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Abstract. We prove that the next possible dimension after the
maximal n2+2n for the Lie algebra of local projective symmetries
of a metric on a manifold of dimension n > 1 is n2 − 3n+ 5 if the
signature is Riemannian or n = 2, n2 − 3n + 6 if the signature is
Lorentzian and n > 2, and n2−3n+8 elsewise. We also prove that
the Lie algebra of local affine symmetries of a metric has the same
submaximal dimensions (after the maximal n2 + n) unless the sig-
nature is Riemannian and n = 3, 4, in which case the submaximal
dimension is n2 − 3n+ 6.

Introduction

Consider a linear torsion-free connection Γ = (Γi
jk) on a smooth

connected manifold Mn of dimension n ≥ 2. A vector field v is called
a projective symmetry, or a projective vector field, if its local flow sends
geodesics (considered as unparameterized curves) to geodesics. Since
S.Lie [L] it is known that projective vector fields form a Lie algebra,
which we denote by p(Γ). A vector field v is called an affine symmetry,
or an affine vector field, if its local flow preserves Γ; affine vector fields
also form a Lie algebra a(Γ), which we call affine algebra. Obviously
a(Γ) ⊆ p(Γ) is a subalgebra.

It follows from E.Cartan [C] that dim(p(Γ)) ≤ n2+2n and a connec-
tion with the maximal dimension of the projective algebra is projectively
flat, i.e. in a certain local coordinate system the geodesics are straight
lines. I.Egorov [E1] proved that the next possible dimension of p(Γ),
the so-called submaximal dimension (this is the maximal dimension
among all non-flat structures), is n2 − 2n + 5 for n > 2. For n = 2,
it was known since S. Lie [L] and A.Tresse [T] that the submaximal
dimension is 3.

However, for n > 2, the projective structures realizing this dimension
are non-metric, in the sense there exists no (local) metric such that its
Levi-Civita connection has dim(p) = n2 − 2n + 5. This observation
follows for example from [EM, (3.5)], which can be viewed as a system
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of linear equations on the components of the metric g, whose coeffi-
cients come from the components of the projective Weyl tensor W . By
Egorov [E1], in a certain coordinate system the connection with the
submaximal dimension of the projective algebra has only two non-zero
term Γ1

23 = Γ1
32 = x2. Direct calculation shows that the only nonvanish-

ing components of the projective Weyl tensor are W 1
232 = 1 = −W 1

322;
substitution of this into [EM, (3.5)] yields a system of linear equations
such that any solution g is a degenerate symmetric tensor.

Non-metrizability of the Egorov’s submaximal projective structure
was obtained independently (and by another method) by S.Casey and
M.Dunajski. In fact, it follows instantly from our first main result
(below δ2n is the Kronecker symbol, i.e. 1 for n = 2 and 0 else):

Theorem 1. Let Γ be the Levi-Civita connection of a metric g on Mn.
Assume that Γ is not projectively flat at least at one point (i.e. g is not
a metric of constant sectional curvature). Then the maximal possible
dimension of the symmetry algebra p(g) = p(Γ) is equal to

• n2 − 3n+ 5, if g has Riemannian signature,1

• n2 − 3n+ 6− δ2n, if g has Lorentzian signature,
• n2 − 3n+ 8, if g has the general signature.

The bound for the general signature was obtained by Mikes [Mi1].
Our approach however differs from his.

Notice that in the global setting, i.e. if we replace the projective
algebra by a projective group, the sub-maximal projective connection is
metric. The reason is that there are locally-projectively-flat manifolds
whose projective group actually has dimension n2 + n [Y] (this is the
global submaximal bound).

If M is closed and the metric g is Riemannian of non-constant sec-
tional curvature, then the sub-maximal bound is

(
n
2

)
+ 1 for all n ̸= 4;

for n = 4 this dimension is
(
n
2

)
+ 2 = 8. Indeed by [M1, M2], on closed

Riemannian manifolds of nonconstant sectional curvature, the projec-
tive group acts by isometries, so the claim follows from [Yan, E2, KN].
The corresponding models are precisely S1 × Sn−1 for n ̸= 4, possibly
quotient by a finite group, and CP 2 for n = 4.

The problem of determining the dimension gaps (lacunes in the ter-
minology of the Russian geometry school) between the maximal and
sub-maximal structures is classical, see the discussion in [K2].

1Within this paper we consider the metrics up to multiplication by ±1 (since
multiplication by a nonzero constant does not change the projective and affine alge-
bras). In particular both signatures (+,−, . . . ,−) and (−,+, . . . ,+) are Lorentzian
for us, and we view positively and negatively definite metrics as Riemannian.
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Let us now discuss an analogous question for the affine algebra. The
maximal dimension of the space of affine symmetries of an affine con-
nection is classically known to be n2 + n. The submaximal dimension
is n2 and this was also found by I.Egorov [E3]. The corresponding con-
nections are projectively flat, and for projectively non-flat connections
the affine algebra has maximal dimension n2 − 2n+ 5 [E1].

Again, all these submaximal connections are non-metric. Our second
main result concerns submaximal dimensions of the affine algebras a(Γ)
of Levi-Civita connections Γ.

Theorem 2. Non-flat metrics g on a manifold Mn have maximal di-
mension of the affine algebra a(g) = a(Γ) equal to

• n2 − 3n+ 5 + δ3n + δ4n, if g has Riemannian signature,
• n2 − 3n+ 6− δ2n, if g has Lorentzian signature,
• n2 − 3n+ 8, if g has the general signature.

In the process of the proof of Theorems 1 and 2 we essentially de-
scribe all metrics for the submaximal dimension of the projective and
affine algebras of a metric connection.

Throughout the paper, all our considerations are local (so isomor-
phisms to the models are understood either locally or up to a covering).

Let us finally specify the gap ∆p
1 between the maximal dimension

of the projective algebra and the submaximal one, and the gap ∆p
2

between the submaximal projective and submaximal metric projective
dimensions (of un-restricted signature):

n 2 3 4 5 6 7 8 9 . . .
∆p

1 5 7 11 15 19 23 27 31 . . .
∆p

2 0 2 1 2 3 4 5 6 . . .

For affine algebras the corresponding gaps are the following (with
the obvious modification to define ∆a

i )

n 2 3 4 5 6 7 8 9 . . .
∆a

1 2 3 4 5 6 7 8 9 . . .
∆a

2 1 3 4 7 10 13 16 19 . . .

1. Degree of mobility and useful estimates.

Two metrics g and ḡ on a manifold M are projectively equivalent,
if any g-geodesic is a reparameterization of a ḡ-geodesic. This can be

expressed [S2] through the (1, 1)-tensor a = ḡ−1g ·
∣∣∣det(ḡ)det(g)

∣∣∣1/(n+1)

, where

ḡ−1 is the inverse of ḡ (ḡikḡkj = δij), and ḡ−1g is the contraction (ḡikgkj):
the metrics g and ḡ are geodesically equivalent if and only if

(n+ 1)aij,k = ais,s gjk + asj,sδ
i
k. (1)
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In the coordinate-free notation the above formula reads

(n+ 1)∇a = div(g−1a)⊗ g + div(a)⊗ Id .

Dimension D(g) of the solution space Sol(1) of this linear PDE sys-
tem on unknown a is called the degree of mobility of g.

Let us denote by I(g) the algebra of infinitesimal isometries (Killing
vector fields), by H(g) the algebra of homotheties, and by C(g) the
algebra of the conformal vector fields. These are given by the equation
Lvg = λ ·g on the vector field v, where λ is respectively zero, a constant
or an arbitrary function. Clearly I(g) ⊆ H(g) ⊆ C(g).

In this paper we shall actively use the following two estimates due
to [Mi1, Theorem 1 and Theorem 2]:

dim p(g) ≤ dim I(g) +D(g) (2)

dim p(g) ≤ dimH(g) +D(g)− 1. (3)

Let us prove these estimates (our proof is different from that of Mikes
and is much simpler). It is well known (see [M2] and references therein)
that v ∈ p(g) iff

a = g−1Lvg − 1
n+1

Trace(g−1Lvg) · Id (4)

is a solution of (1). Denote by ϕ : p(g) → Sol(1) the linear map sending
v to the right hand side of (4). Since Ker(ϕ) = I(g), the rank theorem
yields inequality (2).

In order to obtain the second estimate, we observe that (1) has the
obvious one-dimensional subspace of constant solutions R · Id. Let
π : Sol(1) → Sol(1)/(R · Id) be the projection. Then the linear map
π ◦ ϕ : p(g) → Sol(1)/(R · Id) has kernel H(g) and (3) follows.

Below we will use the following results on the degree of mobility. It
is always is bounded so:

D(g) ≤
(
n+ 2

2

)
,

the equality corresponds to the space of constant curvature [S2]. The
next biggest (submaximal) dimension in any signature is [Mi2]:

D(g)sub.max =

(
n− 1

2

)
+ 1. (5)

Finally, let us recall from [KM, Lemma 6] that if the Weyl conformal
curvature tensor of the metric g vanishes, but g is not of constant
sectional curvature, then D(g) ≤ 2.
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2. Riemannian case, dimension n > 3

In this section we assume that the metric is Riemannian, n > 3.
Denote by Sn

c the space form of constant curvature c, i.e. the sphere
Sn ⊂ Rn+1 of radius c > 0, the Euclidean space Rn for c = 0, or the
hyperbolic space Hn

c for c < 0 equipped with the standard metrics.
Riemannian manifolds with abundant isometries were studied (among

others) by H.C.Wang [W], K.Yano [Yan], I.Egorov [E2], S.Kobayashi
and T.Nagano [KN]. According to the local versions of their results,
the Riemannian metrics g of non-constant sectional curvature on Mn

with dim I(g) ≥
(
n−1
2

)
+ 3, n > 2, are from the following list:

(a) dim I(g) =
(
n
2

)
+2 = 8, n = 4. The corresponding g is a Kähler

metric on a complex surface with constant nonzero holomorphic
sectional curvature (e.g. Fubini-Study metric on CP 2).

(b) dim I(g) =
(
n
2

)
+1. The corresponding g is the standard metric

on the product Mn = R1 × Sn−1
c (c ̸= 0).

(c1) dim I(g) =
(
n
2

)
. The corresponding g = dt2 + a(t)2ds20 is the

warped product metric, where ds20 is the standard metric on
Sn−1
c and a(t) is a generic function (such that g is not of constant

sectional curvature and not as in (b)).
(c2) dim I(g) =

(
n
2

)
, n = 6. M is a Kähler manifold of complex di-

mension 3 of constant nonzero holomorphic sectional curvature.
(d1) dim I(g) =

(
n−1
2

)
+3. The corresponding Mn = S2

c ×Sn−2
c̄ , and

the constants c, c̄ are not simultaneously zero.
(d2) dim I(g) =

(
n−1
2

)
+ 3, n = 8. The corresponding M is a Kähler

manifold of complex dimension 4 with constant nonzero holo-
morphic sectional curvature.

In all these cases, except possibly (c1), H(g) = I(g). Thus the
submaximal dimension of the homothety algebra is dimH(g) =

(
n
2

)
+1

for n ̸= 4. Consequently in the cases (b) and (c1), where the metric g
is conformally flat and so D(g) ≤ 2, we obtain from (3):

dim p(g) ≤
(
n

2

)
+ 1 + 1 < n2 − 3n+ 5.

Consider the spaces (a,c2,d2) of nonzero constant holomorphic sec-
tional curvature. Then D(g) = 1 (since it is always so for the irre-
ducible symmetric spaces [S1]) and we conclude similarly that dim p(g)
is strictly less than the bound from Theorem 1.

For the case (d1) we have, combining (3) and (5):

dim p(g) ≤
(
n− 1

2

)
+ 3 +

(
n− 1

2

)
= n2 − 3n+ 5.



6 BORIS KRUGLIKOV & VLADIMIR MATVEEV

Finally, if the metric has dim I(g) <
(
n−1
2

)
+ 3, then dimH(g) <(

n−1
2

)
+ 3. Indeed, if I(g) acts transitively, then H(g) = I(g) unless

the metric is flat everywhere2. In the intransitive case, M is (locally)
foliated by codimension 1 leaves, to which the Killing fields are tan-
gent. On these leaves of dimension (n − 1) the metric is not of con-
stant sectional curvature (otherwise we have the case (c)), and thus
dim I(g) ≤

(
n−2
2

)
+ 1 and hence dimH(g) ≤

(
n−2
2

)
+ 2. Thus in this

case dim p(g) is strictly less than the bound of Theorem 1.
It follows from the above estimates and the analysis of the obtained

models that the equality for n > 3 is attained only in the following
sub-case of (d1):

M = S2
c × Rn−2, c ̸= 0

(in the case of the second factor Sn−2
c̄ having curvature c̄ ̸= 0 all projec-

tive transformations are isometries). The projective transformations of
this M consist of 3-dimensional space of isometries of the first factor
(that is so(3) or sl(2) for c > 0 or c < 0 respectively) plus arbitrary
affine transformations x 7→ A · x+ b of the second.

3. Lorentzian signature, dimension n > 3

In this section we consider Lorentzian manifolds of dimension n > 3.
Complete classification of such metrics with the largest dimensions of
I(g) is not known to us, so we approach the problem differently.

It is still true that for g of non-constant sectional curvature dim I(g)
does not exceed

(
n
2

)
+ 1 in the Lorentzian signature (in fact, the in-

equality fails only when n = 4 for the Riemannian and split signature
[E3]). If the metric g is conformally flat, but not of constant sectional
curvature, then by (2) we get

dim p(g) ≤
(
n

2

)
+ 1 + 2 < n2 − 3n+ 6.

On the other hand, if (M, g) is not conformally flat, then by [DT, KT]
dimH(g) ≤ dimC(g) ≤

(
n−1
2

)
+ 4 and so, using (3) and (5), we get

dim p(g) ≤
(
n− 1

2

)
+ 4 +

(
n− 1

2

)
= n2 − 3n+ 6.

This estimate is achieved on the Lorentzian pp-wave metric, trivially
extended to dimension n, Mn = M3

pp(x, y, z) × Rn−3(u4, . . . , un), see

2Indeed, if φ∗g = λ · g for a map φ : M → M , then φ∗∥Rg∥2 = λ−2∥Rg∥2. Thus
either λ = 1 or Rg(x) = 0 for any fixed point x of φ. Given transitivity of I(g), for
any x there is a λ-homothety φ with φ(x) = x, whence the claim.



SUBMAXIMAL METRIC PROJECTIVE AND AFFINE STRUCTURES 7

[KT]:

g = 2dx dy + z2dy2 + dz2 +
n∑

i=4

du2
i .

This metric has 1
2
(n2 − 3n+ 8) Killing vector fields

∂x, ∂y, ey(∂z − z ∂x), e−y(∂z + z ∂x), ∂ui
, ui∂x − y ∂ui

, ui∂uj
− uj∂ui

,

1 pure homothety

2x ∂x + z ∂z +
n∑

i=4

ui∂ui

and 1
2
(n2 − 3n+ 2) pure affine fields

y ∂x, ui∂x, ui∂uj
+ uj∂ui

(the latter is easy to check as the connection is rather simple: Γ1
23 =

Γ1
32 = 2z, Γ3

22 = −z and the other Christoffel symbols are zero). There
are no non-affine projective fields. Thus the totality of the linearly
independent projective symmetries is dim p(g) = n2 − 3n + 6. This
proves the claim for n > 3.

Let us note that the submaximal model described above is (visibly)
not unique. We can take any metric from the list of Kručkovič [Kr]
(see Section 5) that has 4 Killing fields and 1 essential homothety/affine
field, and extend it trivially to n dimensions, achieving the same result:
The new metric g will have (n−2)-dimensional space of parallel vector
fields, yielding (n − 1)(n − 2) affine symmetries, to which we add the
4 fields coming from the 3D metric (3 Killing fields + 1 homothety,
as one Killing field that is parallel was already counted). All maximal
models are obtained in this way (this observation is based on the fact
[FM, Theorem 5] that parallel (0,2) tensors are linear combinations of
symmetric products of parallel vectors).

Finally we remark that p(g) = a(g) for all Lorenzian metrics g of
submaximal dimension of the projective algebra. Indeed, if there was
an essentially projective symmetry, then by [FM, Theorem 3]

dim p(g) ≤ dim I(g) +D(g)− 1. (6)

According to [DT] for a conformally non-flat metric g dimC(g) ≤(
n−1
2

)
+ 4. It also follows from the construction in [DT] that at any

point x ∈ M the grading 0 component s0(x) of the (associated graded
to the naturally filtered) symmetry group s satisfies: so(1, n − 1) ̸⊃
s0 ⊂ co(1, n − 1). Thus I(g) ̸= C(g)3 and so dim I(g) ≤

(
n−1
2

)
+ 3.

3Consider v ∈ C(g) that satisfies vx = 0, dxv ∈ s0(x) \ so(1, n − 1). Then
Lvg(x) = λ gx for λ ̸= 1, and so v is not an infinitesimal isometry.
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Combining this estimate, (6) and (5) we obtain dim p(g) ≤ n2−3n+5,
which contradicts submaximality of the projective algebra.

4. The proof for the general signature

Consider now the metric of signature (p, q), where both p, q ≥ 2, so
n = p + q ≥ 4. If the metric g is conformally flat and not of constant
sectional curvature, then by (2) we get

dim p(g) ≤
(
n

2

)
+ 2 + 2 < n2 − 3n+ 8.

Next, by the results of [KT], for non-conformally flat metric structure
we have

dimC(g) ≤
(
n− 1

2

)
+ 6.

and so, using H(g) ⊆ C(g), by (2) and (5) we get

dim p(g) ≤
(
n− 1

2

)
+ 6 +

(
n− 1

2

)
= n2 − 3n+ 8.

The equality is attained on the metric of the split signature pp-waves
trivially extended from 4 to n dimensions:

gpp = dx dw + dy dz + y2 dw2 +
n∑

i=5

ϵi du
2
i .

This metric has conformal Weyl curvature tensor CW = (dy ∧ dw)2,
and is Einstein (Ricci-flat). Moreover the projective symmetries coin-
cide with its affine symmetries. We have C(gpp) = H(gpp), and the
generators of this algebra were calculated in [KT]:

∂x, ∂z, ∂w, ∂y − 2 yw ∂x + w2∂z, y ∂x − w ∂z,

(z + yw2) ∂x − w ∂y − 1
3
w3∂z, x ∂z − y ∂w + 2

3
y3∂x,

x ∂x + y ∂y − z ∂z − w ∂w, 2 x ∂x + y ∂y + z ∂z,

∂ui
, ϵiui ∂uj

− ϵjuj ∂ui
, 2ϵiui ∂z − y ∂ui

, 2ϵiui ∂x − w ∂ui
.

In addition, gpp has the following genuine affine symmetries (not ho-
motheties)

y ∂z, w ∂x, y ∂x + w ∂z, 2ϵiui ∂z + y ∂ui
,

2ϵiui ∂x + w ∂ui
, ϵiui ∂uj

+ ϵjuj ∂ui
.

Thus the total number of linearly independent projective symmetries
is dim p(g) = n2 − 3n+ 8 as required in Theorem 1.
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5. Dimension n = 3

Consider the special case n = 3, where g necessarily has Riemannian
or Lorentzian signature.

In this dimension the Weyl conformal curvature vanishes identically,
and so (even for non-conformally flat metrics) D(g) ≤ 2, see [KM].
Since the submaximal dim I(g) ≤ 4 we get by (2): dim p(g) ≤ 6.

On the other hand, in the Riemannian case4 H(g) ≤ 4, so (2) implies
dim p(g) ≤ 5. Also if g is not conformally flat, then dimC(g) ≤ 4 by
[KT]. Henceforth we get the bound dim p(g) ≤ 5 in this case too.

The local metrics in 3 dimensions with dim I(g) = 4 were classified
by G.Kručkovič [Kr]. There are 8 different cases. The first three are
the Lorentzian metrics:

(1) g1 = k dx2 + 2(2− c)ecx dx dy + e2xdz2, (c ̸= 2)
(2) g2 = k dx2 + e2x(2 dx dy − dz2),

(3) g3 = k dx2 + ex
√
4−ω2

(
2 dx dy − 4

ω2 cos
2(ωx

2
) dz2

)
.

For all these metrics dim I(g) = 4, dimH(g) = 5, D(g) = 2, so both
estimates (2) and (3) state dim p(g) ≤ 6.

And in fact, this bound is achieved for all 3 cases. The infinitesimal
automorphisms can be shown explicitly. For instance, for the first
metric g1 (c ̸= 2) the algebra of projective symmetries has generators

∂y, ∂z, z ∂y+ex(c−2)∂z, ∂x−cy ∂y−z ∂z,

(
2 y +

k e−cx

(c− 2)c

)
∂y+z ∂z, e

cx∂y.

The first four are Killing fields, the fifth is a homothety and the last is
a projective field for the metric g (in fact it is an affine field for g).

For c = 0 the homothety has to be changed to (2y + k
2
x) ∂y + z ∂z,

and the genuine projective field has to be changed to 2y ∂y + z ∂z.
These formulae were obtained using the DifferentialGeometry pack-

age of Maple, and can be easily verified by hand. The formulae for
g2 and g3 are obtained similarly.

The other metrics (4)-(8) in [Kr] can be of both possible signatures.
The metrics of cases (4), (5) and (6) in the list of Kručkovič are not

conformally flat, and for them direct calculation yields H(g) = I(g),
D(g) = 1. Thus by (3) we get 4 ≤ dim p(g) ≤ 4, i.e. all projective
transformations in these cases are isometries, and the metrics are not
of submaximal projective symmetry.

The metrics in cases (7) and (8) of loc.cit. are conformally flat, but
for them H(g) = I(g), D(g) = 2, whence dim p(g) ≤ 5. In fact, in these
cases the manifold is locally M3 = R1 × S2

c , where c ̸= 0. There is one

4Recall from Section 2 that H(g) = I(g) if I(g) is transitive. It is easy to check
that dim I(g) ≤ 3 if I(g) is intransitive.
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genuine affine symmetry (scaling along R1), so we have dim p(g) = 5.
Again for the Lorentzian signature these M3 are not submaximal, but
for Riemannian signature they are. This finishes investigation of the
3-dimensional case.

6. Dimension n = 2

Dimension 2 is another exception to the above arguments. Again
here the problem is classical: the 2D projective structures were studied
by S. Lie [L], R. Liouville [Li] and A. Tresse [T]. In the latter reference
it was proven that the submaximal dimension of the symmetry algebra
is 3 and the submaximal projective structures were classified.

The two projective structures arising in this way (see also [Ma]),
when written as the 2nd order ODE on the plane, are

x y′′ = ϵ(y′)3 − 1
2
y′ (ϵ = ±1). (7)

It is easy to check they are metrizable; the corresponding metrics are

g = x dx2 − 2 ϵx dy2. (8)

The projective symmetry algebra is sl(2) realized on the plane R2(x, y)
via the vector fields ∂y, x ∂x + y ∂y, 2xy ∂x + y2∂y.

Another form of (7) was considered in [BMM]: y′′ = ϵ e−2x(y′)3+ 1
2
y′.

It is obtained from (7) by the transformation x 7→ −ϵex.
Yet in [K1] this projective connection was written differently:

y′′ = ϵ(xy′ − y)3.

The symmetry algebra sl(2) in this realization has the standard linear
representation on R2(x, y): x ∂x − y ∂y, x ∂y, y ∂x. A metric corre-
sponding to this projective connection is

g =
(dx
y2

− x dy

y3

)2

− ϵ
dy2

y8
.

The complete list of the corresponding metrics is contained in [BMM].
This finishes the proof of Theorem 1.

7. Affine symmetries of a metric

In this Section we prove Theorem 2, estimating a(g) ⊆ p(g).
Recall that (for any n ≥ 2) if the Levi-Civita connection Γ of the

metric g is projectively flat, then g has constant curvature. This is a
variant of Beltrami’s theorem, see [EM]. Thus if g is not of constant
sectional curvature, we get the bound

dim a(g) ≤ dim p(g) ≤ n2 − 3n+ σ, (9)
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where σ = 5, 6 or 8 is the same number, depending on the signature
of g and dimension n of M , as in Theorem 1.

We have to show that this bound is achieved within the class of met-
rics of nonconstant sectional curvature. But indeed, the submaximal
projective symmetry algebras of the models, studied in the preceding
sections consisted of affine fields only, provided n > 2. Thus we con-
clude that the bound is actually sharp in the considered class.

If g has nonzero constant sectional curvature (in this case dim a(g)
is also less than the maximal value n2 + n), then a(g) = I(g) and we
get

dim a(g) =

(
n+ 1

2

)
. (10)

For n ≥ 5 and for n = 2 this does not exceed the first bound (and is
strictly less than it for n > 5) in the Riemannian case, and it never
exceeds it (for n > 4, is strictly less than it) for the Lorentzian sig-
nature. For the Riemannian signature and n = 3, 4 the bound in (9)
exceeds the bound in (10) by 1. Thus in this case the constant sectional
curvature spaces give the submaximal dimension of p(g).

In the general signature (p, q), p, q ≥ 2, n = p+ q ≥ 4, the bound of
(10) is strictly less than that of (9), thus nothing new is added here.

Dimension 2 is again special. If the affine connection is not flat,
then a(g) = H(g). Indeed, since the curvature is nonzero, the holo-
nomy algebra is full. The maximal dimension of H(g) in the case of
non-constant scalar curvature is 2 (this is achieved, for example, in the
case of metric (8) via its first two symmetries). Consequently the sub-
maximal dimension of a(g) is 3 and is achieved for the round sphere, the
Lobachevsky plane or de Sitter metric. Herewith the claim is proved.
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