1
,

s0

1
+ s0

3
→ 2s1

2
, s1

1
→ s0

2
, s1

3
→ s0

2
,

s0

1
+ s0

2
→ s1

3
, s1

1
→ s0

3
, s1

2
→ s0

3
,

s0

1
+ s1

1
→ ∅, s0

2
+ s1

2
→ ∅, s0

3
+ s1

3
→ ∅, }. (13)

Analyzing this reaction network reveals seven overlapping
organizations as shown in Fig. 2 (B). The largest organizations
are composed of three species, and each species specifies the
different vertex state.

{s1

1
, s0

2
, s0

3
}, {s0

1
, s1

2
, s0

3
}, {s0

1
, s0

2
, s1

3
} (14)

Apparently, each organization corresponds to a solution to
the maximal independent set problem on this graph structure.
When vertexv1 is included in the maximal independent set,
the other two vertexes should not be in the independent set.

C. Graph with 6 vertexes

Next instance is a combination of the previous examples.
Two circular graph with three vertexes are connected as shown
in Fig. 3 (A) so that both circles and lines are contained. Since
the graph consists of six vertexes, the algebraic chemistry
holds 12 molecular species. Twenty six reactions among those
species constitute the reaction network. Within that reaction
network, there are 49 organizations in total. In Fig. 4, a whole
hierarchy of the organizations is shown, and only the largest
organizations with six species are listed in Fig. 3 (B). Focusing
on the largest organizations within the reaction network, only
the set of species representing the solution to the maximal
independent set problem is found to be the organization.

V. D ISCUSSION ANDOUTLOOK

In chemical computing, the result emerges as a macroscopic
phenomenon from many microscopic reaction events. It is, in
general, very difficult to anticipate the macroscopic behavior
from the microscopic interactions. Since programming chem-
ical reaction system is to manipulate the reaction rules in the
microscopic level, the ability to anticipate the behavior of a
program in the macroscopic level is required, however. The

Fig. 4. Hierarchy of chemical organizations within the reaction network
programmed to solve the maximal independent set problem in the graph
structure depicted in Fig. 3 (A). There are 49 organizationsin total, and
eight organizations with six species are the largest. The potential dynamical
behaviors of the reaction network to solve the maximal independent set
problem appear as the largest organizations.

micro-macro gap has to be bridged, at least partially, to allow
programming the reaction systems.

We have shown that chemical organization theory can serve
as a tool to predict the potential behavior of a chemical
program given its “microscopic” reaction rules, without the
need to know the kinetics in detail. The desired solutions tothe
maximal independent set problem appeared as organizations.
Furthermore, the organizational analysis uncovered organi-
zations representing incomplete computation due to a lack
of molecules. Chemical organization theory can now guide
further improvements of the chemical program, which aim
at reducing or even removing completely these “undesired”
organizations.

To allow not only qualitative but also quantitative evaluation
of our approach, a benchmark problem is desirable. We
envision as a (simple) benchmark a variant of the maximal
independent set problem in a sensor network scenario as
sketched in Fig. 5: In this scenario we assume that sensor
nodes are arranged linearly. Specific molecules are distributed
over the network. Then the network should self-organize such
that pairwise neighboring nodes are in different states, for
example, one class should perform a measurement at night the
other at daytime. When nodes are removed or added dynam-
ically, spontaneous reconfiguration should occur (self-repair).
The recovery time or number of acceptable perturbations can
serve as a quantitative measure of the systems performance.

For a concrete application we plan to implement a chemical
programming environment and a runtime system as sketched
in Fig. 6. It consists of a compiler that takes a high level
description of a chemical program as input. A chemical
program consists of a list of molecules and reaction rules
including kinetic laws. The compiler generates “chemical byte

2For example, a simple language where molecules are just symbols and
reaction rules are explicit transformation rules, or a morecomplex language
where molecules posses a structure and reaction rules are defines implicitly
by referring to that structure (e.g., prime number chemistry).
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Fig. 5. Scenario of a benchmark problem, where a set of sensornodes have
to differentiate such that pairwise neighbors are in different states.
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(e.g., Linux or TinyOS)
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Fig. 6. Schematic representation of architecture of the chemical programming
workbench. ChemVM: a virtual machine that is able to run a (low-level)
chemical program. Compiler: compiles a high-level chemical language to a
lower-level language that can be run on a ChemVM. ChemOS: itsmain task
is to handle input-output to other (conventional) softwareprocesses running
on the same system, or to hardware sensors and actuators. Thearchitecture
should allow to “plug in” different compilers, which may compile the same
program to different virtual machines, e.g., a deterministic or a stochastic
machine.

code”, which can be processed by the chemical virtual ma-
chine. The advantage of the compilation step is that different
chemical languages2can be run on the same virtual machine.
The virtual machine requires some input-output functionality,
which is partly taken from the underlying operating system.
Special communication between the chemical program and
other hardware, such as sensors or actuators, is handled by
the ChemOS (chemical operating system).

The sketched architecture and the theoretical approach ex-
emplified along the maximum independent set problem should
lead to a practical framework for “chemical programming”.
By doing so, we expect to make available a technology that
allows to create computational systems with the propertiesof
their biological counterpart.
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