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Abstract

As artificial life is the study of life as it could
be, artificial chemistry can be seen as the study
of chemistry as it could be. In such systems
molecules interact to generate new molecules, pos-
sibly different from the original ones. Here, we will
focus on a general theoretical approach to study
artificial chemistries. In this approach we con-
sider the set of all possible organisations (closed
and self-maintaining sets) in an artificial chem-
istry. As was shown in [2, 3] this set generates
a lattice. We consider the dynamical movement
of a system in this lattice, under the influence of
its inner dynamic and random noise. We notice
that some organisations, while being algebraically
closed, are not stable under the influence of ran-
dom external noise. While others, while being al-
gebraically self-maintaining, do not dynamically
self-maintain all their elements. This leads to a
definition of attractive organisations.

1 Introduction

Artificial chemistries (AC) are a way to model
natural systems. They have been used to model
chemical systems, biochemical, ecological, socio-
logical, and linguistic systems (refs. in [1]).
With the term artificial chemistry we refer to a

system that can be described by three parts: the
moleculesM, the operation ⊕, and the dynamic.
The molecules are a set of elements1. Depending
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1Not to be confused with chemical elements.

on the modelling aim, those elements can repre-
sent atoms, real molecules, animals, communica-
tion symbols, etc. Common in all those systems
is that from the interaction of those elements new
elements are generated. From this follows that in
artificial chemistries the operation (the exact law
that describes, given a set of interacting elements
what comes out) is also important. In mathemati-
cal terms, ifM is the set of all possible molecules,
the operation is a reaction that (usually) goes from
⊕ :M×M−→M∪{∅}. In other words the op-
eration does not need to return a molecule for all
possible couples. Some couples do not react, thus
are called elastic. Some artificial chemistries use
a more general product, where the product takes
more than two elements, or returns more than one
element. The last important element in an AC is
the dynamic. The dynamic is an algorithm or for-
mal system that specifies how the molecules are to
be handled. In general the molecules are consid-
ered to live in a reaction vessel (e.g., a multiset,
which is a set where the same element can appear
multiple times). This reaction vessel is often called
the soup or population, but the exact procedure
that governs how the soup should be handled may
vary from interaction to interaction. For example
the soup could be a well stirred reactor, or from
another medium. The dynamic also describes how
the new molecule should enter the soup. Should
they substitute the interacting ones, should they
just be added to the set of existing molecules, or
should they substitute another molecule randomly
taken from the soup. In this paper we will not
focus on a particular system, but we will investi-
gate some characteristics common to many artifi-



cial chemistries. A similar work was presented in
the German Workshop on Artificial Life 2000 [3].
This work is set as a short general presentation
of the field of artificial chemistries, as well as a
deepening of that work.

2 Static Theory

If we consider only the set of molecules, along with
the operation we can define two basic algebraic
structures: closed and self-maintaining sets.

A closed set C is a set of molecules such that
∀ a, b ∈ C, a⊕b ∈ C. A self-maintaining set is a
set of molecules such that ∀ a ∈ C, ∃ b, c ∈ C such
that b ⊕ c = a. Closed sets are sets of molecules
that cannot generate anything outside themselves.
Self-maintaining sets are sets of molecules where
each molecule can be generated by at least one
interaction between the elements of the set. The
concept of closure and self-maintainance are not
mutually exclusive, in fact: let O be a closed and
self-maintained set, we define O as an organisa-

tion.

Given a set S, S ⊂ M, it is always possible
to generate its closure Gc(S) [3]. Gc(S) will be
the smallest closed set containing S. To generate
the closure of a set we expand it by interacting
the molecules of the set and adding to the set any
newly generated molecule. When no new molecule
is generated the set is closed.

Given a set S, S ⊂ M, it is always possible to
define its biggest self-maintaining subset [3]. We
define this as the self maintaining set Gsm(S) gen-
erated by S . To generate Gsm(S) we contract S
by eliminating one by one each molecule that can-
not be generated from any possible reaction in S.
When no element can be eliminated the set is self-
maintaining. Note: if S is closed, then Gsm(S) is
closed too.

From the last property follows that given any set
S, S ⊂ M, it is always possible to define the or-
ganisation it generates [3]: Go(S) ≡ Gsm(Gc(S)).
Of course if O is an organisation Go(O) = O. The
organisations are the fixed points of the “generate
organisation operator” Go.

Given two organisations U and V , the organisa-
tion generated by their union (U t V ) and inter-
section (U u V ) is uniquely defined:

U t V ≡ Go(U ∪ V ), U u V ≡ Go(U ∩ V ).

Let us now consider the set of all organisations

O in an artificial chemistry, along with the op-
erations organisation-union (t) and organisation-
intersection (u). 〈O,t,u〉 form a common alge-
braic structure called, a lattice.
Example. Let us consider an artificial chemistry

composed of 10 molecules M = {0, 1, ..., 9}. The
reaction network can be written as a table, where
an entry ri,j denotes the interaction result of i⊕j.
A ”-” denotes an elastic collision (an interaction
that does not produce any molecule):

0 1 2 3 4 5 6 7 8 9

0 - 0 - - - - - 6 - -

1 2 - - 5 - - - - - -

2 - - - 1 - - - - - 0

3 5 - - 0 - - - - - 1

4 8 - 6 6 4 - 8 4 8 5

5 - - - 1 - 9 - - - 8

6 - 8 0 - - - - 7 2 -

7 - 5 - - - 5 - 9 - -

8 1 2 9 1 - 6 3 - - 2

9 0 8 - 0 3 - 6 - 0 0

This AC holds exactly 9 organisations:
∅, {4}, {4, 8}, {0, 6, 7, 9}, {0, 1, 2, 8, 9},
{0, 1, 2, 3, 5, 6, 8, 9}, {0, 1, 2, 3, 5, 6, 7, 8, 9},
{0, 1, 2, 3, 4, 5, 6, 8, 9}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Its lattice of organization is shown in Fig. 1, left.

3 Dynamics

The static theory deals with moleculesM and re-
action rules ⊕, but not with time. Now we add dy-
namics, which describes how the AC evolves over
time. In general, the dynamics is given by a state

space X and a formal definition (mathematical
or algorithmical) that describes all possible move-
ments in X. Given an initial state ~x0 ∈ X, the
formal system (or algorithm) describes how the
state changes over time. A state ~x ∈ X represents
the state of a reaction vessel (or reaction space),
that contains molecules fromM.

Example: X = R10, ~x = (x0, x1, . . . , x9), xi de-
notes the concentration of molecular type i in the
reaction vessel presented before.

Dynamics can be introduced in different ways,
for example, by an ordinary differential equation
(ODE) or by a stochastic simulation where every
single molecular collision is simulated explicitly.

Example: We use an ODE to describe how the
state ~x evolves over time. The dynamics is given
as dxk/dt =

∑
i,j∈M αk

i,jxixj − xkΦ(~x), with the

dilution flow Φ(~x) =
∑

i,j,k∈M αk
i,jxixj and rate

constant αk
i,j = 1 if i⊕ j = k, otherwise αk

i,j = 0.
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Figure 1: Left: Example of a lattice of organisations with up and down-links. Right: Simulation
starting in organisation {0, 6, 7, 9} with molecule 1 added in small quantity.

In order to connect the dynamics to the static
theory we have to map a state, in the dynami-
cal system, to a set of molecules, used to derive
the algebraic organisation we are in. To do this
we apply a threshold θ and consider present only
the molecules above θ. We can define this as an
operator fMol : X → 2M that defines the set of
molecules that are present in the state x. Once
defined fMol, we apply the generate organisation
operator GO to derive the present organisation
GO(fMol(~x)) = O ∈ O. Note that at each time
the system is exactly in one organisation. We can
also define the set of all states of an organisation
O ∈ O: XO = {~x|~x ∈ O}.

3.1 Stability and Movement in the

Space of Organisations

There are different ways how a system can move
from one organisation to another. Basically there
are two fundamental types of movements: (1) a
movement caused by the internal dynamics, e.g.,
given by the ODE, and (2) a movement caused by
a “constructive” disturbance (perturbation). Ac-
cordingly, we can also distinguish two types of sta-
bility: (1) stability within an organisation, and
(2) stability against new molecules which are not
coming from the organisation.
From an algebraic point of view we say that

an organisation is stable, because it is closed and
every molecule of the organisation is produced by
at least one reaction among molecules inside the
organisation. This does not necessarily mean that
it is stable from a dynamic point of view.

In order to display a movement in the lattice
of organisations, we consider three types of links
between organisations: down-link, up-link, and a
neutral link. A down-link is related to movement
and stability type (1). An up-link is related to
movement and stability type (2). A neutral-link
is a link between organisations that is neither an
up-link nor a down-link. We say that there ex-
ists a down-link from organisation O1 to O2,
O2 ⊂ O1, if there exists a trajectory starting in
O1 that would lead to a state in O2. We say that
there exists an up-link from organisation O1 to
O2, O1 ⊂ O2, if there exists a trajectory starting
from a perturbed state ~x of the original organisa-
tion (~x = ~xO + ~xε, ~xO ∈ O1) that would lead to a
state in O2 for tÀ 0. The perturbation is caused
by new molecular types fromM\O1.

The dynamic stability of an organisation de-
pends on whether a trajectory that is starting
within the organisation remains there, or whether
it “drops” to an organisation below, or it leaves
the organisation by a “constructive” perturbation,
such as mentioned above. We call an organi-
sation attractive, if there exists a constructive
neighbourhood such that all trajectories starting
in that neighbourhood tend to the organisation
for t → ∞. We call an organisation stable, if
for all neighbourhoods U ∗ containing O, there ex-
ists a constructive neighbourhood U , such that all
trajectories starting in U are contained in U ∗.

Example: In the example above, we consider
those “constructive” perturbations where only one
new molecular type appears:



~xε = (0, . . . , 0, δ, 0, . . . , 0), δ > 0.

In Fig. 1 we can see 3 down-links, 4 up-links,
and 4 neutral links. The organisation {0, 1, 2, 8, 9}
is clearly attractive and its basin of attraction
touches every other organisation.

4 Conclusion

Artificial chemistry research has mainly concen-
trated in producing particular systems, to recre-
ate and study particular natural systems or to
study the behavioural spectrum of abstract reac-
tion systems [1]. An exception on this was the
work of Fontana and Buss [2], where a more gen-
eral position was taken, and the general problem
of study systems whose reaction can generate new
component was faced. This lead to the definition
of organisation, and its use to face large ODE.
Normally only few ordinary differential equations
are solvable. This number decreases rapidly as
the size of the system grows. If we are interested
in studying an artificial chemistry we might not
be able to solve its general ODE system. In this
context the concept of organisation becomes im-
portant. An organisation is an independent sub-
system and in absence of an external input, the
system will remain bounded in the organisation.
As such can be studied more easily than in the
general case. This was part of the results of the
Fontana/Buss work. The work was expanded in
[3], where the concept of union, intersection and
lattice of organisations were introduced. This per-
mitted to address, from an algebraic point of view,
the concept of what happens when two organisa-
tions interact.

Here we deepened the study by adding the dy-
namic. In our study we observed that often or-
ganisations are not stable, and the system slides
(move) to a simpler one. This knowledge can,
again, be used to focus the study only to the sim-
pler system, ignoring the complex, unstable ones.

Of course to gather the data for a particular
AC we need to confront ourselves with the sys-
tem of equations in their more general form. But,
interestingly, we do not need to completely solve
them. We can in fact study the down-links from
the more complex organisations through a statisti-
cally meaningful set of starting points. This would
lead us to the really stable sub-systems, to solve
which we can finally apply all our resources and

creativity.
Often AC include an external input of random

noise. This noise can represent mutations; slow,
non catalytic, spontaneous chemical reactions; a
physical external input; etc. In all those cases the
system, which has reached a simpler organisation
through the previously explained down-links, has
to interact with a new impulse, often being in this
way sent to a different basin of attraction, and
through other down-links to a different organisa-
tion. This type of dynamic is quite common in
evolution, where a random impulse acts upon a
stable situation, causing a global change and the
movement to a different attractor.
We observed this behaviour, again from a dis-

embodied prospective, looking at all the possible
simple (1 molecule) disturbance. We discovered
that the system were often attracted to very few,
stable states, and to fewer organisations (one in
the example presented). This lead us to suggest
that the evolutionary stochastic approach, where
periods of natural evolution are alternated with
random external influences, is a good way to find
the attractors in an artificial chemistry too com-
plex to be analytically solved.
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