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Abstract

In this article, we want to find a map u : Ω→ Rn solving, in Ω, the equation

u∗ (H) = G i.e. (Du)tH (u)Du = G

and coupled, on ∂Ω, either with the Dirichlet-Neumann problem

u = ϕ and Du = Dϕ

or the purely Dirichlet problem
u = ϕ

where Ω ⊂ Rn is a bounded open set, G,H : Rn → Rn×n and ϕ : Ω → Rn are given. We
discuss the case where G and H are not necessarily symmetric or skew-symmetric, but have
invertible symmetric parts.

1 Introduction

1.1 Statement of the problem
Given Ω ⊂ Rn a bounded open set, G,H : Rn → Rn×n and ϕ : Ω → Rn, we wish to find a map
u : Ω→ Rn solving, in Ω, the equation

u∗ (H) = G i.e. (Du)
t
H (u)Du = G

and coupled, on ∂Ω, either with the Dirichlet-Neumann problem

u = ϕ and Du = Dϕ

or the purely Dirichlet problem
u = ϕ.

We establish existence, uniqueness and regularity of solutions of both problems; see Theorem 15
and Corollary 17 for the first one and Theorem 18 and Corollaries 20 and 22 for the second one.
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1.2 Some consequences
An important feature of our results is that we do not assume that G and H are either symmetric or
skew-symmetric, but, however, they have invertible symmetric parts. An immediate observation
is that the differential equation decouples into

(Du)
t
HsDu = Gs and (Du)

t
HaDu = Ga (1)

where the indices s and a denote the symmetric and skew-symmetric parts of a general matrix.
The above observation can be formulated differently and in a more striking way. Given symmetric
matrices Hs , Gs and skew-symmetric ones Ha , Ga , we will find, under appropriate conditions, u
solving simultaneously the two equations in (1).
Another interesting observation is that we will be able to find a diffeomorphism u : Ω → Ω

solving the equation (Du)
t
HDu = G and satisfying the very strong boundary condition

u = id and Du = In i.e. u = id and ∂νu = ν

i.e. solving simultaneously the Dirichlet and the Neumann problems. Such a map will be called a
buckling diffeomorphism; note that they form a subgroup of the group of diffeomorphisms.

1.3 Some motivations
A natural problem in differential geometry is to determine under which conditions a given tensor
field G is equivalent, under a diffeomorphism, to a constant tensor field H. The tensor field G is
understood here as a covariant 2−tensor, that is the bilinear form

G ∼
n∑

i,j=1

gij (x) dxi ⊗ dxj .

The pullback equation u∗ (H) = G reads in coordinates as
n∑

k,l=1

hkldu
kdul =

n∑
i,j=1

gij (x) dxidxj

or, in matrix form,
(Du)

t
HDu = G.

Two main cases have received considerable attention.
- G and H (essentially H = In , the identity matrix) are symmetric. This problem is of

fundamental importance in Riemannian geometry, where one wants to determine if a given metric
(gij) is globally isometric to the standard Euclidean metric. The boundary condition u = id means
that the given metric coincides with the Euclidean one on ∂Ω. A particular case of this problem
can be reformulated in terms of elasticity; there G is the so called Cauchy-Green tensor. The
geometrical problem finds its origins in the work of Riemann.
- G andH are skew-symmetric; in geometry they represent differential 2−forms. If the forms are

non-degenerate and closed, they are then called symplectic forms. The equivalence of symplectic
forms is of fundamental importance in symplectic geometry and its study finds its origins in the
work of Darboux.
An important difference, from the point of view of partial differential equations, between the

two cases is that the first one is elliptic and not the second one (see Proposition 32; a way to
remedy to the absence of ellipticity, in the skew-symmetric case, can be found in [10]). This
leads to uniqueness and straightforward regularity results in the symmetric case. However when
the matrices are skew-symmetric, the regularity is much more involved and there is strong non-
uniqueness.
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1.4 The linear problem
We conclude this introduction by briefly discussing the linearized problem. It has also been much
studied; see, for example, [5] or [6, Theorem 6.18 when H = In]. It reads as

HDu+ (Du)
t
H = G.

Upon setting v = H u, the linearized equation becomes when H and G are symmetric, respectively
skew-symmetric

Dv + (Dv)
t

= G respectively Dv − (Dv)
t

= G

which behave very differently from the point of view of necessary conditions, uniqueness and
regularity, the first one is again elliptic contrary to the second one, which is nothing else than
Poincaré lemma for 1−forms.

2 Notations and preliminaries

2.1 Notations
We use the following notations in this article.

(i) Let A ∈ Rn×n.
- For every i, j = 1, · · · , n, Aij denotes the (i, j)-th element of A. Furthermore, we write Ai,∗ and
A∗,j to denote the i-th row and j-th column of A respectively.

- We denote the symmetric and skew-symmetric parts of A by As and Aa respectively, namely

As =
1

2

(
A+At

)
and Aa =

1

2

(
A−At

)
.

(ii) {e1, · · · , en} denotes the standard orthonormal basis of Rn. For a, b ∈ Rn, we denote the scalar
product by 〈a; b〉 .
(iii) Let a, b ∈ Rn. The tensor product of a and b is denoted by a⊗ b. Note that (b⊗ a) = (a⊗ b)t .
Furthermore, for every A ∈ Rn×n and a, b, c ∈ Rn, the following relations are easy to verify

(a⊗ b) c = a 〈b; c〉 , A (b⊗ c) = Ab⊗ c, (b⊗ c)A = b⊗Atc.

2.2 Preliminaries
We begin with the definition of Christoffel symbols and recall some of their basic properties. In
the present section Ω ⊂ Rn stands for a given open set.

Notation 1 Let G =
(

(gij)1≤i,j≤n

)
∈ C (Ω;Rn×n) be symmetric and non-degenerate. We write

[G (x)]
−1

=
((
gij (x)

)1≤i,j≤n)
for every x ∈ Ω.

Definition 2 (Christoffel symbols) Let G =
(

(gij)1≤i,j≤n

)
∈ C1 (Ω;Rn×n) be symmetric and

non-degenerate. We define

(i) Christoffel symbols (of the second kind): for every i, j, k = 1, · · · , n,

Γjik =
1

2

n∑
p=1

gjp (∂igkp + ∂kgip − ∂pgik) in Ω.
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(ii) Christoffel matrices: for every i = 1, · · · , n,

(Γi)jk = Γjik in Ω, for every j, k = 1, · · · , n.

Remark 3 (i) It is very convenient to see the set of Christoffel matrices {Γ1, · · · ,Γn} as a 1−form
over the set of matrices, i.e.

Γ =

n∑
i=1

Γi dx
i ∈ Λ1

(
Ω;Rn×n

)
.

This form is called the Levi-Civita connection of G. In particular, if Γ,∆ ∈ Λ1 (Ω;Rn×n) , then

dΓ =
∑

1≤i<j≤n
(∂iΓj − ∂jΓi) dxi ∧ dxj ∈ Λ2

(
Ω;Rn×n

)
∆ ∧ Γ =

∑
1≤i<j≤n

(∆iΓj −∆jΓi) dx
i ∧ dxj ∈ Λ2

(
Ω;Rn×n

)
.

(ii) The matrix valued 2−form
R (G) = 2 (dΓ + Γ ∧ Γ)

is called the Riemann-Christoffel curvature tensor associated with G.

We state few classical elementary properties of Christoffel symbols; see pages 213 and 186-187
in [17].

Lemma 4 (Ricci lemma) Let G =
(

(gij)1≤i,j≤n

)
∈ C1 (Ω;Rn×n) be symmetric and non-degenerate.

Then, for every i, j, k = 1, · · · , n and in Ω,

(i) Γkij = Γkji

(ii) dG = ΓtG+GΓ i.e. ∂kG = (Γk)
t
G+GΓk .

Proposition 5 Let H ∈ Rn×n be constant, symmetric and invertible. Let u ∈ C2 (Ω;Rn) be such
that detDu (x) 6= 0, for every x ∈ Ω, and G ∈ C1 (Ω;Rn×n) be defined, in Ω, as

G = F tH F with F = Du.

The Christoffel matrices {Γ1, · · · ,Γn} (i.e. Γ is the Levi-Civita connection of G), in addition to
the properties of Lemma 4, satisfy the following two conclusions.

(i) dF = F Γ, i.e.

∂iju =

n∑
r=1

Γrij∂ru, ∀ i, j = 1, · · · , n

or equivalently

Γkij =

〈(
(Du)

−1
)
k,∗

; ∂iju

〉
= Γkji , ∀ i, j, k = 1, · · · , n.

(iii) dΓ + Γ ∧ Γ = 0, i.e.

∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = 0, ∀ i, j = 1, · · · , n.

4



3 Global Frobenius theorem

3.1 Cauchy problem for Pfaff system
In the sequel we write x = (x′, xn) = (x1 · · · , xn−1, xn) ∈ Rn−1×R and, for p = (p′, pn) ∈ Rn−1×R,

Cr,ε (p) = Br (p′)× (pn − ε, pn + ε) =
{

(x′, xn) ∈ Rn−1 × R : |x′ − p′| < r and |xn − pn| < ε
}
.

We start by defining the meaning of sets with Lipschitz boundary.

Definition 6 A bounded open set Ω ⊂ Rn is said to have Lipschitz boundary, if for every p =
(p′, pn) ∈ ∂Ω, there exist r, ε > 0 and a Lipschitz function ϕ : Br (p′) ⊂ Rn−1 → (pn − ε, pn + ε)
such that, upon rotation and relabeling of coordinate axes if necessary,

Ω ∩ Cr,ε (p) = {x ∈ Cr,ε (p) : xn < ϕ (x′)} and ∂Ω ∩ Cr,ε (p) = {x ∈ Cr,ε (p) : xn = ϕ (x′)}

i.e. ∂Ω ∩ Cr,ε (p) = {(x′, ϕ (x′)) : x′ ∈ Br (p′)} .

Remark 7 A direct consequence of the definition is (cf., for example, Lemma 10.4 in [2]) that a
Lipschitz domain has the following property (in geometry, sometimes, such a domain Ω is said to
be quasi-convex or to have the geodesic property). There exists C1 = C1 (Ω) > 0 such that, for
every x, y ∈ Ω, there exists αxy ∈ C0,1 ([0, 1] ; Ω) , satisfying

αxy (0) = x, αxy (1) = y and L (αxy) :=

∫ 1

0

∣∣α′xy (t)
∣∣ dt 6 C1 |x− y| .

The following theorem extends classical results by proving existence, uniqueness and regularity
(with estimates) up to the boundary. The theory was initiated by Pfaff and further developed by
Jacobi, Clebsch, Frobenius, Darboux and E. Cartan. We refer to [15] for a history of the subject.
The sharper regularity result, (i.e. by considering continuous Γ) is due to Hartman and Wintner
[14] and [13] (for a more recent presentation see [6] or [7]).

Theorem 8 Let r ≥ 0 be an integer, Ω ⊂ Rn be open, bounded, simply connected with Lipschitz
boundary and x0 ∈ Ω, F 0 ∈ Rn×n. Let Γ1, · · · ,Γn ∈ Cr

(
Ω;Rn×n

)
satisfy in Ω

dΓ + Γ ∧ Γ = 0 i.e. ∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = 0, ∀ i, j = 1, · · · , n. (2)

There exists a unique F ∈ Cr+1
(
Ω,Rn×n

)
such that F (x0) = F 0 and in Ω

dF = F Γ i.e. ∂iF = F Γi for every i = 1, · · · , n. (3)

Furthermore the following properties hold.

(i) The rank of F is constant, i.e.

rankF (x) = rankF 0, for every x ∈ Ω.

(ii) If F 0 ∈ GLn (R) , then (2) is also necessary.

(iii) For every integer r ≥ 0, there exist constants cr , depending only on Ω, such that∥∥F − F 0
∥∥
C0 ≤ c0

∣∣F 0
∣∣ ‖Γ‖C0 exp {c0 ‖Γ‖C0}∥∥F − F 0

∥∥
Cr+1 ≤ cr+1

∣∣F 0
∣∣ (1 + ‖Γ‖rCr ) ‖Γ‖Cr exp {c0 ‖Γ‖C0} .
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Remark 9 When r = 0, the condition (2) has to be understood in the weak sense, i.e., for every
ψ ∈ C1

0 (Ω;Rn×n) and for every 1 6 i < j 6 n, the following holds∫
Ω

[(−∂iψ Γj + ∂jψ Γi) + ψ (ΓiΓj − ΓjΓi)] = 0. (4)

Note that (4) is equivalent to∫ bj

aj

[Γj ]xi=ai,bi dxj −
∫ bi

ai

[Γi]xj=aj ,bj dxi +

∫ bi

ai

∫ bj

aj

(ΓiΓj − ΓjΓi) dxidxj = 0,

for every 1 6 i < j 6 n and every x ∈ Ω with ai < xi < bi , aj < xj < bj and
∏n
i=1 [ai, bi] ⊂ Ω,

where

[Γj ]xi=ai,bi = Γj (x1, · · · , xi−1, bi, xi+1 · · · , xn)− Γj (x1, · · · , xi−1, ai, xi+1 · · · , xn) .

Another way of writing the above condition is∫
∂R

Γ +

∫∫
R

Γ ∧ Γ = 0

for any oriented two dimensional rectangle R with sides parallel to the coordinate axis.

Proof The existence and uniqueness part, in the interior of the domain Ω, is in Corollaries 6.1
and 6.2 of Chapter VI of Hartman [13].
Step 1 (existence and regularity). Let us prove the existence of the solution with regularity up

to the boundary. We consider two cases.
Case 1: x0 ∈ Ω. Using the result of [13], we find a unique F ∈ Cr+1(Ω;Rn×n) satisfying

dF = F Γ, in Ω and F (x0) = F 0. (5)

We show that F ∈ Cr+1
(
Ω;Rn×n

)
. As Ω is Lipschitz, there exists C1 = C1 (Ω) > 0 such that, for

every x, y ∈ Ω, there exists αxy ∈ C0,1 ([0, 1] ; Ω) , satisfying

αxy (0) = x, αxy (1) = y and L (αxy) :=

∫ 1

0

∣∣α′xy (t)
∣∣ dt 6 C1 |x− y| (6)

We establish the regularity of F in two sub-steps.
We first prove that F is bounded. More precisely, for some C2 = C2 (Ω) > 0,

|F (x)| 6 C2 , for every x ∈ Ω. (7)

Indeed, for every x ∈ Ω and t ∈ [0, 1] , using (5), we have

F (αx0x (t)) = F 0 +

∫ t

0

d

dτ
[F (αx0x (τ))] dτ = F 0 +

n∑
k=1

∫ t

0

∂kF (αx0x (τ)) [αx0x]
′
k (τ) dτ

= F 0 +

n∑
k=1

∫ t

0

F (αx0x (τ)) Γk (αx0x (τ)) [αx0x]
′
k (τ) dτ.

Therefore, for every x ∈ Ω and t ∈ [0, 1] ,

|F (αx0x (t))| 6
∣∣F 0
∣∣+

n∑
k=1

∫ t

0

|F (αx0x (τ))| ‖Γk‖C0

∣∣[αx0x]
′
k (τ)

∣∣ dτ
6
∣∣F 0
∣∣+M

√
n

∫ t

0

|F (αx0x (τ))|
∣∣α′x0x (τ)

∣∣ dτ,
6



where M = max16k6n [‖Γk‖C0 ] . Using Grönwall inequality and (6), we get, for every x ∈ Ω,

|F (x)| = |F (αx0x (1))| 6
∣∣F 0
∣∣ exp

{
M
√
n

∫ 1

0

∣∣α′x0x (τ)
∣∣ dτ} =

∣∣F 0
∣∣ exp

{
M
√
nL (αx0x)

}
6
∣∣F 0
∣∣ exp

{
M
√
nC1 |x0 − x|

}
6
∣∣F 0
∣∣ exp

{
M
√
nC1 diam Ω

}
:= C2(Ω) = C2

and thus
|F (x)| 6 C2 :=

∣∣F 0
∣∣ exp

{
M
√
nC1 diam Ω

}
(8)

which proves (7). Hence, F is bounded.
We next show that F is Lipschitz, i.e. for some C3 = C3(Ω) > 0,

|F (x)− F (x)| 6 C3 |x− y| , for every x, y ∈ Ω. (9)

Indeed, for every x, y ∈ Ω, using (5),

F (y)− F (x) =

∫ 1

0

d

dτ
[F (αxy (τ))] dτ =

n∑
k=1

∫ 1

0

∂kF (αxy (τ)) [αxy]
′
k (τ) dτ

=

n∑
k=1

∫ 1

0

F (αxy (τ)) Γk (αxy (τ)) [αxy]
′
k (τ) dτ.

Hence, as F is bounded, it follows from (6) and (7) that, for every x, y ∈ Ω,

|F (y)− F (x)| 6 C2M
√
nL(αxy) 6M C1C2

√
n |x− y| = C3 |x− y| (10)

where C3 = C3(Ω) = M C1C2
√
n. This proves (9). Hence, F is uniformly continuous. Therefore,

F ∈ C
(
Ω;Rn×n

)
. Using (5), we see that F ∈ C1

(
Ω,Rn×n

)
. Bootstrapping, it follows that F ∈

Cr+1
(
Ω;Rn×n

)
which settles the first case.

Case 2: x0 ∈ ∂Ω. Let (xp)p∈N be a sequence in Ω such that limp→∞ [xp] = x0. Using Case 1,
for each p ∈ N, we find a unique F p ∈ Cr+1

(
Ω,Rn×n

)
such that{

∂iF
p = F p Γi in Ω and i = 1, · · · , n

F p (xp) = F 0.
(11)

Since, thanks to (7) and (9), for every p ∈ N and every x, y ∈ Ω,

|F p (x)| 6 C2 and |F p (x)− F p(y)| 6 C3 |x− y| ,

we invoke Ascoli-Arzela theorem to find a subsequence (F pk)k∈N of (F p)p∈N and F ∈ C
(
Ω;Rn×n

)
such that (F pk)k∈N converges to F in C

(
Ω;Rn×n

)
. We claim that

dF = F Γ, in Ω and F (x0) = F 0. (12)

Indeed, as (F pk)k∈N converges to some F, and (∂iF
pk)k∈N converges to F Γi in C

(
Ω;Rn×n

)
for

every i = 1, · · · , n, it follows that
∂F = F Γ, in Ω.

Furthermore, using (11),
F (x0) = lim

k→∞
[F pk (xpk)] = F 0

which proves (12). This, in turn, implies that F ∈ C1
(
Ω;Rn×n

)
. Bootstrapping, it follows that

F ∈ Cr+1
(
Ω;Rn×n

)
. This settles the second case, and completes the proof of existence and

uniqueness.
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Step 2 (constant rank). We now prove that F has constant rank. Let x1 ∈ Ω where the rank
is minimal, i.e.

m := rankF
(
x1
)
≤ rankF (x) , for every x ∈ Ω.

We can therefore find A ∈ Rn×n, with rankA = (n−m) such that AF
(
x1
)

= 0. Define G ∈
C1
(
Ω;Rn×n

)
as

G (x) = AF (x) , for every x ∈ Ω.

Then, G satisfies, for every i = 1, · · · , n,

dG = GΓ, in Ω and G
(
x1
)

= 0.

It therefore follows, by uniqueness and continuity, that G (x) = AF (x) = 0 for every x ∈ Ω. Since
A is a constant matrix with rankA = (n−m) , we deduce that

m := rankF
(
x1
)
≤ rankF (x) ≤ m, for every x ∈ Ω

and thus the claim.
Step 3 (necessity). We now prove that (2), under its weak form (4), holds. Let ψ ∈ C1

0 (Ω;Rn×n)
be arbitrary and define ϕ ∈ C1

0 (Ω;Rn×n) by ϕ = ψ F−1 (this is well defined since, by Step 2,
F (x) ∈ GLn (R) for every x ∈ Ω). Call

A =

∫
Ω

[(−∂iψ Γj + ∂jψ Γi) + ψ (ΓiΓj − ΓjΓi)] .

We have to show that A = 0. We find, since ψ = ϕF,

A =

∫
Ω

ϕ [−∂iF Γj + ∂jF Γi + F (ΓiΓj − ΓjΓi)] +

∫
Ω

[−∂iϕF Γj + ∂jϕF Γi] .

Using the fact that ∂iF = F Γi , we obtain

A =

∫
Ω

[−∂iϕ∂jF + ∂jϕ∂iF ] .

If ϕ were C2
0 (Ω;Rn×n) , the divergence theorem immediately gives that A = 0. If ϕ is only

C1
0 (Ω;Rn×n) , the result follows by a straightforward argument of density.
Step 4 (estimates). (i) The C0 estimate follows at once from (8) and (10); choosing c0 =√

nC1 diam Ω. Note that, from (8), we have

‖F‖C0 ≤
∣∣F 0
∣∣ exp {c0 ‖Γ‖C0} .

(ii) Before starting with the estimates of higher order, we recall that

‖F Γ‖Cr ≤ ar ‖F‖Cr ‖Γ‖Cr .

In fact, using Theorem 16.28 in [8], one can refine the estimate to

‖F Γ‖Cr ≤ ar (‖F‖Cr ‖Γ‖C0 + ‖F‖C0 ‖Γ‖Cr ) .

Using this more refined inequality, we can improve the estimates of the present step in a natural
way, but, for the sake of simplicity, we will not do it.
(iii) We now prove the Cr+1 estimates by induction. Note first that∥∥F − F 0

∥∥
Cr+1 =

∥∥F − F 0
∥∥
C0 + ‖dF‖Cr =

∥∥F − F 0
∥∥
C0 + ‖F Γ‖Cr

≤
∥∥F − F 0

∥∥
C0 + ar ‖F‖Cr ‖Γ‖Cr .
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We can now proceed with the induction proof and consider first the case r = 0. We have∥∥F − F 0
∥∥
C1 ≤

∥∥F − F 0
∥∥
C0 + a0 ‖F‖C0 ‖Γ‖C0 ≤

∣∣F 0
∣∣ (c0 + a0) ‖Γ‖C0 exp {c0 ‖Γ‖C0}

as wished. We next discuss the case r ≥ 1. Assume that the result has already been proved for r
and let us prove it for (r + 1) . We have∥∥F − F 0

∥∥
Cr+1 ≤

∥∥F − F 0
∥∥
C0 + ar ‖F‖Cr ‖Γ‖Cr ≤

∥∥F − F 0
∥∥
C0 + ar

[∥∥F − F 0
∥∥
Cr +

∣∣F 0
∣∣] ‖Γ‖Cr

≤
∣∣F 0
∣∣ [c0 ‖Γ‖C0 + arcr

(
1 + ‖Γ‖r−1

Cr−1

)
‖Γ‖Cr−1 ‖Γ‖Cr + ar ‖Γ‖Cr

]
exp {c0 ‖Γ‖C0}

and the claim follows.

3.2 Dirichlet problem for Pfaff system
We start with an elementary proposition.

Proposition 10 Let Ω ⊂ Rn be open with connected Lipschitz boundary and outward unit normal
ν. Let f ∈ C1

(
Ω
)
. Then,

f = 0 on ∂Ω

if and only if

ν ∧Df = 0 Hn−1 a.e. on ∂Ω and f (p) = 0, for some p ∈ ∂Ω. (13)

Proof We first prove that (13) implies f = 0 on ∂Ω. Fix x ∈ ∂Ω and invoke Proposition 30 to find
a Lipschitz curve γ : [0, 1]→ ∂Ω such that γ (0) = p, γ (1) = x and

〈ν (γ (t)) ; γ′ (t)〉 = 0 for H1 − a.e. t ∈ (0, 1) .

It follows from (13) that

〈Df (γ (t)) ; γ′ (t)〉 = 0 for H1 − a.e. t ∈ (0, 1)

and thus

f (x) = f (x)− f (p) =

∫ 1

0

d

dt
[f (γ (t))] dt =

∫ 1

0

〈Df (γ (t)) ; γ′ (t)〉 dt = 0.

The reverse implication being immediate, we have indeed established the proposition.

The main result of the present section is the following.

Theorem 11 Let r ≥ 0 be an integer and Ω ⊂ Rn be open, bounded, simply connected, with
connected Lipschitz boundary and outward unit normal ν. Let Φ ∈ Cr+1 (∂Ω;Rn×n) with det Φ 6= 0
on ∂Ω and Γ1, · · · ,Γn ∈ Cr

(
Ω;Rn×n

)
. There exists F ∈ Cr+1

(
Ω;Rn×n

)
satisfying{

dF = F Γ i.e. ∂iF = F Γi , i = 1, · · · , n in Ω

F = Φ on ∂Ω
(14)

if and only if in Ω

dΓ + Γ ∧ Γ = 0 i.e. ∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = 0, for every i, j = 1, · · · , n (15)

and Hn−1 a.e. on ∂Ω

ν ∧ (dΦ− Φ Γ) = 0 i.e. νi (∂jΦ− Φ Γj)− νj (∂iΦ− Φ Γi) = 0, for every i, j = 1, · · · , n. (16)
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Furthermore, if a solution of (14) exists, then it is unique and, for every x0 ∈ ∂Ω, there exist
constants cr , depending only on Ω, such that

‖F − Φ (x0)‖C0 ≤ c0 |Φ (x0)| ‖Γ‖C0 exp {c0 ‖Γ‖C0}
‖F − Φ (x0)‖Cr+1 ≤ cr+1 |Φ (x0)| (1 + ‖Γ‖rCr ) ‖Γ‖Cr exp {c0 ‖Γ‖C0} .

Remark 12 Note that if Φ is constant (and invertible), then (16) reduces to

ν ∧ Γ = 0 i.e. νi (Γj)− νj (Γi) = 0, for every i, j = 1, · · · , n.

Proof Step 1 (necessity). We assume that F ∈ C1
(
Ω;Rn

)
satisfy (14), then (15) follows from

Theorem 8. To establish (16), we note, cf. Proposition 10, that ν ∧DFpq = ν ∧DΦpq Hn−1 a.e.
on ∂Ω, for every p, q = 1, · · · , n, i.e.[

νi∂jΦ− νj∂iΦ
]
pq

=
[
νi∂jF − νj∂iF

]
pq

Observe next that, since F = Φ and dF = F Γ on ∂Ω, then, for every i, j, p, q = 1, · · · , n and Hn−1

a.e. on ∂Ω,[
νi (∂jΦ− Φ Γj)− νj (∂iΦ− Φ Γi)

]
pq

=
[
νi (∂jF − F Γj)− νj (∂iF − F Γi)

]
pq

from where (16) follows.
Step 2 (suffi ciency). Conversely, let us suppose that (15), (16) are satisfied. Let x0 ∈ ∂Ω be

fixed. Using Theorem 8, we find F ∈ Cr+1
(
Ω;Rn×n

)
satisfying

dF = F Γ, in Ω and F (x0) = Φ (x0) .

It remains to show that F (x) = Φ (x) for every x ∈ ∂Ω. Invoking Proposition 30, we find α ∈
C0,1 ([0, 1] ; ∂Ω) be such that α (0) = x0 and α (1) = x; note that

〈α′ (t) ; ν (α (t))〉 = 0 a.e. t ∈ (0, 1) . (17)

Call

X (t) = Φ (α (t)) and A (t) =

n∑
j=1

Γj (α (t))α′j (t)

and observe that, a.e. t ∈ (0, 1) and for every i = 1, · · · , n,

νi (α (t)) [X ′ (t)−X (t)A (t)] = νi (α)


 n∑
j=1

∂jΦ (α)− Φ Γj (α)

α′j


=

n∑
j=1

[
νi (α) (∂jΦ (α)− Φ Γj (α))

]
α′j .

Invoking (16) and then (17) we find, for every i = 1, · · · , n,

νi (α (t)) [X ′ (t)−X (t)A (t)] = (∂iΦ (α)− Φ Γi (α))

n∑
j=1

νjα′j = 0.

It therefore follows that X = Φ ◦ α satisfies{
X ′ (t) = X (t)A (t) a.e. t ∈ (0, 1)

X (0) = Φ (x0)

where A ∈ L∞ ((0, 1) ;Rn×n) . Since F ◦ α satisfies the same equation, it follows from Grönwall
lemma that Φ ◦ α = F ◦ α. As ∂Ω is connected, we have that F = Φ on the boundary, as wished.

Step 3 (uniqueness and estimates). The uniqueness and the estimates are already at the level
of the Cauchy problem, we have thus completed the proof.

10



4 Pullback equation
In this section, we study the following nonlinear problem

u∗ (H) = G i.e. (Du)
t
HDu = G in Ω (18)

when G and H have invertible symmetric parts. We discuss the unconstrained, the Dirichlet-
Neumann and the Dirichlet problems, namely{

(Du)
t
HDu = G in Ω

u = ϕ and Du = Dϕ on ∂Ω
and

{
(Du)

t
HDu = G in Ω

u = ϕ on ∂Ω.

Our result includes the purely symmetric case (i.e. G and H are symmetric and non-degenerate).
The purely symmetric case has received considerable attention, since the work of Riemann; it is
related to the problem of equivalence of Riemannian metrics. The first results were concerned with
the local problem (see [17] where several proofs are provided). The global case for the unconstrained
problem was first established by Cartan. The Dirichlet-Neumann problem presented here is new,
even in the purely symmetric case.

Our analysis does not include the purely skew-symmetric case, which also received consider-
able attention, since the time of Darboux (see [1], [18] or any book on symplectic geometry for
more modern developments). It is more involved, both from the point of view of uniqueness and
regularity. The optimal regularity, for the local problem, was obtained in [4], in the framework of
Hölder spaces. The Dirichlet problem has been treated in [4] and slightly improved in [8] and [11].

4.1 Unconstrained problem
The unconstrained and Cauchy problems are intimately related and under mild conditions the
second can be deduced from the first one. Indeed let Ω ⊂ Rn be open, H ∈ Rn×n, (x0, c0, C0) ∈
Ω×Rn×Rn×n and G ∈ C (Ω;Rn×n) be such that (C0)

t
H C0 = G (x0) . Let v ∈ C1 (Ω;Rn) verify,

in Ω,
(Dv)

t
HDv = G and detDv (x0) 6= 0.

Setting u (x) = C0 [Dv (x0)]
−1

[v (x)− v (x0)] + c0 , we obtain that{
(Du)

t
HDu = G, in Ω

u (x0) = c0 and Du (x0) = C0 .

Note that this construction is independent of the symmetry or the rank of G and H. Moreover if
v is locally invertible and C0 is invertible, then so is u.

We recall the following notations. For a matrix G we denote by Gs and Ga its symmetric and
skew-symmetric parts respectively. Below we write {Γ1, · · · ,Γn} to denote the Christoffel matrices
of Gs (i.e. Γ is the Levi-Civita connection of Gs).
The main theorem of the present section is the following (in the symmetric case it is a standard

theorem in differential geometry).

Theorem 13 (Unconstrained case) Let r ≥ 1 be an integer and Ω ⊂ Rn be a simply connected
open set. Let H ∈ Rn×n with Hs invertible and G ∈ Cr (Ω;Rn×n) with Gs non-degenerate. There
exists u ∈ Cr+1 (Ω;Rn) satisfying, in Ω,

(Du)
t
HDu = G

if and only if

11



(i) there exists C0 ∈ GLn (R) such that (C0)
t
H C0 = G (x0) , for some x0 ∈ Ω,

(ii) dΓ + Γ ∧ Γ = 0 (i.e. ∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = 0, for every i, j = 1, · · · , n),
(iii) dGa = ΓtGa +GaΓ i.e. ∂kGa = (Γk)

t
Ga +GaΓk in Ω, for every k = 1, · · · , n.

Furthermore, the solution, if it exists, is unique up to an affi ne transformation; more precisely
if v and w are two solutions, there exist a ∈ R and A ∈ GLn (R) , with AtH A = H, such that
w = Av + a.

Remark 14 (i) The theorem includes the purely symmetric case where G and H are symmetric;
the condition (iii) in the theorem being then trivially true.

(ii) There are some implicit conditions on the symmetric part; for example Hs and Gs should have
the same signature (i.e. Hs and Gs have the same number of positive eigenvalues). In particular
if H = In , then G should be positive definite.

(iii) There are also several hidden necessary conditions on the skew-symmetric part.

- Since rank [Ga (x)] = rank [Ha] ∀x ∈ Ω, then Ga (x0) = 0 implies Ga (x) = 0 ∀x ∈ Ω.

- Note that Ga is uniquely determined by{
∂kGa = (Γk)

t
Ga +Ga Γk in Ω and k = 1, · · · , n

Ga (x0) = (C0)
t
Ha C0 .

- Since H is constant, looking at Ga as a 2−from, we deduce that Ga is closed (i.e. dGa = 0).

(iii) In terms of differential geometry, looking at Ga as a 2−tensor (or a 2−form), the condition
∂kGa = (Γk)

t
Ga +Ga Γk , says that the covariant derivative of Ga vanishes.

Proof (Theorem 13) We have to show that, for every (x0, c0, C0) ∈ Ω×Rn×GLn (R) , there exists
u ∈ Cr+1 (Ω;Rn) satisfying{

(Du)
t
HDu = G and detDu 6= 0 in Ω

u (x0) = c0 and Du (x0) = C0

(19)

if and only if (i), (ii) and (iii) hold.

Step 1 (preliminaries). Observe that any solution of (19) satisfies{
(Du)

t
HsDu = Gs and (Du)

t
HaDu = Ga in Ω

u (x0) = c0 and Du (x0) = C0 .

- The strategy is to solve first{
(Du)

t
HsDu = Gs and detDu 6= 0 in Ω

u (x0) = c0 and Du (x0) = C0

(20)

showing that (C0)
t
Hs C0 = Gs (x0) and (ii) are necessary (Step 2) and suffi cient (Step 3) conditions

to achieve this goal. We prove as well the uniqueness result (Step 4).

- In Step 5, we prove that any solution of (20) solves

(Du)
t
HaDu = Ga

if and only if (C0)
t
Ha C0 = Ga (x0) and (iii) are verified.

12



Step 2 (necessity). Let u ∈ Cr+1 (Ω;Rn) satisfy (20); the conclusion (C0)
t
Hs C0 = Gs (x0) is

trivial, while the condition dΓ + Γ ∧ Γ = 0 follows from Proposition 5.

Step 3 (suffi ciency). Let x0 ∈ Ω and C0 ∈ GLn (R) be such that (C0)
t
Hs C0 = Gs (x0) .

Theorem 8 implies that we can find F ∈ Cr (Ω;Rn×n) satisfying

dF = F Γ, in Ω and F (x0) = C0 .

Using Lemma 4, we have, for every i, j, k = 1, · · · , n and in Ω,

∂kFij = (F Γk)ij =

n∑
p=1

Fip (Γk)pj =

n∑
p=1

FipΓ
p
kj =

n∑
p=1

FipΓ
p
jk =

n∑
p=1

Fip (Γj)pk = ∂jFik

which implies that
curl (Fi,∗) = 0, in Ω and i = 1, · · · , n.

Since Ω is simply connected, we find u ∈ Cr+1 (Ω;Rn) satisfying, for c0 ∈ Rn,

Du = F in Ω and u (x0) = c0 .

Note that, for every k = 1, · · · , n and in Ω,

∂k
(
F tHs F

)
= (∂kF )

t
Hs F + F tHs (∂kF ) = (Γk)

t (
F tHs F

)
+
(
F tHs F

)
Γk .

Hence, both F tHs F and Gs (invoking Lemma 4 (ii)) satisfy the following system of equations{
∂kX = (Γk)

t
X +X Γk in Ω and k = 1, · · · , n

X (x0) = Gs (x0) .
(21)

The uniqueness of solutions of (21) implies that F tHs F = Gs in Ω; i.e.{
(Du)

t
HsDu = Gs in Ω

u (x0) = c0 Du (x0) = C0 .
(22)

This proves Step 3.

Step 4 (uniqueness). (i) We have to prove that the solution of (22) is unique; so let u, v ∈
Cr+1 (Ω;Rn) satisfy (22). Then, using Proposition 5, we see that Du,Dv satisfy

dF = F Γ, in Ω and F (x0) = C0 .

Hence, it follows from Theorem 8 that Du = Dv in Ω, which implies that u = v in Ω as u (x0) =
v (x0) = c0 . This establishes the uniqueness of solutions of (22).

(ii) From the above argument we deduce immediately the uniqueness stated in the theorem.
Indeed let v and w satisfy the equation (Du)

t
HDu = G. Fix a point x0 ∈ Ω, then, because of the

uniqueness in (i) above, we have, setting

A = (Dw (x0)) (Dv (x0))
−1 and a = w (x0)−Av (x0)

that w = Av + a, as claimed.

Step 5 (the skew-symmetric equation). Let u ∈ Cr+1 (Ω;Rn) be a solution of (20).

13



- Assume that u also satisfies the equation (Du)
t
HaDu = Ga and let us prove that condition

(iii) of the theorem is verified. Indeed we get from Proposition 5 that, for every k = 1, · · · , n,

∂kGa = ∂k

(
(Du)

t
HaDu

)
= (∂k (Du))

t
HaDu+ (Du)

t
Ha ∂k (Du)

= ((Du) Γk)
t
HaDu+ (Du)

t
Ha (Du) Γk = (Γk)

t
(Du)

t
HaDu+ (Du)

t
Ha (Du) Γk

= (Γk)
t
Ga +Ga Γk .

- Conversely, assume that (iii) is verified and let us show that (Du)
t
HaDu = Ga . To this end,

we use Proposition 5 to note that, for every k = 1, · · · , n,

∂k

(
(Du)

t
HaDu

)
= (∂k (Du))

t
HaDu+ (Du)

t
Ha ∂k (Du) = ((Du) Γk)

t
HaDu+ (Du)

t
Ha (Du) Γk

= (Γk)
t
(Du)

t
HaDu+ (Du)

t
Ha (Du) Γk .

Therefore, both Ga and (Du)
t
HaDu satisfy the following equation{

∂kX = (Γk)
t
X +X Γk in Ω and k = 1, · · · , n

X (x0) = Ga (x0) = (C0)
t
Ha C0 .

(23)

Hence, it follows from the uniqueness of solutions of (23) that (Du)
t
HaDu = Ga in Ω, as wished.

4.2 Dirichlet-Neumann problem
In the present section we let r ≥ 0 be an integer and Ω ⊂ Rn be open, bounded, simply connected,
with connected Lipschitz boundary and outward unit normal ν.

For G ∈ Cr+1
(
Ω;Rn×n

)
with Gs non-degenerate, we let {Γ1, · · · ,Γn} be the Christoffel matrices

of Gs (i.e. Γ is the Levi-Civita connection of Gs). We recall that dΓ + Γ ∧ Γ = 0 means

∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = 0, for every i, j = 1, · · · , n

i.e.
∂i (Γj)kl − ∂j (Γi)kl + (ΓiΓj − ΓjΓi)kl = 0, for every i, j, k, l = 1, · · · , n

while dGa = ΓtGa +Ga Γ stands for

∂kGa = (Γk)
t
Ga +Ga Γk , for every k = 1, · · · , n.

We now give the main theorem.

Theorem 15 (Dirichlet-Neumann problem) Let ϕ ∈ Cr+2
(
Ω;Rn

)
. Let H ∈ Rn×n with Hs

invertible, G ∈ Cr+1
(
Ω;Rn×n

)
with Gs non-degenerate. The following two statements are equiv-

alent.

(i) The four following conditions hold

dΓ + Γ ∧ Γ = 0, in Ω (24)

dGa = ΓtGa +GaΓ, in Ω (25)

(Dϕ (x0))
t
HDϕ (x0) = G (x0) , for some x0 ∈ ∂Ω (26)

ν ∧ (d (Dϕ)− (Dϕ) Γ) = 0, Hn−1 a.e. on ∂Ω. (27)
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(ii) There exists u ∈ Cr+2
(
Ω;Rn

)
satisfying the Dirichlet-Neumann problem{

u∗ (H) = G i.e. (Du)
t
HDu = G in Ω

u = ϕ and Du = Dϕ on ∂Ω.
(28)

Moreover, if the solution of (28) exists, then it is unique and if ϕ ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
, then

u ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
. Furthermore, for every x0 ∈ ∂Ω, there exist constants cr , depending only

on Ω, such that
‖Du−Dϕ (x0)‖C0 ≤ c0 ‖Dϕ‖C0 ‖Γ‖C0 exp {c0 ‖Γ‖C0}

‖Du−Dϕ (x0)‖Cr+1 ≤ cr+1 ‖Dϕ‖C0 (1 + ‖Γ‖rCr ) ‖Γ‖Cr exp {c0 ‖Γ‖C0} .
In particular, if ϕ is affi ne (i.e. Dϕ is constant), then there exist constants c̃r , depending only on
Ω, such that

‖u− ϕ‖Cr+2 ≤ c̃r ‖Dϕ‖C0 (1 + ‖Γ‖rCr ) ‖Γ‖Cr exp {c0 ‖Γ‖C0} . (29)

Remark 16 (i) When we write u ∈ Diffr
(
Ω;ϕ

(
Ω
))
, we mean that u is a diffeomorphism from Ω

onto ϕ
(
Ω
)
with u and u−1 belonging to Cr.

(ii) The estimate (29) implies, in particular, that if ϕ is affi ne, r ≥ 0 is an integer and
{
G(m)

}
is

a sequence converging in the Cr+1 topology to the constant matrix H, then the solution
{
u(m)

}
converges to ϕ in Cr+2. This follows at once from the estimate and the fact that the corresponding
sequence

{
Γ(m)

}
converges to 0 (since H is constant) in the Cr topology.

(iii) It turns out that the condition (Dϕ (x0))
t
HDϕ (x0) = G (x0) for some x0 ∈ ∂Ω is equivalent

to (Dϕ)
t
HDϕ = G everywhere on ∂Ω; this is a direct consequence of the theorem.

(iv) The condition (27) reads, Hn−1 a.e. on ∂Ω, as

νi (∂j (Dϕ)− (Dϕ) Γj) = νj (∂i (Dϕ)− (Dϕ) Γi) , for every i, j = 1, · · · , n

or, in other words, for every i, j, k, l = 1, · · · , n

νi

(
∂j (∂lϕk)−

n∑
p=1

(∂pϕk) (Γj)pl

)
= νj

(
∂i (∂lϕk)−

n∑
p=1

(∂pϕk) (Γi)pl

)
.

(v) Note that if ϕ is affi ne, then Dϕ is invertible, in view of (26). Therefore condition (27) reads,
in this case, ν ∧ Γ = 0.

Proof (Theorem 15) Preliminary step. (i) As in Theorem 13, the system decouples into{
(Du)

t
HsDu = Gs and (Du)

t
HaDu = Ga in Ω

u = ϕ and Du = Dϕ on ∂Ω.

(ii) We then solve the problem{
(Du)

t
HsDu = Gs in Ω

u = ϕ and Du = Dϕ on ∂Ω
(30)

showing that the conditions
dΓ + Γ ∧ Γ = 0 in Ω,

ν ∧ (d (Dϕ)− (Dϕ) Γ) = 0 a.e. on ∂Ω and (Dϕ (x0))
t
HsDϕ (x0) = Gs (x0)
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are necessary and suffi cient to find a unique solution. It remains then, exactly as in Theorem 13,
to prove that any solution of (30) satisfy (Du)

t
HaDu = Ga in Ω if and only if

∂kGa = (Γk)
t
Ga +Ga Γk and (Dϕ (x0))

t
HaDϕ (x0) = Ga (x0)

It is therefore enough to prove the theorem under the further assumption that G and H are
symmetric and we therefore drop the index s.
Step 1: (i) ⇒ (ii). We use Theorem 11 to find F ∈ Cr+1

(
Ω;Rn×n

)
satisfying{

∂kF = F Γk in Ω and k = 1, · · · , n
F = Dϕ on ∂Ω.

The same argument as in Step 3 of Theorem 13 leads to the existence of u satisfying (30), proving
(ii).
Step 2: (ii) ⇒ (i). Let u ∈ Cr+2

(
Ω;Rn

)
satisfy{

(Du)
t
HDu = G in Ω

u = ϕ and Du = Dϕ on ∂Ω.

That Γ satisfies (24) has already been proved in Theorem 13. It is evident that (Dϕ)
t
HDϕ = G

everywhere on ∂Ω; it therefore remains to prove (27). Define F ∈ Cr+1
(
Ω;Rn×n

)
as F = Du in

Ω. Using Proposition 5, we find that F satisfies{
∂kF = F Γk in Ω and k = 1, · · · , n
F = Dϕ on ∂Ω.

Applying Theorem 11, we obtain that (27) holds. This proves the equivalence properties of the
theorem.
Step 3 (uniqueness). Let u, v ∈ Cr+2 (Ω;Rn) satisfy (28). Then, using Proposition 5, we see

that Du,Dv satisfy {
∂kF = F Γk in Ω and k = 1, · · · , n
F = Dϕ on ∂Ω.

Hence, it follows from Theorem 11 that Du = Dv in Ω, which implies that u = v in Ω as u = v = ϕ
on ∂Ω. This establishes the uniqueness of solutions of (30). That u ∈ Diffr+2

(
Ω;ϕ

(
Ω
))
, follows

from Theorem 19.12 of [8], see also [16].
Step 4 (estimate). The general estimate follows from the construction of Step 1 and the corre-

sponding estimates in Theorem 11. We now discuss the more specific estimate (29). Observe first
that, since Dϕ is constant, we have from Remark 7 and the general estimate that

‖u− ϕ‖C0 ≤ C1 diam (Ω) ‖Du−Dϕ‖C0 ≤ c0 ‖Dϕ‖C0 ‖Γ‖C0 exp {c0 ‖Γ‖C0} .

Noting that
‖u− ϕ‖Cr+2 = ‖u− ϕ‖C0 + ‖Du−Dϕ‖Cr+1

we have the desired result and the proof of the theorem is therefore complete.
Theorem 15 can be extended to the case where H is not constant.

Corollary 17 Let ϕ ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
and νϕ be the normal to ∂ϕ (Ω) . Let G ∈ Cr+1

(
Ω;Rn×n

)
,

H ∈ Cr+1
(
ϕ
(
Ω
)

;Rn×n
)
with Gs and Hs non-degenerate. Let Γ and ∆ be the Levi-Civita connec-

tion of Gs and Hs respectively. If

dΓ + Γ ∧ Γ = 0 and dGa = ΓtGa +GaΓ, in Ω
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d∆ + ∆ ∧∆ = 0 and dHa = ∆tHa +Ha∆, in ϕ (Ω)

(Dϕ (x0))
t
H (ϕ (x0))Dϕ (x0) = G (x0) , for some x0 ∈ ∂Ω

ν ∧ (d (Dϕ)− (Dϕ) Γ) = 0, Hn−1 a.e. on ∂Ω

νϕ ∧∆ = 0, Hn−1 a.e. on ∂ϕ (Ω)

then, there exists u ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
satisfying{

u∗ (H) = G i.e. (Du)
t
H (u)Du = G in Ω

u = ϕ and Du = Dϕ on ∂Ω.
(31)

Proof Call A = H (ϕ (x0)) . Using Theorem 15, we find v ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
solving{

v∗ (A) = G in Ω

v = ϕ and Dv = Dϕ on ∂Ω

and w ∈ Diffr+2
(
ϕ
(
Ω
)

;ϕ
(
Ω
))
satisfying{

w∗ (A) = H in ϕ (Ω)

w = id and Dw = In on ∂ϕ (Ω) .

Then, u ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
defined as u = w−1 ◦ v solves (31). Indeed in Ω we have

u∗ (H) = v∗
((
w−1

)∗
(H)

)
= v∗ (A) = G

while on ∂Ω
u = ϕ and Du = Dϕ .

This achieves the proof of the corollary.

4.3 Dirichlet problem
In the present section we let r ≥ 0 be an integer and Ω ⊂ Rn be open, bounded, simply connected,
with connected Lipschitz boundary and outward unit normal ν.

For G ∈ Cr+1
(
Ω;Rn×n

)
with Gs non-degenerate, we let {Γ1, · · · ,Γn} be the Christoffel matrices of

Gs (i.e. Γ is the Levi-Civita connection of Gs). We recall that dΓ+Γ∧Γ = 0 and dGa = ΓtGa+Ga Γ
mean respectively

∂iΓj − ∂jΓi + ΓiΓj − ΓjΓi = 0, for every i, j = 1, · · · , n

∂kGa = (Γk)
t
Ga +Ga Γk , for every k = 1, · · · , n.

When dealing with the purely Dirichlet problem, Theorem 15 takes the following abstract form.

Theorem 18 (Dirichlet problem) Let ϕ ∈ Cr+2
(
Ω;Rn

)
, with detDϕ 6= 0 in Ω. Let H ∈

Rn×n with Hs invertible, G ∈ Cr+1
(
Ω;Rn×n

)
with Gs non-degenerate. Then, there exists u ∈

Cr+2
(
Ω;Rn

)
satisfying the Dirichlet problem{

u∗ (H) = G i.e. (Du)
t
HDu = G in Ω

u = ϕ on ∂Ω.
(32)
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if and only if
(i) In Ω

dΓ + Γ ∧ Γ = 0 and dGa = ΓtGa +Ga Γ.

(ii) There exists Φ ∈ Cr+1 (∂Ω;Rn×n) such that, Hn−1 a.e. on ∂Ω,

ΦtH Φ = G, det Φ detDϕ > 0, ν ∧ Φ = ν ∧Dϕ, ν ∧ (dΦ− Φ Γ) = 0.

Furthermore, the solution of (32), if it exists, is unique and satisfies the Dirichlet-Neumann con-
ditions on ∂Ω, i.e.

u = ϕ and Du = Φ.

Moreover if ϕ ∈ Diffr+2
(
Ω;ϕ

(
Ω
))
, then so is u.

Remark 19 (i) If ϕ = id, then Φ is of the form

Φ = In + α⊗ ν

for an appropriate α such that α⊗ ν ∈ Cr+1 (∂Ω;Rn×n) . In particular
- if H = In , then

〈
G−1ν; ν

〉
6= 0 and

Φ = In + α⊗ ν where α =

[√
detGIn −

G−1

〈G−1ν; ν〉

]
ν.

Note that in order to have α ⊗ ν ∈ Cr+1, one will have, in general, to assume that the domain Ω
is at least Cr+2.

- if G = H on ∂Ω (in fact it suffi ces that G (x0) = H (x0) for a certain x0 ∈ ∂Ω), then Φ = In
(i.e. α = 0) and therefore the only condition on the boundary is

ν ∧ Γ = 0.

Note that in this case we do not need extra regularity of the domain and we are back to Theorem
15.
(ii) We recall that ν ∧ (dΦ− Φ Γ) = 0 means

νi (∂jΦ− Φ Γj) = νj (∂iΦ− Φ Γi) , for every i, j = 1, · · · , n.

It can be proved that the condition ν ∧ (dΦ− Φ Γ) = 0 is equivalent to the second fundamental
forms on ∂Ω of Gs and Hs are equal.

Proof (Theorem 18) The proof of the existence part is exactly the same as that of Theorem 15
and we will not reproduce it. The uniqueness also follows as the corresponding one in Theorem
15, once it has been observed, thanks to Lemma 23, that Φ is unique, since ν ∧Φ = ν ∧Dϕ implies
rank (Φ−Dϕ) ≤ 1.

In both corollaries below we further assume more regularity on ∂Ω, namely Cr+2. A direct conse-
quence of Theorems 18 and 27 is the following corollary.

Corollary 20 Let H ∈ Rn×n, G ∈ Cr+1
(
Ω;Rn×n

)
with Hs, Gs non-degenerate satisfying〈

H−1
s ν; ν

〉 〈
G−1
s ν; ν

〉
6= 0 on ∂Ω.

Then, there exists u ∈ Cr+2
(
Ω;Rn

)
satisfying the Dirichlet problem{

u∗ (H) = G i.e. (Du)
t
HDu = G in Ω

u = id on ∂Ω
(33)
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if and only if
(i) dΓ + Γ ∧ Γ = 0 in Ω

(ii) detGs detHs > 0 in Ω

(iii) 〈Gsa; b〉 = 〈Hsa; b〉 on ∂Ω and for every 〈a; ν〉 = 〈b; ν〉 = 0

(iv) Φ defined as

Φ = In +

[√
detGs
detHs

(
H−1
s ν〈

H−1
s ν; ν

〉)− G−1
s ν〈

G−1
s ν; ν

〉]⊗ ν.
satisfies on ∂Ω

ν ∧ (dΦ− Φ Γ) = 0, i.e. νi (∂jΦ− Φ Γj) = νj (∂iΦ− Φ Γi) for every i, j = 1, · · · , n.

(v) dGa = ΓtGa +Ga Γ i.e. ∂kGa = (Γk)
t
Ga +Ga Γk , for every k = 1, · · · , n

(vi) Ga ∧ ν = Ha ∧ ν on ∂Ω.

Furthermore, the solution, if it exists, is unique and u ∈ Diffr+2
(
Ω; Ω

)
.

Remark 21 Note that the hypotheses (i) to (iv) of the corollary guarantee, invoking Theorem 27,
only that ΦtHsΦ = Gs . The conditions (v) and (vi) imply then that ΦtHaΦ = Ga .

This result, when H = In , takes even the simpler form.

Corollary 22 Let G ∈ Cr+1
(
Ω;Rn×n

)
be symmetric and non-degenerate. Then, there exists

u ∈ Cr+2
(
Ω; Ω

)
satisfying the Dirichlet problem{

u∗ (In) = G i.e. (Du)
t
Du = G in Ω

u = id on ∂Ω

if and only if
(i) dΓ + Γ ∧ Γ = 0 in Ω

(ii) detG > 0 in Ω

(iii) 〈Ga; b〉 = 〈a; b〉 on ∂Ω and for every 〈a; ν〉 = 〈b; ν〉 = 0

(iv) Φ defined as

Φ = In +
[
G+

(√
detG− 1− 〈Gν; ν〉

)
In

]
ν ⊗ ν.

satisfies on ∂Ω
ν ∧ (dΦ− Φ Γ) = 0.

Furthermore, the solution, if it exists, is unique and u ∈ Diffr+2
(
Ω; Ω

)
.

5 Appendix 1: some algebraic results

5.1 Preliminary results
We start with few elementary results.

Lemma 23 Let A ∈ GLn (R) be symmetric and X,Y ∈ GLn (R) be such that

XtAX = Y tAY, detX detY > 0 and rank (X − Y ) 6 1.

Then, X = Y. In particular if

XtAX = A, detX = 1 and rank (X − In) 6 1,

then, X = In .
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Remark 24 Lemma 23 fails if A is skew-symmetric. To see this, let n = 2 and let

A =

(
0 1
−1 0

)
, X =

(
1 1
0 1

)
= I2 + e1 ⊗ e2 .

Then, XtAX = A, detX = 1, rank (X − I2) 6 1, but X 6= I2 .

Proof Step 1 (special case Y = In). Since rank (X − In) 6 1, we find a, b ∈ Rn such that
X − In = a⊗ b. If b = 0, we are done. Let us assume that b 6= 0. As detX = 1, we find

1 = detX = det (In + a⊗ b) = 1 + 〈a; b〉 ,

which shows that 〈a; b〉 = 0. Note that

A = XtAX = (In + a⊗ b)tA (In + a⊗ b) = (In + b⊗ a)A (In + a⊗ b)
= (In + b⊗ a) (A+Aa⊗ b) = A+Aa⊗ b+ (b⊗ a)A+ (b⊗ a) (Aa⊗ b)
= A+Aa⊗ b+ b⊗Ata+ 〈Aa; a〉 (b⊗ b) ,

which implies that
Aa⊗ b+ b⊗Aa+ 〈Aa; a〉 (b⊗ b) = 0. (34)

Taking inner product with a, it follows from (34) that

Aa 〈b; a〉+ b 〈Aa; a〉+ 〈Aa; a〉 〈b; a〉 b = b 〈Aa; a〉 = 0,

which shows that 〈Aa; a〉 = 0. Hence, Aa⊗ b+ b⊗Aa = 0, appealing to (34). Therefore, Aa = λb,

where λ = − 〈Aa;b〉
|b|2 . If λ = 0, we get a = 0 as A is invertible and we are done. If λ 6= 0, then

2λ (b⊗ b) = 0, which shows that b = 0, a contradiction. This proves the lemma in the special case
Y = In .

Step 2 (general case). Set Z = X Y −1 and observe that

ZtAZ = A, detZ = 1 and rank (Z − In) 6 1;

the last inequality coming from the fact that

rank (Z − In) = rank (Z Y − Y ) = rank (X − Y ) .

Step 1 implies then the result. This proves the lemma.

The following lemma is easy to verify and the proof is skipped.

Lemma 25 Let n > 2, H ∈ Rn×n, T ∈ R(n−1)×(n−1) be symmetric, a ∈ Rn−1 and α ∈ R be such
that, in some ordered orthonormal basis {a1, · · · , an−1, ν} of Rn,

H =

(
T a
at α

)
.

Then the following statements hold true.

(i) The Cauchy expansion formula holds, namely

detH = α detT −
〈
T⊗a;a

〉
(35)

where T⊗ is the adjugate of T.

(ii) If H is invertible, then
〈
H−1ν; ν

〉
6= 0 if and only if T is invertible.
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(iii) Furthermore, if H and T are invertible,

H−1 =


T−1 + detT

detH

[
T−1a⊗ T−1a

]
− detT

detH

(
T−1a

)
− detT

detH

(
T−1a

)t detT
detH

 . (36)

We recall that for a symmetric and invertible G ∈ Rn×n, sig (G) denotes the signature of G, i.e.
the number of positive eigenvalues. We conclude with another elementary lemma.

Lemma 26 Let n > 2 and A,B ∈ GLn (R) be symmetric having the same leading principal
(n− 1)× (n− 1) submatrix. Then, sig (A) = sig (B) if and only if detAdetB > 0.

Proof The direct part is straightforward, so we only prove the converse part. Assume that
detAdetB > 0 and let us show that sig (A) = sig (B) . Let T ∈ R(n−1)×(n−1) be the common
leading principal submatrix of A and B. Let λ1 (T ) ≤ · · · ≤ λn−1 (T ) be the eigenvalues of T and
let λ1 (A) ≤ · · · ≤ λn (A) , λ1 (B) ≤ · · · ≤ λn (B) be the eigenvalues of A, B respectively. Using
Cauchy Interlacing Theorem, we find{

λ1 (A) ≤ λ1 (T ) ≤ λ2 (A) ≤ · · · ≤ λn−1 (A) ≤ λn−1 (T ) ≤ λn (A)

λ1 (B) ≤ λ1 (T ) ≤ λ2 (B) ≤ · · · ≤ λn−1 (B) ≤ λn−1 (T ) ≤ λn (B) .
(37)

The proof of the lemma follows from the four following cases.

(i) When λ1 (T ) > 0, it follows from (37) that λi (A) , λi (B) > 0 for every i = 2, · · · , n. Since
detAdetB > 0, this implies that λ1 (A)λ1 (B) > 0. Hence, A,B have the same signature.

(ii) When λn−1 (T ) < 0, the argument is similar to the aforementioned one. Using (37),
λi (A) , λi (B) < 0 for every i = 1, · · · , n − 1. Since detA detB > 0, we have λn (A)λn (B) > 0
which, again, shows that A,B have the same signature.

(iii) When λk (T ) < 0 < λk+1 (T ) for some k ∈ {1, · · · , n− 2} , we use (37) to observe that
λi (A) , λi (B) < 0 for every i = 1, · · · , k, and λj (A) , λj (B) > 0 for every j = k + 2, · · · , n. As
detAdetB > 0, we have λk+1 (A)λk+1 (B) > 0 which forces A,B to have the same signature.

(iv) Finally, if λk (T ) = 0 for some k ∈ {1, · · · , n} , then using (37) again, λi (A) , λi (B) < 0
for every i = 1, · · · , k, and λj (A) , λj (B) > 0 for every j = k + 1, · · · , n which shows that A,B
have the same signature

5.2 Constrained congruence problem
In the sequel, given ν ∈ Rn with |ν| = 1, we write Pν ∈ Rn×n to denote

Pν = In − ν ⊗ ν, i.e. Pν (x) = x− 〈x; ν〉 ν, for every x ∈ Rn.

We therefore have the following result.

Theorem 27 Let ν ∈ Rn with |ν| = 1. Let G,H ∈ Rn×n be symmetric and invertible. Then there
exists Φ ∈ Rn×n invertible satisfying

ΦtH Φ = G, det Φ > 0, Φa = a for every 〈a; ν〉 = 0 (38)

if and only if

(i) PνGPν = PνH Pν , i.e. 〈Ga; b〉 = 〈Ha; b〉 for every 〈a; ν〉 = 〈b; ν〉 = 0

(ii) detGdetH > 0
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(iii) there exists a with 〈a; ν〉 = 0 such that(
G+

√
detG

detH
H

)
a =

[
G− detG

detH
H +

√
detG

detH
Pν (G−H)

]
ν. (39)

Moreover when Φ exists, it is unique and has the following form

Φ = In +

[
a+

(√
detG

detH
− 1

)
ν

]
⊗ ν. (40)

In particular, when rank [PνGPν ] = rank [PνH Pν ] = n− 1, then
〈
H−1ν; ν

〉 〈
G−1ν; ν

〉
6= 0 and

Φ = In +

[√
detG

detH

(
H−1

〈H−1ν; ν〉

)
− G−1

〈G−1ν; ν〉

]
ν ⊗ ν. (41)

If H = In , then (41) gets further simplified to

Φ = In +
[
G+

(√
detG− 1− 〈Gν; ν〉

)
In

]
ν ⊗ ν. (42)

Remark 28 (i) If in (38) one drops the condition det Φ > 0, i.e. if we consider the problem of
finding Φ satisfying

ΦtH Φ = G and Φa = a for every 〈a; ν〉 = 0,

the result is then an easy consequence (see Step 7 below) of Witt theorem (see, for example, Artin
[3, Theorem 3.9]). Note also that (39) is not required in this case.

(ii) Note that the condition Φa = a for every 〈a; ν〉 = 0, is equivalent to the existence of α ∈ Rn
such that

Φ = In + α⊗ ν.
This in turn is equivalent to ν ∧ Φ = ν ∧ In , i.e.

νj (Φik − δik) = νk (Φij − δij) for every i, j, k = 1, · · · , n.

(iii) We observe that we always have

rank [PνGPν ] = rank [PνH Pν ] ∈ {n− 2, n− 1} .

Moreover, rank [PνGPν ] = n− 1 if and only if
〈
G−1ν; ν

〉
6= 0 (see Lemma 25).

(iv) In Step 6 below, we prove that

[PνGPν = PνH Pν and detGdetH > 0] ⇒ sig (G) = sig (H)

where sig (G) and sig (H) denote the signature of G and H respectively.

(v) The a with 〈a; ν〉 = 0 satisfying (39) is unique; this follows from the uniqueness of Φ. It could
also be seen directly, but we do not enter into details.

Proof (Theorem 27) Let {a1, · · · , an−1, ν} be an orthonormal basis of Rn. With respect to this
basis, Pν , H,G have the following matrix representations

Pν =

(
In−1 0
0t 0

)
, H =

(
TH aH
atH αH

)
, G =

(
TG aG
atG αG

)
,
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where TH , TG ∈ R(n−1)×(n−1) are symmetric, aH ,aG ∈ Rn−1 and αH , αG ∈ R. Set

S = {ν}⊥ = span {a1, · · · , an−1} and λ =

√
detG

detH
> 0.

We divide the proof into six steps.
Step 1 (uniqueness of Φ). We start with the uniqueness of Φ satisfying (38). Let us suppose

that there exist Ψ,Φ ∈ GLn (R) satisfying (38). Since Ψx = x = Φx for every x ∈ S, there exist
a, b ∈ Rn such that

Ψ = In + a⊗ ν and Φ = In + b⊗ ν.
Set X = Ψ Φ−1. Then, for some c ∈ Rn, X = In + c⊗ ν. Note that, detX > 0 and

XtHX = Φ−tΨtH Ψ Φ−1 = Φ−tGΦ−1 = H.

Since XtHX = H and detX > 0, we deduce, according to Lemma 23 that X = In , which settles
the uniqueness of Φ satisfying (38).
Step 2 (necessary and suffi cient conditions). The equivalence of the existence of Φ satisfying

(38) with (i), (ii) and (iii) of the theorem follows from the three following immediate facts.
Fact 1. The next equivalence is straightforward[

Φa = a, for every a ∈ S
det Φ = λ

]
⇔

[
Φ =

(
In−1 b
0t λ

)
where b ∈ Rn−1

]
(43)

Fact 2. We also have the following equivalence by direct computation using the uniqueness of Φ
and (43)

 ΦtH Φ = G

det Φ =
√

detG
detH > 0

Φa = a, for every a ∈ S

 ⇔


Φ =

(
In−1 b
0t λ

)
where b ∈ Rn−1

TH = TG := T
T b = aG − λaH

〈b;aG + λaH〉 = αG − λ2αH

 . (44)

Fact 3. We finally have

[Condition (i) in Theorem 27] ⇔ [TH = TG := T ]

while

[Conditions (i), (iii) in Theorem 27] ⇔

 TH = TG := T
T b = aG − λaH

〈b;aG + λaH〉 = αG − λ2αH

 .
This is obtained by straightforward computation, noting that a ∈ S if and only if there exists

b ∈ Rn−1 such that a =

(
b
0

)
.

Step 3 (proof of (40)). We already know that Φ has the following form

Φ =

(
In−1 b
0t λ

)
where b ∈ Rn−1.

We also know that a =

(
b
0

)
. We therefore deduce that

Φ = In + [a+ (λ− 1) ν]⊗ ν = In + a⊗ ν + (λ− 1) ν ⊗ ν

=

(
In−1 0
0t 1

)
+

(
0n−1 b
0t 0

)
+ (λ− 1)

(
0n−1 0
0t 1

)
=

(
In−1 b
0t λ

)
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as wished.

Step 4 (proof of (41)). We now assume that rank [PνH Pν ] = rank [PνGPν ] = n − 1. Recall
below that λ =

√
detG/detH .

Step 4.1 (definition of a). We are now in the case where

H =

(
T aH
atH αH

)
and G =

(
T aG
atG αG

)
with T invertible. So let b be the unique solution of

T b = aG − λaH . (45)

Let us show that the equation

〈b;aG + λaH〉 = αG − λ2αH (46)

follows automatically. Using (45) and Lemma 25, we get (since T−1 detT = T⊗)

〈b;aG + λaH〉+ λ2αH =
1

detT

〈
aG;T⊗aG

〉
− λ2

detT

〈
aH;T⊗aH

〉
+ λ2αH

=
1

detT
(αG detT − detG) +

λ2

detT
(detH − αH detT ) + λ2αH = αG

as wished. Therefore, a =

(
b
0

)
satisfies (45) and (46), and hence (39), by Fact 3 in Step 2.

Step 4.2. Note that

a =

(
b
0

)
= λ

PνH
−1ν

〈H−1ν; ν〉 −
PνG

−1ν

〈G−1ν; ν〉
since, invoking Lemma 25,(

b
0

)
=

(
T−1aG − λT−1aH

0

)
= −

(
detG

detT

)
PνG

−1ν + λ

(
detH

detT

)
PνH

−1ν

while, still by Lemma 25,〈
H−1ν; ν

〉
=

detT

detH
and

〈
G−1ν; ν

〉
=

detT

detG
.

Hence a defined above satisfies (39). That Φ then takes the form of (41) is straightforward.

Step 5 (proof of (42)). We now establish that if H = In , then (41) gets simplified to (42). We
therefore have to prove that

Gν − ν − 〈Gν; ν〉 ν = − G−1ν

〈G−1ν; ν〉 i.e.
〈
G−1ν; ν

〉
[Gν − 〈Gν; ν〉 ν] +

[
G−1ν −

〈
G−1ν; ν

〉
ν
]

= 0

or equivalently 〈
G−1ν; ν

〉
PνGν + PνG

−1ν = 0. (47)

Using (i) (i.e. PνGPν = Pν) we deduce that

G
(
PνG

−1ν
)
−
〈
G
(
PνG

−1ν
)

; ν
〉
ν = PνG

(
PνG

−1ν
)

= PνG
−1ν

and thus
G
(
PνG

−1ν
)
− PνG−1ν =

〈
G
(
PνG

−1ν
)

; ν
〉
ν.
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Simplifying the above equality (noting that G
(
PνG

−1ν
)

= ν −
〈
G−1ν; ν

〉
Gν), we obtain

ν −
〈
G−1ν; ν

〉
Gν − PνG−1ν =

[
1−

〈
G−1ν; ν

〉
〈Gν; ν〉

]
ν,

which is exactly (47).

Step 6 (proof of Remark 28 (iv)). Let H,G ∈ GLn (R) be symmetric satisfying

〈Hx; y〉 = 〈Gx; y〉 , for every x, y ∈ S and detH detG > 0.

We have to show that sig (H) = sig (G) . According to our notations H,G are written as

H =

(
T aH
atH αH

)
and G =

(
T aG
atG αG

)
,

where T ∈ R(n−1)×(n−1) is symmetric, aH ,aG ∈ Rn−1 and αH , αG ∈ R. The claim follows, at once,
from Lemma 26.

Step 7 (proof of Remark 28 (i)). We have to find Φ satisfying

ΦtH Φ = G and Φa = a for every 〈a; ν〉 = 0 (48)

Since H and G have same signature (see Step 6 above), we find an invertible Ψ ∈ Rn×n satisfying
ΨtH Ψ = G.We next define a linear map f : S = {ν}⊥ → Rn by f = Ψ−1

∣∣
S
. Invoking Hypothesis

(i) of the theorem, we find, for every x, y ∈ S,

〈Gf (x) ; f (y)〉 =
〈
ΨtH Ψf (x) ; f (y)

〉
= 〈H Ψf (x) ; Ψf (y)〉 = 〈Hx; y〉 = 〈Gx; y〉 .

Using Witt theorem, we find an invertible F ∈ Rn×n such that, for every x, y ∈ S,

F |S = f and 〈GF (x) ;F (y)〉 = 〈Gx; y〉 .

Finally define Φ ∈ Rn×n as Φ = ΨF and observe that it solves (48), as wished.

6 Appendix 2: Some properties of Lipschitz sets
The following results have been communicated to us by Nicola Fusco [12]. In the sequel Hk denotes
the k−dimensional measure in Rn, while Ln stands for the Lebesgue measure in Rn. We also let
BR ⊂ Rn be the ball centered at 0 and of radius R > 0. We start with the following result.

Lemma 29 Let n ≥ 1 and let R > 0. Given a set E ⊂ BR with Ln (E) = 0, for every x, y ∈ BR
there exists a piecewise smooth (and thus Lipschitz) curve γ : [0, 1]→ BR such that γ (0) = x and
γ (1) = y with the property that

L1 ({t ∈ [0, 1] : γ (t) ∈ E}) = 0.

Proof We argue by induction on the dimension.
If n = 1 and x, y ∈ (−R,R) , with x < y, we have L1 ([x, y] ∩ E) = 0. Therefore, since the
curve γ (t) = (1− t)x + t y is a diffeomorphism between [0, 1] and [x, y] , we have also that
L1 ({t ∈ [0, 1] : γ (t) ∈ E}) = 0.

Assume n ≥ 2 and that the result is true in dimension n − 1. If x 6= y, we may assume without
loss of generality that −R < xn < yn < R. Observe that for Hn−1−a.e. ν ∈ ∂B1 the intersection
between E and the straight line Lx,ν passing through x and parallel to ν has H1−measure zero.
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Indeed, using polar coordinates, performing a change of variable and interchanging the order of
integration, we have

0 = Ln (E) =

∫ ∞
0

dr

∫
∂Br(x)

χE(z)dHn−1
z =

∫ ∞
0

rn−1 dr

∫
∂B1

χE (x+ rν) dHn−1
ν

=

∫
∂B1

dHn−1
ν

∫ ∞
0

rn−1χE (x+ rν) dr.

Thus, for Hn−1-a.e. ν ∈ ∂B1

0 =

∫ ∞
0

rn−1χE (x+ rν) dr =

∫ ∞
0

χE (x+ rν) dr = H1 (E ∩ Lx,ν) .

Recall that by Fubini theorem there exists xn < t < yn such that Hn−1 (E ∩ π) = 0, where π is
the horizontal plane π = {zn = t} .
Let ν1, ν2 ∈ ∂B1 be two directions such that

H1 (E ∩ Lx,ν1) = H1 (E ∩ Ly,ν2) = 0.

Using the property above it is clear that we may always choose ν1 and ν2 so that Lx,ν1 ∩π∩BR 6= ∅
and Ly,ν2 ∩ π ∩ BR 6= ∅. Set Lx,ν1 ∩ π ∩ BR = {x̄} and Ly,ν2 ∩ π ∩ BR = {ȳ} . By the induction
assumption there exists a piecewise smooth (and thus Lipschitz) curve γ̃ : [0, 1]→ π such that

γ̃ (0) = x̄, γ̃ (1) = ȳ and H1 ({t ∈ [0, 1] : γ̃ (t) ∈ E ∩ π}) = 0.

Then, the curve γ is obtained by joining the segment connecting x and x̄, the curve γ̃ and the
segment connecting ȳ and y, up to a suitable reparametrization.
We now conclude with the following proposition (for the definition of Lipschitz boundary, see
Definition 6).

Proposition 30 Let Ω be a bounded open set with Lipschitz boundary. If ∂Ω is connected, then
for every x, y ∈ ∂Ω there exists a Lipschitz curve γ : [0, 1]→ ∂Ω such that γ (0) = x, γ (1) = y and

〈ν (γ (t)) , γ′ (t)〉 = 0 H1 a.e. t ∈ [0, 1] ,

where ν (·) stands for the exterior normal to ∂Ω.

Proof Since ∂Ω is connected, to prove the assertion it is enough to show that for every x ∈ ∂Ω
there exists a neighbourhood Ux of x such that for every y ∈ Ux ∩ ∂Ω there is a Lipschitz path
connecting x and y with the required properties. To this end we fix x ∈ ∂Ω; we may assume,
without loss of generality, that x = 0. By definition of Lipschitz boundaries, we can find r, ε > 0
and a Lipschitz function ϕ : Br ⊂ Rn−1 → (−ε, ε) such that, upon rotation and relabeling of
coordinates if necessary,

Ω ∩ Cr,ε = {x ∈ Cr,ε : xn < ϕ (x′)} and ∂Ω ∩ Cr,ε = {x ∈ Cr,ε : xn = ϕ (x′)}

where Cr,ε = Br × (ε, ε) . Let

E = {x′ ∈ Br : ϕ is not differentiable at x′} .

Clearly Ln−1 (Br \ E) = 0. Recall that if z = (z′, zn) ∈ ∂Ω ∩ Cr,ε with z′ ∈ Br \ E, then the
exterior normal to ∂Ω at z is given by

ν (z) =
1√

1 + |∇ϕ (z′)|2
(−∇ϕ (z′) , 1) . (49)
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Set Ux = Cr,ε and let y ∈ ∂Ω ∩ Cr,ε . From Lemma 29 there exists a piecewise smooth curve
γ̃ : [0, 1]→ Br such that

γ̃ (0) = 0, γ̃ (1) = y′ and γ̃ (t) 6∈ E H1 a.e. t ∈ [0, 1] .

Finally define γ : [0, 1]→ ∂Ω by

γ (t) = (γ̃ (t) , ϕ (γ̃ (t))) for every t ∈ [0, 1] .

Clearly γ is Lipschitz, γ (0) = 0 and γ (1) = y. Moreover, for H1 a.e. t ∈ (0, 1), the map γ̃ is
differentiable at t and the function ϕ is differentiable at γ̃ (t) , therefore γ is differentiable at t and,
using (49),

〈γ′ (t) ; ν (γ (t))〉 = 〈(γ̃′ (t) ,∇ϕ (γ̃ (t)) · γ̃′ (t)) ; ν (γ (t))〉 = 0.

The proposition is therefore proved.

7 Appendix 3: ellipticity
We here discuss the ellipticity (see [10] for details) of the operator

LH (u) (x) = (Du (x))
t
HDu (x)

where x ∈ Ω ⊂ Rn is an open set, H ∈ Rn×n and

u ∈ S =
{
u ∈ C1 (Ω;Rn) : detDu (x) 6= 0, ∀x ∈ Ω

}
.

Define, for fixed (x, ξ, u) ∈ Ω× Rn × S, the operator Ax,ξ,u : Rn → Rn×n through

Ax,ξ,u (λ) = (λ⊗ ξ)tHDu (x) + (Du (x))
t
H (λ⊗ ξ) .

Definition 31 (Ellipticity) The differential operator LH is said to be elliptic (over Ω and S) if
for every fixed (x, ξ, u) ∈ Ω× Rn × S with ξ 6= 0, then λ = 0 ∈ Rn is the only solution of

Ax,ξ,u (λ) = 0.

Proposition 32 The operator LH is elliptic (over Ω and S) if and only if Hs is invertible.

Proof Observe that Ax,ξ,u (λ) = 0 is equivalent to[(
(Du (x))

t
H
)
λ
]
⊗ ξ + ξ ⊗

[(
(Du (x))

t
Ht
)
λ
]

= 0

and thus to 
[(

(Du (x))
t
Hs

)
λ
]
⊗ ξ + ξ ⊗

[(
(Du (x))

t
Hs

)
λ
]

= 0[(
(Du (x))

t
Ha

)
λ
]
⊗ ξ − ξ ⊗

[(
(Du (x))

t
Ha

)
λ
]

= 0.

(i) Assume first that Hs is invertible. Setting µ =
(

(Du (x))
t
Hs

)
λ, we find that the first set

of equations is equivalent to µ⊗ ξ + ξ ⊗ µ = 0. When ξ 6= 0, the only solution is then µ = 0. Since(
(Du (x))

t
Hs

)
is invertible, we have the claim.

(ii) If Hs is not invertible, we can find λ 6= 0 with λ ∈ ker
(

(Du (x))
t
Hs

)
and therefore[(

(Du (x))
t
Hs

)
λ
]
⊗ ξ + ξ ⊗

[(
(Du (x))

t
Hs

)
λ
]

= 0 for every ξ 6= 0.
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Then two cases can happen. Either λ ∈ ker
(

(Du (x))
t
Ha

)
and thus[(

(Du (x))
t
Ha

)
λ
]
⊗ ξ − ξ ⊗

[(
(Du (x))

t
Ha

)
λ
]

= 0 for every ξ 6= 0

concluding the claim. Or λ /∈ ker
(

(Du (x))
t
Ha

)
and hence ξ =

(
(Du (x))

t
Ha

)
λ 6= 0 satisfies

trivially [(
(Du (x))

t
Ha

)
λ
]
⊗ ξ − ξ ⊗

[(
(Du (x))

t
Ha

)
λ
]

= 0.

Therefore Ax,ξ,u (λ) = 0 has a non-trivial solution; concluding the proof of the proposition.
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