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Abstract

We give a complete list of 2-dimensional metrics that admit an essential projective vector field.

This solves a problem explicitely posed by Sophus Lie in 1882.

1 Introduction

1.1 Main definitions and results

Let g be a smooth Riemannian or pseudo-Riemannian metric on a 2-dimensional disc D2.

Definition 1. A vector field v is called projective, if its flow takes (unparameterized) geodesics to
geodesics.

As Lie showed [22], the set of vector fields projective with respect to a given g forms a Lie algebra
(for our paper it is sufficient that it is a vector space). We will denote this Lie algebra by p(g).

The following two problems were posed by Sophus Lie1 in 1882:

Problem 1 (Lie). Find all metrics g such that dim (p(g)) = 1.

Problem 2 (Lie). Find all metrics g such that dim (p(g)) ≥ 2.

The second problem of Lie was completely solved in [9]. The present paper gives a solution of the
first problem of Lie. The reader should consult [9, 10] for the history of the question, for the connection
with the results of Aminova [1, 2], and for the description of the circle of ideas, though we recall some
of them in §2.1.

The biggest family of metrics admitting projective vector field consists of metrics admitting infini-
tesimal homotheties. Recall that a vector field v is a infinitesimal homothety for a metric g, if Lvg = λg
for a certain constant λ ∈ R, where Lv denotes the Lie derivative. In this definition, we allow λ = 0,
so that Killing vector fields are also infinitesimal homotheties.

This “biggest” family of metrics is very well understood: it is well known and it was explicitly
mentioned by Lie in the paper [22], that in the coordinates (x, y) such that v = ∂

∂x such metric g is

given by the matrix eλx

(
E(y) F (y)
F (y) G(y)

)
, where E,F,G are functions of y only.

Thus, the first Lie Problem as Sophus Lie himself understood it is to find all g admitting no
infinitesimal homotheties, but such that dim (p(g)) = 1. From the paper [22] it is clear that Lie
considered this problem only locally, in small neighborhood of a generic point.

The next three theorems solve the Problem 1 (of Lie) above.

∗this article has an appendix of Alexei V. Bolsinov, Vladimir S. Matveev, and Giuseppe Pucacco
†Institute of Mathematics, FSU Jena, 07737 Jena Germany, vladimir.matveev@uni-jena.de
1German original from [22], Abschn. I, Nr. 4,

Problem I: Es wird verlangt, die Form des Bogenelementes einer jeden Fläche zu bestimmen, deren geodätische Kurven

eine infinitesimale Transformation gestatten.
Problem II: Man soll die Form des Bogenelementes einer jeden Fläche bestimmen, deren geodätische Kurven mehrere

infinitesimale Transformationen gestatten.
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Definition 2. Two metrics g and ḡ on D2 are called projectively equivalent, if they have the same
geodesics considered as unparameterized curves.

Theorem 1. Assume the metric ǧ on D2 admits a projective vector field v. Assume in addition that
for any open U ⊂ D2 the restriction of ǧ to U admits no infinitesimal homothety.

Then, in a neighborhood of almost every point there exists a coordinate system (x, y) (in certain
cases we consider the correspondent complex coordinates (z = x + i · y, z̄ = x − i · y)), such that in
this neighborhood the vector field v and a certain metric g projectively equivalent to ǧ are given by the
formulas below.

1. (Liouville Case) ds2
g = (X(x) − Y (y))(X1(x)dx2 + Y1(y)dy2), v = ∂

∂x + ∂
∂y , where

(a) X(x) = 1
x , Y (y) = 1

y , X1(x) = c · e−3x

x , Y1(y) = e−3y

y .

(b) X(x) = tan(x), Y (y) = tan(y), X1(x) = c · e−3λx

cos(x) , Y1(y) = e−3λy

cos(y) .

(c) X(x) = c · eνx, Y (y) = eνy, X1(x) = e2x, Y1(y) = εe2y.

2. (Complex-Liouville Case) ds2
g = (h(z) − h(z))(h1(z)dz2 − h1(z)dz̄2), v = ∂

∂x (= ∂
∂z + ∂

∂z̄ ),
where

(a) h(z) = 1
z , h1(z) = C · e−3z

z .

(b) h(z) = tan(z), h1(z) = C · e−3λz

cos(z) .

(c) h(z) = C · eνz, h1(z) = e2z.

3. (Jordan-block Case) ds2
g = (Y (y) + x)dxdy, v = v1(x, y) ∂

∂x + v2(y) ∂
∂y , where

(a) Y = e
3
2y ·

√
|y|

y−3 +
∫ y

y0
e

3
2ξ ·

√
|ξ|

(ξ−3)2 dξ,

v1 = y−3
2

(
x +

∫ y

y0
e

3
2ξ ·

√
|ξ|

(ξ−3)2 dξ

)
, v2 = y2.

(b) Y = e−
3
2 λ arctan(y) ·

4
√

y2+1

y−3λ +
∫ y

y0
e−

3
2 λ arctan(ξ) ·

4
√

ξ2+1

(ξ−3λ)2 dξ,

v1 = y−3λ
2

(
x +

∫ y

y0
e−

3
2 λ arctan(ξ) ·

4
√

ξ2+1

(ξ−3λ)2 dξ

)
, v2 = y2 + 1.

(c) Y (y) = y
1
η , v1(x, y) = x, v2 = ηy,

(d) Y (y) = y2, v1(x, y) = 2x, v2 = y,

where c ∈ R \ {0}, y0 ∈ R, λ ∈ R, ν, η ∈ (0, 4], ν 6= 1, η 6∈ { 1
2 , 1}, C ∈ C, |C| = 1, ε ∈ {−1, 1}

are constants, and h and h1 denote the complex-conjugate to h and h1.

Moreover, in the case 1b, if λ = 0, then c 6= ±1. In the case 2b, if λ = 0, then C 6= ±1. In the
case 1c, if ν = 2, then c 6= −ε. In the case 2c, if ν = 2, then C 6= ±1.

Remark 1. We do not claim in Theorem 1 that all metrics projectively equivalent to g admit no
infinitesimal homotheties. In view of Theorem 3, it is easy to understand whether a metric ḡ projectively
equivalent to g from Theorem 1 admits an infinitesimal homothety: indeed, by Theorem 3, the metrics
from Theorem 1 have unique (up to multiplication by a constant) projective field field. Thus, it is
sufficiently to check whether v is an infinitesimal homothety.

Moreover, from the proof of Theorems 1, 2 it will be clear that for every metric g from Theorem 1
the set of metrics projectively equivalent to g and admitting an infinitesmal homothety is very small
(has dimension at most 1 in the two- or three-dimensional space of metrics projectively equivalent to
g.)

But certain metrics projectively equivalent to g may admit infinitesimal homotheties. For example,
in the case 1c, the vector field v is already an infinitesimal homothety for g.
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Clearly, projective equivalence is a symmetric, reflexive and transitive relation on the space of all
metrics on U ⊆ D2, i.e., it is an equivalence relation. The equivalence class of a metric g with respect
to projective equivalence will be called the projective class of a metric (we give an equivalent analytic
definition in §2.1), it contains all metrics projectively equivalent to g. Clearly, if v is a projective
vector field for a metric from a projective class, it is a projective vector field for every metric from the
projective class. Theorem 1 describes (in a neighborhood of almost every point) all projective classes
admitting essential projective vector fields. The next theorem describes all metrics of such projective
classes.

For two metrics (three metrics, respectively) g and ḡ on U ⊆ D2 (g, ḡ, and g̃, respectively) and
for α, β ∈ R (α, β, γ ∈ R, respectively) such that the formula (1) ((2), respectively) has sense, let us
denote by ĝ[g, ḡ, α, β] (ĝ[g, ḡ, g̃, α, β, γ], respectively) the metric (1) ((2), respectively):

ĝ[g, ḡ, α, β] :=
α · g/(det(g))2/3 + β · ḡ/(det(ḡ))2/3

(
det
(
α · g/(det(g))2/3 + β · ḡ/(det(ḡ))2/3

))2 (1)

ĝ[g, ḡ, g̃, α, β, γ] :=
α · g/(det(g))2/3 + β · ḡ/(det(ḡ))2/3 + γ · g̃/(det(g̃))2/3

(
det
(
α · g/(det(g))2/3 + β · ḡ/(det(ḡ))2/3 + γ · g̃/(det(g̃))2/3

))2 (2)

In these formulas, g, ḡ, and g̃ should be understood as (2× 2)-matrices of metrics in a local coordinate
system. In §2.1 and §4.1, we will explain the geometry and the hidden linear structure staying behind
this formula. In particular, it will be clear that the formula is independent of the coordinate system
(though one can check it “by hands”). Moreover, if the metrics g and ḡ (g, ḡ, and g̃, respectively) are
projectively equivalent, then ĝ[g, ḡ, α, β] (ĝ[g, ḡ, g̃, α, β, γ], respectively) is also projectively equivalent
to g. Of cause, the metrics ĝ[g, ḡ, α, β] (ĝ[g, ḡ, g̃, α, β, γ], respectively) are defined only for α, β, γ ∈ R

such that det
(
α · g/(det(g))2/3 + β · ḡ/(det(ḡ))2/3

)
6= 0

(det
(
α · g/(det(g))2/3 + β · ḡ/(det(ḡ))2/3 + γ · g̃/(det(g̃))2/3

)
6= 0, respectively).

Denote by G(g, ḡ) (G(g, ḡ, g̃), respectively) the following set of metrics:

G(g, ḡ) := {ĝ[g, ḡ, α, β] | α, β ∈ R such that ĝ[g, ḡ, α, β] is defined } . (3)

G(g, ḡ, g̃) := {ĝ[g, ḡ, g̃, α, β, γ] | α, β, γ ∈ R such that ĝ[g, ḡ, g̃, α, β, γ] is defined } . (4)

As we explained above, if the metrics g and ḡ (g, ḡ, and g̃, respectively) are projectively equivalent,
then G(g, ḡ) (G(g, ḡ, g̃), respectively) is a subset of their projective class.

Now, every metric g from Theorem 1 always admits an nontrivial projectively equivalent metric: as
we explain in Appendix, for arbitrary data X(x), X1(x), Y (y), Y1(y), h(z), h1(z),

• the metric g from the Liouville Case of Theorem 1 is projectively equivalent to the metric

dsḡ =

(
1

X(x)
− 1

Y (y)

)(
X1(x)

X(x)
dx2 +

Y1(y)

Y (y)
dy2

)
, (5)

• the metric g from the Complex-Liouville Case of Theorem 1 is projectively equivalent to the
metric

dsḡ =

(
1

h(z)
− 1

h(z)

)(
h1(z)

h(z)
dz̄2 − h1(z)

h(z)
dz2

)
, (6)

• the metric g from the Jordan-block-Case of Theorem 1 is projectively equivalent to the metric

dsḡ = −2(Y (y) + x)

y3
dxdy +

(Y (y) + x)2

y4
dy2. (7)
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Such metric ḡ projectively equivalent to g will be called canonical projectively equivalent metric2.
Moreover, the metric g from the case 3d of Theorem 1 admits one more metric projectively equivalent

to it and essentially different from the canonically projectively equivalent metric given by (7), namely
g̃ given by

ds2
g̃ =

9 dx 2

(y2 + x)
2
(3x − y2)

6 − 4
y
(
9x + y2

)
dx dy

(3x − y2)
6
(y2 + x)

3 +
12xdy2

(y2 + x)
2
(3x − y2)

6 (8)

Theorem 2. The projective class of every metric g from cases 1a–3c of Theorem 1 coincides with
G(g, ḡ), where ḡ is the canonical projectively equivalent metric. The projective class of the metric g
from the case 3d of Theorem 1 coincides with G(g, ḡ, g̃), where ḡ is the canonical projectively equivalent
metric, and g̃ is the metric given by (8).

We see that Theorem 1 describes all projective classes admitting essential projective vector field,
and Theorem 2 describes all metrics of these projective classes. Theorem 3 below implies that all these
metrics actually have dim(p) = 1, because by [9] a metric admitting two independent projective vector
fields admits a Killing vector field.

Theorem 3. None of the metrics from Theorem 1 admits an nontrivial Killing vector field.

Theorems 1, 2, 3 give a complete solution of the Problem 1 (of Lie) above.

1.2 New ideas compared with [9]

The theory of projective transformations and projectively equivalent metrics has a long and fascinating
history. First non-trivial examples of projectively equivalent metrics and projective transformations
were discovered by Lagrange [21] and Beltrami [4]. Recently, there has been a considerable growth in
interest in projective differential geometry, due to new methods that allow one to solve interesting new
and classical problems, see for example [7, 16, 28, 29, 34, 35].

The present paper also solves an interesting classical problem explicitly stated by Sophus Lie. In a
certain sense, this paper is a continuation of [9], where another problem stated by Sophus Lie (Problem
2 from §1.1) was solved; let us recall the main idea of [9] and comment in brief on new (with respect
to [9]) ideas of the present paper.

Let S be a projective structure on a surface, i.e., equivalence class of torsion-free affine connections
with the same unparameterized geodesics (in §2.1 we will explain that in a coordinate system projective
structures are parametrized by four functions). Certain projective structures contain a Levi-Civita
connection of a metric, in this case we say that the metric is compatible with the projective structure,
and the projective structure is metrizable.

Projective structures with projective vector fields are easy to classify: in particular, projective
structures admitting two projective vector fields were essentially described by Lie himself [22] and
Tresse [44]. In order to solve Problem 2 of Lie, one needs to understand which projective structures
admitting two projective vector fields are metrizable.

By an old and now well-understood observation of R. Liouville [23], metrics compatible with a
projective structure can be found as nondegenerate solutions of an overdetermined system of linear
partial differential equation, whose coefficients are given by the projective structure. There exists
an algorithmic way (sometimes called prolongation-projection method) how to understand whether
an overdetermined system of linear partial differential equation has a nontrivial solution. In [9], the
(shortcut of this) algorithm was applied and all metrics whose projective structures admit two projective
vector fields were described. Moreover, recently the algorithmic way how to understand whether a given
projective structure is metrizable was essentially simplified in [10].

Unfortunately, it is hard to apply this method to find all metric admitting one projective vector
field. Indeed, projective structures admitting one projective vector field depend explicitly on arbitrary
functions of one variable. Prolongation-projection method (or the results of [10]) applied to such
projective structures results in a completely intractable nonlinear system of ODEs, yielding no insight.

2The notion is not coordinate independent and has sense only if the metric has the form as in Theorem 1
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In order to solve Problem 1 of Lie we used another method. We used that the system of PDE
defining compatible metrics is projectively invariant, hence the solution space is invariant under Lie
derivative by a projective vector field. If a metric admits an essential projective vector field, the family
of compatible metrics is at least two-dimensional. The question of finding projective structures with a
2-dimensional family of compatible Riemannian metrics was posed by Beltrami [4] and solved by Dini
[12]. The solution depends explicitly on two arbitrary functions, each of one variable. However, we are
interested in all signatures: even if the original metric g is Riemannian, other metrics in the family
need not be. In signature (+,–), there are more solutions: in addition to straightforward an analogue
of the Riemannian solution, there is a “complex” form and a “degenerate” case. Although this may
have been known to Darboux and other authors, Appendix of the paper provides a straightforward and
self-contained description of pairs of projectively equivalent metrics.

Returning to the main thread of the paper, the strategy now is to analyse the linear action of the
Lie derivative along a projective vector field on the space of solutions to the equation for compatible
metrics. In the nontrivial case, this action turns out to be invertible with a 2-dimensional invariant
subspace, see §2.2. The form of the metrics corresponding to this subspace is thus given by one of
the three cases in Appendix. There are also three possibilities for the linear action: it may have a
single 1-dimensional eigenspace, complex conjugate eigenvalues or two real eigenvalues. Consequently
there are nine separate cases to consider, each of which gives rise to a system of six PDEs for the
at most two unknown functions (of one variable) in the metrics and two unknown components of the
projective vector field. The Leibniz rule for the Lie derivative implies that the system is linear in the
six first derivatives of these functions. It turns out that the system is solvable for these first derivatives
(with independent variables not appearing explicitly). This leads to their explicit integration in each
case. The result is the explicit classification of metrizable projective structures admitting at least
one projective vector field and compatible with at least two nonproportional metrics, i.e., essentially,
Theorem 1.

However, this is not yet an explicit classification of metrics with a nontrivial vector field, as an
explicit form has only been found for one metric in the same projective class. The classification
is completed by Theorem 2, in which all metrics projectively equivalent to those in Theorem 1 are
described, and Theorem 3, which shows that the dimension of the space of projective vector fields is
exactly 1. The proofs of Theorems 2, 3 is standard (though quite nontrivial technically). In order to
prove Theorem 2, we apply the (adapted version of the) prolongation-projection method to show that
no other solution exists. In order to prove Theorem 3, we use a certain trick known to Darboux and
Eisenhart, see Section 5 for more details.

2 Schema of the proof of Theorem 1

Roughly speaking, we reformulate our problem as 9 systems of PDE and solve them. In this section
we will explain how we do it. More precisely,

• in §2.1, we review the theoretic results we will use.

• In §2.2, we prove two additional (relatively simple) results.

• In §2.3, we explain the main trick that allowed us to reduce our problem to 9 systems of PDE
which are relatively easy an can be solved explicitely, probably after an appropriate coordinate
change. We will also explain in what sense the systems are easy.

In Section 3, we solve these 9 systems of PDE.

2.1 General theory

can be found in [9, 10, 24, 25, 26, 27, 42] and in more classical sources which in particular are acknowl-
edged in [9]. The present paper should be viewed as a continuation of [9], it could be useful for a reader
to have [9] at hand while reading the present paper.

We will work on a small disc D2 in local coordinates (x, y).
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Definition 3. Projective connection is a second order ordinary differential equation of the form

y′′ = K0(x, y) + K1(x, y) y′ + K2(x, y) (y′)2 + K3(x, y) (y′)3, (9)

where the functions Ki : D2 → R.
For any symmetric affine connection Γ = (Γi

jk(x, y)), the projective connection associated to Γ is

y′′ = −Γ2
11 + (Γ1

11−2Γ2
12) y′ − (Γ2

22−2Γ1
12)(y

′)2 + Γ1
22(y

′)3. (10)

We say that a metric g belongs to the projective class of the projective connection (9), if the
projective connection (9) is associated to the Levi-Civita connection of g.

As it has been known since the time of Beltrami [4], the projective connection accociated to Γ
carries all information about unparameterized geodesic of Γ. More precisely, for every solution y(x)
of (10), the curve

(
x, y(x)

)
is, up to reparametrization, a geodesic of Γ. In particular, two metrics

are projectively equivalent, if and only if they belong to the projective class of the same projective
connection. Therefore, according to the definition in §1.1, the projective class of g is the projective
class of the projective connection associated to the Levi-Civita connection of g.

Let us reformulate (following [23, 9]) the condition

“the metric E(x, y) dx2 + 2F (x, y) dx dy + G(x, y) dy2 belongs to the projective class of (9)”

as a system of PDE on E,F,G.
Consider the symmetric nondegenerate matrix

a =

(
a11 a12

a12 a22

)
:= det(g)−2/3 · g =

1

(EG − F 2)2/3

(
E F
F G

)
. (11)

Lemma 1 ([23, 9]). The projective connection associated to the Levi-Civita connection of the metric
g is (9) if and only if the entries of the matrix a = det(g)−2/3 · g satisfy the linear PDE system

a11x − 2
3 K1 a11 + 2K0 a12 = 0

a11y + 2 a12x − 4
3 K2 a11 + 2

3 K1 a12 + 2K0 a22 = 0

2 a12y + a22x − 2K3 a11 − 2
3 K2 a12 + 4

3 K1 a22 = 0

a22y − 2K3 a12 + 2
3 K2 a22 = 0






(12)

In the formula (11) above, a should be understood as a section of

S2D ⊗ (Λ2D)
− 4

3 , (13)

where Λ2 is the one-dimensional bundle of volume forms. Indeed, after a coordinate change the trans-
formation rule of an element of (13) and of det(g)−2/3 · g coincide.

In particular, the Lie derivative of a = det(g)−2/3 · g is well defined (as a mapping from the sections

of S2D ⊗ (Λ2D)
− 4

3 to itself), is independent on the coordinate system, and is given by the formula

Lva = Lv

(
det(g)−2/3 · g

)
= det(g)−2/3 · Lvg − 2

3
det(g)−2/3traceg(Lvg) · g, (14)

where traceg(Lvg) :=
∑

i,j (Lvg)ij gij .

Remark 2. The formula (11) is invertible: a = g/det(g)2/3 if and only iff g = a/det(a)2. The mapping

a 7→ a/det(a)2 can be viewed as a mapping from S2D ⊗ (Λ2D)
− 4

3 to S2D, which is defined for

nondegenerate points of S2D ⊗ (Λ2D)
− 4

3 only, and sends them into nondegenerate points of S2D. In
particular, if a nondegenerate a is a solution of (12), then the metric g = a/det(a)2 belongs to the
projective class of (9).

The system (12) has the following nice properties, which will be used later:
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• It is linear and of finite type. In particular, its space of solutions (that will be denoted by A) is
a finite-dimensional (dim(A) ≤ 6, [23] ) vector space.

• Moreover, if dim(A) ≥ 4, then every metric from the projective class admits a Killing vector field
[18].

• The system (12) depends on the projective connection only and is therefore projectively invariant.
In particular, for every projective vector field v and for every solution a ∈ A we have Lva ∈ A.
Thus, Lv is a (linear) mapping from A to itself.

We will also use the following two statements: first is due to Knebelman [17], another proof could
also be found in [9, 20, 24, 42, 33, 5], one more proof easily follows from the theory of invariant
operators, see for example [3]. The second is combination of the formula (11) and the connection
between projectively equivalent metrics and integrable systems due to [25, 24], see also Darboux [11,
§608], see also of [9, §2.4].

• If a metric g admits a Killing vector field, then every metric projectively equivalent to g also
admits a Killing vector field.

• a is a solution of the system (12) corresponding to (the projective connection accociated to the
Levi-Civita connection of) a metric g, if and only if the function

I : TD2 → R , I(ξ) = det(g)2/3 ·
∑

i,j

aijξ
iξj (15)

is an integral for the geodesic flow of g.

Remark 3.

1. Tensor products with powers of (Λ2D)
1
3 appear naturally in the theory of projectively equivalent

metrics and projective connections, see [13].

2. A multidimensional generalization of the formula a := det(g)−2/3 g and of Lemma 1 can be found
in [14], see also [2, 6, 37, 41].

3. The formula (14) appears naturally in investigation of projective transformations of surfaces, see
[30, 31, 32], and can be generalized for all dimensions, see [36, 43].

2.2 Every nontrivial solution a of the system (12) is nondegenerate at
almost every point, and Lv : A → A is nondegenerate.

Within this paragraph we assume that the restriction of g to every open neighborhood U ⊆ D2 admits
no Killing vector field. We denote by A the space of solutions of the system (12) corresponding to the
projective connection associated to the Levi-Civita connection of g.

Lemma 2. Assume a ∈ A is not identically zero. Then, the set of the points where a is degenerate is
nowhere dense (in the topological sense, i.e., the compliment to this set is open and everywhere dense.).

Proof. The set of the points where a is degenerate is evidently a closed set. Assume there exists a
neighborhood U such that a is degenerate at every point of U . In a local coordinate system (x1, x2)

in the neighborhood U a is given by a symmetric (2 × 2)−matrix a =

(
a11 a12

a12 a22

)
. If the kernel of a

is two-dimensional at every point of a certain neighborhood U ⊆ D2, then the restriction of a to U
is identically zero. Since the PDE system (12) is linear and is of finite type, a ≡ 0 on the whole D2.
Then, the set of the points where the kernel of U is precisely one-dimensional is everywhere dence in
U . Without loss of generality, passing to a smaller neighborhood if it is necessary, we may assume that
the kernel of a is precisely one-dimensional at every point of U . Take a local coordinate system (x, y)
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on an open subset U ′ ⊆ U such that the kernel of a is the linear hull of ∂
∂y . Then, in this coordinate

system the matrix a has the form a =

(
α(x, y) 0

0 0

)
, where α vanishes at no point of U ′.

Then, the integral (15) of the geodesic flow of g is equal to det(g)2/3 · α
(
ξ1
)2

. Then, the function

Ilin :=
√

det(g)2/3 · |α|ξ1 is also an integral. Since the integral Ilin is linear in velocities, the metric
g|U ′ admits a Killing vector field. The contradiction proves Lemma 2.

Lemma 3. For every projective field v, the mapping Lv : A → A is nondegenerate.

Remark 4. See §2.1 for interpretation Lv as a linear mapping from A to A.

Proof of Lemma 3. Assume there exists an nontrivial ā ∈ A such that Lvā = 0. In a neigborhood
of the point such that v 6= 0 take a coordinate system (x, y) such that v = ∂

∂x . Then, the components
of Lvā are the x− derivatives of the components of ā, and the condition Lvā = 0 implies that the
components of ā are independent of x. Then, the components of the metric ḡ := ā/(det(ā))

2
, which is

defined almost everywhere by Lemma 2, are independent of x. Then, v is a Killing vector field for ḡ.
Since, as we explained in §2.1, see Remark 2 there, the metric g is projectively equivalent to ḡ, then,
by result of Knebelman [17] we recalled in §2.1, the metric g also admits a Killing vector field in a
neighborhood of almost every point. The contradiction proves Lemma 3.

2.3 How to reduce Theorem 1 to 9 = 3 × 3 Frobenius systems of PDE

Recall that a PDE-system of the first order is Frobenius, if the derivatives of all unknown functions
are explicitly given as functions of the unknown functions. Frobenius systems are easy to handle:
there exists an algorithmic way to reduce them to ODE. In our case, the Frobenius systems are simple
enough so we could explicitly solve them. Note that the most straightforward way to reformulate the
problem as a system of PDE, i.e., if we write down the conditions that a vector field ∂

∂x is projective
with respect to g as a system of 4 PDE on 3 unknown components of the metric, leads to a much more
complicated system of PDE which is impossible ( = we did not find a way one can do it) to solve by
standard methods. In fact, the system is only slightly overdetermined (4 equations on 3 unknowns),
and the standard prolongation-projection method will require too many (more than 20) operations of
prolongation and prolongation-projections.

The reduction of Theorem 1 to 9 Frobenius systems of PDE is based on the description of projectively
equivalent metrics in Appendix, and on the following two trivial statements from linear algebra:

• For every nondegenerate linear mapping L : R
2 → R

2 there exists a basis in R
2 such that for the

appropriate const ∈ R the matrix of const · L is given by

(a)

(
1 1

1

)
, (b)

(
λ −1
1 λ

)
, or (c)

(
λ

1

)
. (16)

Moreover in the matrix (c) we can assume λ ∈ (−∞,−1] ∪ [1,∞).

• Every nondegenerate linear mapping L : R
3 → R

3 has a two-dimensional invariant subspace such
that the matrix of the restriction of const · L to this subspace is one of the matrices (16) in a
certain basis.

Let us explain how we reduced Theorem 1 to analysing 9 Frobenius systems of PDE.
Suppose the metric g has an essential projective vector field v and admits no Killing vector field.

Consider the projective connection associated to the Levi-Civita connection of the metric, and the
space A of the solutions of (12). Since the system (12) is projectively invariant, for every a ∈ A the
Lie derivative Lva is also a solution. Thus, Lv can be viewed as a linear mapping Lv : A → A.

The case dim(A) = 1 is not interesting for us. Indeed, in this case, all metrics projectively
equivalent to g have the form const · g, which in particular imply that all projective vector fields are
infinitesimal homotheties, and in Theorem 1 we excluded such metrics.
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The case dim(A) ≥ 4 is also not interesting for us. Indeed, in this case, as we recalled in §2.1,
the metric g admits a Killing vector field.

If dim(A) = 2 or 3, then, as we explained above, A has a two-dimensional invariant subspace Â
such that the restriction of Lv to Â is given by one of the matrices (16). If {a, ā} ∈ Â is the basis such
that Lv is given by, say, the matrix (b) from (16), we have (the matrices (a) and (c) will be treated in
§3.1 and §3.3, respectively)

Lva = λa − ā
Lvā = a + λā.

}
(17)

By Lemma 2 from §2.2, without loss of generality we can assume that the the matrices of a, ā are
nondegenerate, since they are so at almost every point. Then, a and ā come from two certain metrics
by formula (11), see Remark 2. By Lemma 1, the metrics are projectively equivalent to g; without loss
of generality we can think that the metric corresponding to a is the initial metric g. We will call ḡ the
metric corresponding to ā, so that

a = det(g)−2/3 · g , ā = det(ḡ)−2/3 · ḡ.

Then, in view of (14), the condition (17) reads

Lvg = 2
3 traceg(Lvg)g + λg −

(
det(g)
det(ḡ)

)2/3

ḡ

Lv ḡ = 2
3 traceḡ(Lv ḡ)ḡ +

(
det(ḡ)
det(g)

)2/3

g + λḡ.





(18)

From other side, by Theorem A from Appendix, there exists a coordinate system (x, y) such that
the metrics g and ḡ are given by one of the model forms. Substituting the model metrics g, ḡ from
Appendix, we obtain the system of 6 = 3 + 3 PDE3 of the first order on the data of the metrics and
on the unknown projective vector field v.

Let us now count the number of first derivatives of the unknown functions in this system of 6 PDE.
In every model case, the data of metrics g and ḡ, i.e., X and Y in Liouville case, h in the Complex-
Liouville Case, and Y in the Jordan-block Case, have at most two first derivatives. Together with four
derivatives of the components of the vector field v, it gives us at most 6 first derivatives of the unknown
functions.

Thus, in the system (18) the number of highest ( = first) derivatives is not greater than the number
of the equations. It appears that in all cases it is possible to solve4 the system with respect to the
first derivatives, i.e., to bring the systems in the Frobenius form, and then to solve it using standard
methods.

We see that we have three choices for the matrix from (16), and three choices for the model metrics
g, ḡ. Thus, we have 3 × 3 = 9 Frobenius systems to solve. We will consequently do it in Section 3.

Remark 5. In a certain sense, certain system from these nine are closely related, and can be obtained
one from another by a kind of complexification. Indeed, as Remark A from Appendix shows, Complex-
Liouville Case could be understand as the complexification of the Liouville Case. Moreover, over the
field of complex numbers, the matrix (a) from (16) has the same type as the matrix (b): they both
have two different eigenvalues. One can indeed formalize these arguments and reduce the number of
systems to solve to four. But the nine systems are so simple that it is shorter to solve them than to
explain how to make a solution of one using a solution of another.

3 Calculations related to proof of Theorem 1

Within the whole section we assume that

• D2 is a smooth disc with a (Riemannian or pseudoriemannian) metric g and coordinates (x, y),

3each of two equations of (18) is an equation on a symmetric (2×2)−matrix, i.e., is equivalent to three scalar equations
4since the system (18) and its analog for matrices (a), (c) of (16) is linear in the derivatives, it is an exercise in linear

algebra
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• the smooth vector field v is projective with respect to the metric g,

• the restriction of the metric g to any open subset U ⊂ D2 admits no Killing vector field.

Within the whole section we work in the coordinates (x, y); g will always denote the metric we work
with, and v = (v1, v2) its projective vector field. As in §1.1, we reserve the notation ε for ±1.

We consider the projective connection (9) associated to the Levi-Civita connection of the metric g,
and denote by A the space of the solutions of the equation (12). We assume dim(A) = 2 or 3, see §2.1
for explanation why we can do it.

Let Â ⊆ A be a two-dimensional subspace invariant with respect to the Lie derivative: Lv(a) ∈ Â
for every a ∈ Â (we explained its existence in §2.3).

Then, in view of Lemma 3 and after the multiplication of v by an appropriate nonzero constant, in
a certain basis {a, ā} of Â the matrix of Lv is as in (16).

We have three possibilities for the matrices in (16), we will carefully consider them in §§3.1, 3.2,
3.3.

3.1 The matrix of Lv is as (a) in (16)

Assume that in the basis {a, ā} the matrix of Lv : Â → Â is given by

(
1 1

1

)
.

Without loss of generality, in view of Lemma 2 and Remark 2, we can assume that a = det(g)−2/3 ·
g , ā = det(ḡ)−2/3 · ḡ for certain metrics g, ḡ from the projective class of (9). Then, as we explained
in §2.3, the condition

Lv

(
a
ā

)
=

(
1 1

1

)(
a
ā

)
or, equivalently,

{
Lva = a + ā
Lvā = ā.

(19)

is equivalent to the following condition:

Lvg − 2
3 traceg(Lvg) · g = g +

(
det(g)
det(ḡ)

)2/3

ḡ

Lv ḡ − 2
3 traceḡ(Lv ḡ) · ḡ = ḡ.

}
(20)

As we explained in Appendix, in a neighborhood of almost every point the metrics g and ḡ have
one of three normal forms. We will carefully consider all three cases.

3.1.1 Liouville Case

Assume they have the Liouville form, i.e.,

ds2
g = (X − Y )(dx2 + εdy2), ds2

ḡ =

(
1

Y
− 1

X

)(
dx2

X
+ ε

dy2

Y

)
. (21)

After some calculations we obtain that the Lie derivatives of g and ḡ are given by the matrices




X ′v1 + 2X ∂v1

∂x − 2Y ∂v1

∂x − Y ′v2

(
∂v1

∂y + ε∂v2

∂x

)
(X − Y )

(
∂v1

∂y + ε∂v2

∂x

)
(X − Y ) ε

(
X ′v1 − Y ′v2 + 2X ∂v2

∂y − 2Y ∂v2

∂y

)



 ,




Y X′v1(2Y −X)+2XY

∂v1
∂x (X−Y )−Y ′X2v2

Y 2X3

(X−Y )( ∂v1
∂y Y +ε

∂v2
∂x X)

Y 2X2

(X−Y )( ∂v1
∂y Y +ε

∂v2
∂x X)

Y 2X2 ε
X′Y 2v1+XY ′v2(Y −2X)+2XY (X−Y )

∂v2
∂y

Y 3X2




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and the system (20) is equivalent to the following system of 6 PDE’s on the unknown functions v1(x, y),
v2(x, y), X(x), and Y (y).

Y ′v2

3 − X′v1

3 + 2
3

∂v1

∂x (X − Y ) − 4
3

∂v2

∂y (X − Y ) = (Y + 1)(X − Y )

(X − Y )
(

∂v1

∂y + ε∂v2

∂x

)
= 0

X′v1

3 − Y ′v2

3 − 2
3

∂v2

∂y (X − Y ) + 4
3

∂v1

∂x (X − Y ) = (1 + X)(Y − X)

Y X ′v1 − 2Y ∂v1

∂x (X − Y ) − v2Y
′(3X − 2Y ) + 4Y ∂v2

∂y (X − Y ) = 3Y (Y − X)

(X − Y )
(

∂v1

∂y Y + ε∂v2

∂x X
)

= 0

X ′v1(3Y − 2X) − Y ′Xv2 − 2X ∂v2

∂y (X − Y ) + 4∂v1

∂x X(X − Y ) = 3X(Y − X)






(22)

We see that (in view of nondegeneracy of the metric (X−Y )(dx2+εdy2)) the second and fifth equations
of (22) imply that v1 depends on the variable x only, v2 depends on the variable y only. Then, all
unknown functions in the system (22) are functions of one variable only, so the system (22) is actually a
system of ODE (of first order). We see that it is linear in the derivatives. Solving it for the derivatives
of the unknown functions X(x), Y (y), v1(x), v2(y), we obtain that (22) is equivalent to the following 4
ODE:

v′
1 = −X

2
− 3

2
, v′

2 = −3

2
− Y

2
, Y ′v2 = −Y 2 , X ′v1 = −X2. (23)

These equations can already be solved; since the solution is quite complicated and is given in terms
of Lambert functions, instead of solving the system we change the coordinates (probably passing to a
smaller neighborhood) such that in the new coordinates the metrics g and ḡ and the vector field v are
given by elementary functions.

Since by assumption the metric g admits no Killing vector field, the functions X,Y are not constant
in every neighborhood, which in particular implies that for almost every point the functions v1, v2 are
not zero in a neighborhood of the point. In such neighborhood consider the coordinate change

(x, y) =
(
x(xold), y(yold)

)
given by dx =

1

v1
dxold dy =

1

v2
dyold. (24)

After this coordinate change the “old” equation X ′v1 = −X2 reads Ẋ = −X2, where Ẋ := dX
dx ,

Ẏ := dY
dy , v̇1 := dv1

dx , v̇2 := dv2

dy are derivatives with respect to the new coordinates. The equation can

be solved, its nonconstant solution is X(x) = 1
x+c . Since the formula (24) defines the coordinates up to

addition of arbitrary constants, without loss of generality we assume c = 0, so that X = 1
x . Similarly,

in the new coordinates the equation v′
1 = −X

2 − 3
2 reads 2v̇1 = −(X + 3)v1. After substitution X = 1

x

we obtain 2v̇1 = −
(

1
x + 3

)
v1, which can be easily solved, the solution is (v1(x))2 = C1

x ·e−3x. Similarly,

in the new coordinates the functions v2, Y are given by (v2(y))2 = C2

y · e−3y , Y (y) = 1
y .

Thus, the metrics g and ḡ and the projective vector field v are given by

ds2
g = (X − Y )(dx2

old ± dy2
old) =

(
1
x − 1

y

)(
C1

x e−3xdx2 + C2

y e−3ydy2
)

,

ds2
ḡ =

(
1
Y − 1

X

) (dx2
old

X ± dy2
old

Y

)
= (y − x)

(
C1e

−3xdx2 + C2e
−3ydy2

)
,

v = v1
∂

∂xold
+ v2

∂
∂yold

= ∂
∂x + ∂

∂y .

We see that the metric g and the vector field v are as in case 1a of Theorem 1.

3.1.2 Complex-Liouville Case

Assume the metric g and ḡ have the Complex-Liouville form from Theorem A of Appendix, i.e.

ds2
g = 2ℑ(h)dxdy,

ds2
ḡ = −

(
ℑ(h)

ℑ(h)2+ℜ(h)2

)2

dx2 + 2 ℜ(h)ℑ(h)
(ℑ(h)2+ℜ(h)2)2 dxdy +

(
ℑ(h)

ℑ(h)2+ℜ(h)2

)2

dy2.
(25)
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Remark 6. It could be helpful for understanding to know the complex version of the formulas (25): it
is

ds2
g = − 1

4 (h(z) − h(z))
(
dz̄2 − dz2

)

ds2
ḡ = − 1

4

(
1

h(z)
− 1

h(z)

)(
dz̄2

h(z)
− dz2

h(z)

)
,

}
(26)

where z̄ denotes the complex-conjugate to z, h(z) denotes the complex-conjugate to h(z), and ḡ does
not mean complex-conjugate to g, see Remark 1 from Appendix.

We see that the formula above is in a certain sense complexification of (21), the role of X(x) plays
h(z) and the role of Y (y) plays h(z̄). We will see later, in all paragraphs related to Complex-Liouville
Case, that all equations related to Complex-Liouville Case could be viewed as complexification of the
correspondent equations from the Liouville Case. Actually, one can show it advance, and avoid the
calculation, but it appears that it is shorter to do the calculations than to explain why they could be
avoided.

Arguing as in the previous paragraphs, we obtain that the the conditions (20) are equivalent to a
system of linear 6 PDE of the first order. Solving this system with respect to the first derivatives, and
using the Cauchy-Riemann conditions for the holomorphic function h, we obtain that the system is
equivalent to the system

v2
y = v1

x = −ℜ(h)
2 − 3

2

−v1
y = v2

x = −ℑ(h)
2

ℜ(h)x = ℑ(h)y =
v1(ℑ2(h)−ℜ2(h))−2v2ℜ(h)ℑ(h)

(v2)2+(v1)2

−ℜ(h)y = ℑ(h)x = − v2(ℑ2(h)−ℜ2(h))+2v1ℜ(h)ℑ(h)

(v2)2+(v1)2






(27)

From the first two equations of (27) we see that the function V := v1 + i · v2 is a holomorphic
function of the variable z := x + i · y. It is easy to check that the last two equations of (27) are
equivalent to

V hz = −h2, (28)

and the first two equations of (27) are equivalent to

Vz = −h

2
− 3

2
(29)

(where Vz, hz are the derivative of V and h with respect to z). We see that the equations (27 – 29)
are direct analog of (23).

After the holomorphic coordinate change

dznew =
1

V
dzold, (30)

the equation (28) is hznew
= −h2 implying

h(znew) =
1

znew + const
. (31)

Since the the formulas (30) defines znew up to addition of a complex constant, we can (and will) assume
without loss of generality that const = 0. In this new coordinate the vector field v is ∂

∂z + ∂
∂z̄ = ∂

∂x .
Now consider the equation (29). In the new coordinates it reads

2Vznew
= −

(
1

znew
+ 3

)
V.

Solving it, we obtain

V 2 =
Ce−3znew

znew
. (32)
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Finally, substituting the coordinate change and the solutions (31 – 32) in the metrics we obtain that,
after the appropriate scaling, the metrics g and ḡ have the form

ds2
g = 2ℑ (h)dxolddyold = 1

4 · (h(z̄) − h(z))
(
dz̄2

old − dz2
old

)

= 1
4 ·
(

1
z̄ − 1

z

) (
C̄ e−3z̄ dz̄2

z̄ − Ce−3 z dz2

z

)
,

ds2
ḡ = 1

4 (z − z̄)
(
C̄ e−3z̄dz̄2 − Ce−3 z dz2

)
,

and the projective vector field v is ∂
∂z + ∂

∂z̄ = ∂
∂x .

We see that the metric and the projective vector field v are as in case 2a of Theorem 1.

3.1.3 Jordan-block Case

Let the metrics g and ḡ be given by the formulas from the Remark 2 of Appendix:

ds2
g = 2 (Y (y) + x) dxdy

dsḡ = − 2(Y (y)+x)
y3 dxdy + (Y (y)+x)2

y4 dy2.
(33)

Arguing as above, we obtain that the condition (20) is equivalent to a certain system of 6 PDE
on the unknown functions v1, v2, Y . Solving first 5 PDE with respect to the derivatives of the un-
known functions and substituting the solution in the remaining equation, we obtain that the system is
equivalent to

∂v1

∂x = 1
2y − 3

2
∂v1

∂y = 1
2Y + 1

2x,

v2 = y2

Y ′ = − 1
2
−5yY +3Y −5yx+3x+2v′

2Y +2v′
2x+2v1

v2





(34)

We see that the first three equations of (34) are equivalent to v2 = y2, v1 =
(

1
2y − 3

2

)
x + 1

2Y1,
where Y ′

1 = Y . Substituting these in the last equation of (34), we obtain the following linear ODE on
Y1:

y2Y ′′
1 = 1

2 (yY ′
1 − 3Y ′

1 − Y1) .

The equation can be solved, the general solution is

Y1 = (y − 3)

(
C1 + C2

∫ y

y0

e
3
2ξ

√
|ξ|

(ξ − 3)
2 dξ

)
.

Then, the function Y = Y ′
1 is

Y =

(
C2e

3
2y

√
|y|

(y − 3)

)
+

(
C1 + C2

∫ y

y0

e
3
2ξ

√
|ξ|

(ξ − 3)
2 dξ

)
.

The assumption that the metric admits no Killing vector field implies C2 6= 0. In view of the coordinate
change xnew = xold + C1, we can assume C1 = 0.

Then, the components v1, v2 of the projective vector field are

v2 = y2 , v1 =

(
1

2
y − 3

2

)
x + C2

y − 3

2

∫ y

y0

e
3
2ξ

√
|ξ|

(ξ − 3)
2 dξ

We see that the metric (after the appropriate coordinate change and the scaling) and the projective
vector field v are as in case 3a of Theorem 1.
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3.2 The matrix of Lv is as (b) in (16)

Assume that in the basis {a, ā} the matrix of Lv : Â → Â is given by

(
λ −1
1 λ

)
.

Without loss of generality, in view of Lemma 2, we can assume that a = det(g)−2/3 · g , ā =
det(ḡ)−2/3 · ḡ for certain metrics g, ḡ from the projective class of (9). Then, as we explained in §2.3,
the condition

Lv

(
a
ā

)
=

(
λ −1
1 λ

)(
a
ā

)

is equivalent to the condition (18).
As we explained in Appendix, in a neighborhood of almost every point the metrics g and ḡ have

one of three normal forms. We will carefully consider all three cases.

3.2.1 Liouville Case

Assume the metrics g and ḡ have the Liouville form (21). Then, the condition (18) is equivalent to a
system of 6 PDE’s on the unknown functions v1(x, y), v2(x, y), X(x), and Y (y).

Solving the equations with respect to the derivatives, we obtain that the equations are equivalent
to the following system of 6 PDE’s in Frobenius form:

∂v1

∂x = X/2 − 3/2λ
∂v2

∂y = Y/2 − 3/2λ
∂v1

∂y = 0
∂v2

∂x = 0
X ′v1 = 1 + X2

Y ′v2 = 1 + Y 2






(35)

We see that the functions v1 and v2 are functions of one variable only5, so that all the equations
(35) are actually ODE’s. Moreover, the assumption that there exists no Killing vector field implies
that X and Y are not constant. Then, in view of the first two equations of (35), the components v1

and v2 are not zero almost everywhere. Then, without loss of generality we can assume v1 6= 0, v2 6= 0.
Take the new coordinate system

(
x(xold), ynew(yold)

)
given by

dx =
1

v1
dxold dy =

1

v2
dyold. (36)

In these new coordinate system the last two equations of (35) are Ẋ = 1 + X2, Ẏ = 1 + Y 2 implying

X(x) = tan(x + const1) , Y (y) = tan(ynew + const2). (37)

Since the the formulas (36) defines x and y up to addition of a constant, we can (and will) assume
without loss of generality that const1 = const2 = 0. Now consider the first and the second equations of
(35). In the new coordinates they are v̇1 =

(
tan(x)/2 − 3/2λ

)
v1, v̇2 =

(
tan(x)/2 − 3/2λ

)
v2. Solving

them we obtain

v1 =
C1e

−3/2 λ x

√
cos (x)

, v2 =
C2e

−3/2 λ y

√
cos (y)

. (38)

Finally, combining (36 – 38) we obtain that (after the appropriate coordinate change and the scaling)
the metric g has the form

ds2
g = (X − Y )

(
dx2

old ± dy2
old

)
= (tan(x) − tan(y))

(
C2

1e−3 λ xdx2

cos (x)
± C2

2e−3 λ ydy2

cos (y)

)
, (39)

5which was clear in advance since the family Â determines the lines of the coordinates, see [30, 32]; hence the coordinate
lines must be preserved by the flow of v
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and the projective vector field v is ∂
∂x + ∂

∂y . It is easy to see that if λ = 0 and C1 = ±C2, then the metric
admits a Killing vector field. Indeed, because of scaling, it is sufficient to show this for C1 = C2 = 1.

If the sign “±” in (39) is “−”, then the vector field cos(x)

sin
�

1
2 (x−y)

� ∂
∂x − cos(y)

sin
�

1
2 (x−y)

� ∂
∂y is a Killing one for

g. If the sign “±” in (39) is “+”, then the vector field cos(x)

cos
�

1
2 (x−y)

� ∂
∂x + cos(y)

cos
�

1
2 (x−y)

� ∂
∂y is a Killing one

for g.
We see that the metric and the projective vector field v are as in case 1b of Theorem 1.

3.2.2 Complex-Liouville Case

Assume the metric g and ḡ have the Complex-Liouville form (25). Arguing as above, we obtain that
the conditions (18) are equivalent to a certain system of 6 PDE of the first order. Solving this system
with respect to the first derivatives, and using the Cauchy-Riemann conditions for the holomorphic
function h, we obtain that the system is equivalent to the system

v2
y = v1

x = 1
2ℜ(h) − 3

2λ
−v1

y = v2
x = 1

2ℑ(h)

ℜ(h)x = ℑ(h)y = −v1ℑ2(h)+2ℜ(h)ℑ(h)v2+v1+v1ℜ2(h)

(v2)2+(v1)2

−ℜ(h)y = ℑ(h)x = v2ℑ2(h)−v2−v2ℜ2(h)+2v1ℜ(h)ℑ(h)

(v2)2+(v1)2





(40)

From the first two equations of (40) we see that the function V := v1 + i · v2 is a holomorphic
function of the variable z := x + i · y. It is easy to check that the last two equations of (40) are
equivalent to

V hz = h2 + 1, (41)

and the first two equations of (40) are equivalent to

Vz =
1

2
h − 3

2
λ (42)

(where hz, Vz are the derivatives of h, V with respect to z). Thus, the equations (40) are direct analog
of (35). After the coordinate change

dznew =
1

V
dzold, (43)

the equation (41) reads dh
dznew

= 1 + h2 implying

h(znew) = tan(znew + const) . (44)

Since the the formulas (43) defines znew up to addition of a constant, we can (and will) assume without
loss of generality that const = 0. In this new coordinate the vector field v is V ∂

∂z + V̄ ∂
∂z̄ .

Now consider the equation (42). In the new coordinates it reads

dV

dznew
=
(
tan(znew)/2 − 3

2
λ
)
V implying V =

Ce−3/2 λ znew

√
cos (znew)

. (45)

Finally, combining (43 – 45) we obtain that (after the appropriate scaling) the metrics g and ḡ have
the form

ds2
g = 1

4 (tan(znew) − tan(z̄new))
(

C̄e−3 λ z̄newdz̄2
new

cos(z̄new) − Ce−3 λ znewdz2
new

cos(znew)

)
,

ds2
ḡ = 1

4 (cotan(z̄new) − cotan(znew))
(

C̄e−3 λ z̄newdz̄2
new

sin(z̄new) − Ce−3 λ znewdz2
new

sin(znew)

)
,

and the projective vector field v is ∂
∂znew

+ ∂
∂z̄new

= ∂
∂xnew

. It is easy to see that if λ = 0 and C ∈ R,
then the metric admits a Killing vector field. Indeed, it is sufficient to consider C = 1. For this case,

the following vector field is a Killing one: sin (x) ∂
∂x + cos(x) cosh(y)

sinh(y)
∂
∂y .

We see that the metric and the projective vector field v are as in case 2b of Theorem 1.
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3.2.3 Jordan-block Case

Assume the metrics g and ḡ are given the matrices (33). Arguing as above, we obtain that the condition
(18) is equivalent to a certain system of 6 PDE on the unknown functions v1, v2, Y . Solving the first
5 PDE with respect to the derivatives of the unknown function, and substituting the solution in the
remaining equation, we obtain that the system is equivalent to

∂v1

∂x = 1
2y − 3

2λ
∂v1

∂y = 1
2Y + 1

2x,

v2 = y2 + 1

Y ′ = − 1
2
−5yY +3λY −5yx+3λx+2v′

2Y +2v′
2x+2v1

v2





(46)

We see that the first three equations of (46) are equivalent to

v2 = y2 + 1 , v1 =

(
1

2
y − 3

2
λ

)
x +

1

2
Y1(y), where Y ′

1 = Y (y)

Substituting these in the last equation of (46), we obtain the following linear ODE on Y1:

(1 + y2)Y ′′
1 =

1

2
(yY ′

1 − 3λY ′
1 − Y1) .

The equation can be solved, the general solution is

Y1 = (y − 3λ)

(
C1 + C2

∫ y

y0

e−
3
2 λ arctan(ξ)

4
√

ξ2 + 1

(ξ − 3λ)
2 dξ

)
.

Then, the function Y = Y ′
1 is

Y = C1 + C2

∫ y

y0

e−
3
2 λ arctan(ξ)

4
√

ξ2 + 1

(ξ − 3λ)
2 dξ + (y − 3λ)

(
C2 e−

3
2 λ arctan(y)

4
√

y2 + 1

(y − 3λ)
2

)
.

And the components v1, v2 of the projective vector field are

v2 = y2 + 1 , v1 =

(
1

2
y − 3

2
λ

)
x +

y − 3λ

2

(
C1 + C2

∫ y

y0

e−
3
2 λ arctan(ξ)

4
√

ξ2 + 1

(ξ − 3λ)
2 dξ

)
.

We see that, after an appropiate coordinate change and scaling, the metric and the projective vector
field v are as in case 3b of Theorem 1.

3.3 The matrix of Lv is as (c) in (16)

Assume that in the basis {a, ā} the matrix of Lv : Â → Â is given by

(
λ

1

)
, where λ ∈ (−∞,−1] ∪

[1,+∞).
Without loss of generality, in view of Lemma 2, we can assume that a = det(g)−2/3 · g , ā =

det(ḡ)−2/3 · ḡ for certain metrics g, ḡ from the projective class of (9). Then, as we explained in §2.3,
the condition

Lv

(
a
ā

)
=

(
λ

1

)(
a
ā

)

is equivalent to the condition Lva = λa, Lvā = ā, which is equivalent to the condition

Lvg − 2

3
traceg(Lvg)g − λg = 0 , Lv ḡ − 2

3
traceḡ(Lv ḡ)ḡ − ḡ = 0,

which is equivalent to the condition

Lvg = −λ

3
g , Lv ḡ = −1

3
ḡ. (47)

As we explained in Appendix, in a neighborhood of almost every point the metrics g and ḡ have
one of three normal forms. We will carefully consider all three cases.
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Remark 7. We will also see that λ 6= 1. This will imply that if two nonproportional projectively
equivalent metrics g and ḡ have Lvg = λ · g and Lv ḡ = λ · ḡ for a certain v 6≡ 0, then the metrics admit
a Killing vector field, which will be used in the proof of Theorem 2.

3.3.1 Liouville Case

We assume that the metrics g and ḡ are given by (21). Then, the condition (47) is equivalent to a
system of 6 PDE on v1, v2,X, Y .

Solving these equations with respect to derivatives, we obtain

∂v1

∂x = −λ − 1/2, ∂v1

∂y = 0, X ′v1 = −X (−1 + λ)
∂v2

∂y = −λ − 1/2, ∂v2

∂x = 0, Y ′v2 = −Y (−1 + λ)
. (48)

This system of equations can be easily solved (we recall that by the assumption |λ| ≥ 1). If λ = 1,
at least one of the functions X,Y is a constant implying the existence of a Killing vector field as
we promised in Remark 7. For other λ, the solution is

(
up to the coordinate change (xnew, ynew) =

(xold + const1, yold + const2)
)

v1 = −
(

1
2 + λ

)
x, X = C1 x

2
λ−1
1+2λ

v2 = −
(

1
2 + λ

)
y, Y = C2 y

2
λ−1
1+2λ ,

and the corresponding g and v, after dividing v by −
(

1
2 + λ

)
, are

(
C1 x

2
λ−1
1+2λ − C2 y

2
λ−1
1+2λ

)
(dx2 + εdy2) , x

∂

∂x
+ y

∂

∂y
.

We see that after the coordinate change (xold = ex, yold = ey), after an appropriate scaling, and

after denoting 2(λ−1)
2λ+1 by ν, the metric and the projective vector field v are as in case 1c of Theorem 1.

Note that in the case ν = 2, C1 = −εC2 the metric g has a constant curvature (and, therefore, a Killing
vector field). Since λ ∈ (−∞,−1] ∪ (1,+∞), we have ν ∈ (0, 4], ν 6= 1. Since λ 6= 1, then ν 6= 0.

3.3.2 Complex-Liouville Case

Assume that g, ḡ are as in (25). Arguing as above, we obtain that the equations (47) are equivalent to
a system of 6 PDE which can be written as

v1 + i · v2 = −(λ + 1/2) · z + const

∂h

∂z
=

h

z
· 2(λ − 1)

1 + 2λ
.

The system can be easily solved. If λ = 1, at the function h is a constant implying the existence of a
Killing vector field as we promised in Remark 7.

If λ 6= 1, then, in view of the coordinate change xnew = xold + const1, ynew = yold + const1 we can

think that const = 0. Then, the solution is h = C · z2
(λ−1)
1+2λ . Then, the metrics g and ḡ are as in (26)

with this function h, and the projective vector field v is x ∂
∂x .

We see that after the coordinate change zold = ez, after an appropriate scaling, and after denoting
2(λ−1)
2λ+1 by ν, the metric and the projective vector field v are as in case 2c of Theorem 1. Since

λ ∈ (−∞,−1] ∪ (1,+∞), we have ν ∈ (0, 4], ν 6= 1, as we assumed in Theorem 1.

3.3.3 Jordan-block Case

Assume the metrics g and ḡ are given by (33). Arguing as above, we obtain that the condition (47) is
equivalent to a certain system of 6 PDE on the unknown functions v1, v2, Y . Solving this system with
respect to the derivatives of the functions we see that ∂v2

∂x = 0 , ∂v1

∂y = 0 implying that v1 is a function
of x and v2 is a function of y only, and that the system is equivalent to
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v′
1 = −λ − 1

2
v2 = − (λ − 1) y

Y ′v2 = − 1
2 (2v′

2Y + 2 v′
2x + 4λY − Y + 4λx − x + 2v1)




 (49)

From the first equation of (49) we see that v1 = −λx − x
2 + C. Without loss of generality we can

think that C = 0. Substituting the expressions for v1, v2 in the last equation of (49), we obtain (we
can assume y > 0 since it can be achieved by a coordinate change)

Y ′ =
(2λ + 1)Y

(2λ − 2) y

Solving this equation, we obtain

Y = y
2 λ+1
2λ−2 C1. (50)

We see that after an appropriate scaling and after denoting 2(λ−1)
2λ+1 by η, the metric and the projective

vector field v are as in case 3c (for η 6= 1
2 ) or as in case 3d (for η = 1

2 ) of Theorem 1.

4 Proof of Theorem 2

4.1 In the cases 1a – 3c, it is sufficient to prove that A is precisely two-
dimensional. In the case 3d, it is sufficient to prove that A is precisely
three-dimensional.

Within this paragraph we assume that the metric g is one of the metrics from Theorem 1. We addi-
tionally assume that it admits no Killing vector field. Let us explain why, in order to prove Theorem 2,
it is sufficient to show that the space A of solutions of (12) is as in the title of this paragraph.

For every metric g from Theorem 1, consider its canonically projectively equivalent metric ḡ given
by the appropriate formula from (5 – 7). By definition, the metrics g and ḡ have the same projective
connection. Then, a = g/det(g)2/3 and ā = ḡ/det(ḡ)2/3 lie in the space A corresponding to the metric
g.

Therefore, every their linear combination α · a + β · ā is also an element of A. Comparing the
definition of G(g, ḡ) with the formulas in Remark 2, we see that G(g, ḡ) is precisely the set of the
metrics corresponding to the solutions of the form α · a + β · ā. In particular, all metrics from G(g, ḡ)
lie in the projective class of g.

Thus, in order to show that the projective class of the metrics g from cases 1a – 3c of Theorem 1
coincides with G(g, ḡ), it is sufficient to show that A coincides with the set of linear combinations of a
and ā, i.e., is two-dimensional.

Now, let us consider the metric 3d. In this case, the space A is at least three-dimensional. Indeed,
the solutions a = g/det(g)2/3, ā = ḡ/det(ḡ)2/3, and ã = g̃/det(g̃)2/3 are linearly independent. Clearly,
the metrics corresponding to the linear combinations of these solutions are precisely the metrics from
G[g, ḡ, g̃]. Hence, if the space of A is precisely three-dimensional, the projective class coincides with
G[g, ḡ, g̃].

4.2 Schema of the proof

Theorem 1 gives us 10 expicite formulas for the metric g and, therefore, for the coefficients Ki of the
equation (12). Our goal is to show that in the first 9 cases the space A of the solutions of (12) is at
most two-dimensional, and in the last case the space A is at most three-dimensional.

There exists a highly computational method to do it: indeed, the system (12) is linear and of finite
type. Then, the standard prolongation-projection method gives us an algorithm which calculates the
dimension of the space of solutions.

Unfortunately, this method is too hard from the viewpoint of calculations, at least if one does the
calculations straightforwardly: indeed, in order to do the algorithm, one need to differentiate the entries
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of the metric 7 times, and then calculate the rank of a 18 × 16 matrix. It is very boring to do it “by
hands”.

It is still possible to do it with the help of computer algebra packages. Recently Kruglikov [20] and,
independently, Bryant, Eastwood and Dunajski [10] used Mathematica R© and Maple R© (and also quite
advanced theory) to construct curvature invariants such that if they do not vanish the dimension of A
is at most 2. But their invariants are still too complicated, and there is no hope to calculate them for
our metrics without using a computer (though one can easily do it with computer).

In order to give a proof which is much easier from computational point of view, and which could
be done by a human, we use the existence of the projective vector field to reduce the problem to more
simple systems of PDE. We consider three cases.

The first case corresponds to the metrics 3a, 3b, 3c, 3d. In these cases, the general form of the
metric is very simple and one actually can do the prolongation-projection algorithm “by hands” and
without using the existence of the projective vector field, see §4.5. After few steps (we actually do
short-cuts in the paper), we obtain the dimension of A.

The second and the third cases corresponds to all other metrics. We assume that dim(A) = 3
and find a contradiction. (The case dim(A) ≥ 4 is not possible because by Theorem 3 the metrics 1a
– 2c admit no Killing vector field. We will not use Theorem 2 in the proof that the metrics 1a – 2c
admit no Killing vector, so no logical loop appears). In order to do it, let us take a basis {a, ā, â} such

that the matrix of Lv is one of (51), where A is a (2 × 2)- matrix given by (16)

(
µ

A

)
,




1 1

1 1
1



 . (51)

The second case corresponds to the first matrix of (51). We will find a contradiction using the
following trivial observation from linear algebra: if for a (3 × 3) matrix m = (mij) with det(m) 6= 0

m11a11 + m12a12 + m13a22 = 0
m21a11 + m22a12 + m23a22 = 0
m31a11 + m32a12 + m33a22 = 0,




 (52)

then aij = 0.
Let us explain how the assumptions of the second case allow to construct such equations on aij .

Since the matrix of Lv is the first matrix of (51), we have

Lv




a
ā
â



 =

(
µ

A

)


a
ā
â



 . (53)

The last two equations of (53) are equations Lv

(
ā
â

)
= A

(
ā
â

)
, we solved them in the proof of Theorem

1, in a certain coordinate system (in a neighborhood of almost every point) the metric g = ā/det(ā)2

is as in Theorem 1 after a possible scaling. We have 6 (explicit) possibilities 1a – 2c for the metric and
therefore 6 (explicit) possibilities for the coefficients of the equation (12).

Let us now pass to the coordinate system such that the projective vector field is ∂
∂x . In cases 2a –

2c, we are already in such coordinate system, in the cases 1a – 1c we use the coordinate change xnew =
xold+yold

2 , ynew = xold−yold

2 . In this coordinate system, the coefficients K0, ...,K3 of the projective
connection are independent of x, direct calculations show that they are given by simple formulas, see
the beginning of §4.3. We see that the first equation of (53) is ∂a

∂x = µ · a implying

a = eµx

(
a11(y) a12(y)
a12(y) a22(y)

)
. (54)

Substituting (54) in (12), we obtain one homogeneous linear equation and 3 linear ODE on the three
unknown functions aij(y), see § 4.3 for the precise formulas. This linear equation (first equation of
(60)) will play the role of the first equation of (52).
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It is possible to explicitly solve the above mentioned 3 ODE with respect to derivatives, see (60).
Differentiating the first equation of (60) with respect to y, and substituting the derivatives of aij from
the other three equations of (60) inside, we obtain one more linear equation on aij . This equation we
will play the role of the second equation of (52). Repeating the procedure with this new equation, we
obtain the third linear equation on aij , which will be the third equation of (52). Direct calculations
show that the determinant of the correspondent (3 × 3)-matrix (mij) is not zero implying a ≡ 0. We
obtain a contradiction with the assumption that {a, ā, â} is a basis.

This described procedure is not very complicated computationally (all formulas that appear have
less than 50 terms, i.e., one can do all calculations “by hands”, and standard computer algebra packages,
say Maple R© or Mathematica R©, need less then 10 seconds for all the calculation.)

Let us also note that the proof for the cases 1a, 1b, 1c implies the proof for the cases 2a, 2b, 2c
(so we need to do the calculation for the three cases 1a, 1b, 1c only). Indeed, the formulas for (the
components of) the metrics 1a, 1b, 1c are real-analytic, and we can allow x to be a complex variable
and y to be its conjugate, since it changes neither differentiation nor algebraic operations with the
(components of the) metrics. After this change the metrics 1a, 1b, 1c become, up to a multiplication
by a constant, the metrics 2a, 2b, 2c, and therefore our proof that the metrics 1a, 1b, 1c have two-
dimensional A, which uses only algebraic operation and differentiation, is also a proof for the cases 2a,
2b, 2c.

The third case corresponds to the second matrix of (51). We will find a contradiction using the
following fact from linear algebra: if

m11a11 + m12a12 + m13a22 = b1

m21a11 + m22a12 + m23a22 = b2

m31a11 + m32a12 + m33a22 = b3,




 (55)

then the following two statements are contradictive:

det




m11 m12 m13

m21 m22 m23

m31 m32 m33



 = 0 , and det




b1 m12 m13

b2 m22 m23

b3 m32 m33



 6= 0.

The way to construct equations (55) are similar to that we use in the second case. Since the
matrix of Lv is the second matrix of (51), the Lie derivatives of the basis elements a, ā, â are given by
3 matrix equations

Lv




a
ā
â



 =




1 1

1 1
1








a
ā
â



 =




a + ā

ā + â
â



 . (56)

We see that the last two equations of (56) are the equations (19). We solved them in §3.1, see §§3.1.1,
3.1.2 there. Then, without loss of generality we can assume that the metric g = ā/det(ā)2 and the
projective field v are as in cases 1a, 1b of Theorem 1. We again pass to the coordinates such that the
projective vector field v is ∂

∂x : in the case 1b, we are already in this coordinates, in the case 1a, we

will work in the coordinates xnew = xold+yold

2 , ynew = xold−yold

2 . In this coordinates, the coefficients
K0, ...,K3 of the projective connection are independent of y, and the components of the Lie-derivative
Lva are the x−derivatives of the components of a. Then, the first equation of (56) is

∂

∂x
a = a + ā. (57)

This equation is actually a system of three equations, since a is a symmetric 2 × 2−matrix. In this
equation, ā is known: in view of Remark 2, it is given by g/det(g)2/3, and above we assumed that g
is the metric 1a from Theorem 1. Direct calculations shows that a is given by (61). Then, (57) is a
system of linear nonhomogeneous equations, its every solution is the sum of a partial solution P (for
the metric 1a, a partial solution is (62)) and a solution of the equation ∂a

∂x = a, i.e., has the following
form:

ex ·
(

a11(y) a12(y)
a12(y) a22(y)

)
+ P. (58)
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Substituting the ansatz (58) in the equations (12), we obtain one nonhomogeneous linear equation
(which will play the role of the first equation of (55)), and three nonhonmogeneous linear ODE of the
first order on the components aij(y). The ODE can be solved with respect to the derivatives of aij ,
see (63).

Differentiating the above mentioned linear equation (which is the first equation of (63)) with respect
to y, and substituting the derivatives of aij from the other equations of (63) inside, we obtain one more
linear nonhomogeneous equation on aij . Repeating the procedure with the obtained equation, we
obtain the third linear nonhomogeneous equation on aij . Thus, we have three nonhomogeneous linear
relations on three functions aij as in (55). If we show that three nonhomogeneous linear relations are
not compatible, then the dimension of A is at most 2.

Clearly, the determinant of (mij) is zero, since â := ḡ/det(ḡ)2/3 is a solution of the system (12)
and of the equation ∂

∂x â = â, and, therefore, gives us a solution of the homogeneous part of the above

mentioned linear relations. Direct calculations show that det




b1 m12 m13

b2 m22 m23

b3 m32 m33



 6= 0, see (64). This

gives us a contradiction which proves Theorem 2 for the metrics 1a, 1b from Theorem 2.
Let us also note that, similar to the second case, the proof for the case 1a implies the proof for

the case 2a. Indeed, the formulas for (the components of) the metrics 1a are real-analytic, and we can
allow x to be a complex variable and y to be its conjugate, since it changes neither differentiation nor
algebraic operations with the (components of the) metric. After this change the metric 1a become,
up to a multiplication by a constant, the metric 2a, and therefore our proof that the metrics 1a has
two-dimensional A, which uses only algebraic operation and differentiation, is also a proof for the case
2a.

4.3 Calculations related to proof of Theorem 2 for the metrics from cases
1a, 1b, 1c from Theorem 1 assuming that the matrix of Lv is as the
first matrix of (51)

For the metrics 1a, 1b, 1c from Theorem 1, the projective connections in the new coordinates x =
xold+yold

2 , y = xold−yold
2 are respectively given by

y′′ =
(e6 y+c2e−6 y+2 c )

8cy +
3(4 yc−e6 y+c2e−6 y)

8 c y y′

+
(−2 c +3 e6 y+3 c2e−6 y)

8c y (y′)2 − (12 yc−c2e−6 y+e6 y)
8c y (y′)3

(59)

y′′ = e6 λ y+c2e−6 λ y+2 c cos(2y)
4c sin(2y) + 3 −e6 λ y+c2e−6 λ y+2c λ sin(2y)

4c sin(2y) y′

+ 3 e6 λ y+3 c2e−6 λ y−2 c cos(2y)
4c sin(2y) (y′)2 − e6 λ y−c2+6 λ c sin(2y)

4c sin(2y) (y′)3

y′′ = −λ−λ e4 y+λ e4 y(λ−1)c2+λ e4 λ yc2+λ e2 y(2+λ)c−λ e2 y(−2+λ)c
(2e2λy−2)2

+ −4 e4 λ yc2+8 c e2 λ y−4+3 λ e2 y(2+λ)c+λ e4 λ yc2−2 e2 λ yλ c+3 λ e2 y(−2+λ)c−3 λ e4 y(λ−1)c2+λ−3 λ e4 y

(2e2λy−2)2
y′

+ 3 λ e4 y(λ−1)c2+3 λ e2 y(2+λ)c−λ e4 λ yc2−3 λ e2 y(−2+λ)c+λ−3 λ e4 y

(2e2λy−2)2
(y′)2

+ 4 e4 λ yc2−λ e4 y(λ−1)c2−8 c e2 λ y−λ−λ e4 y+4+λ e2 y(2+λ)c−λ e4 λ yc2+2 e2 λ yλ c+λ e2 y(−2+λ)c
(2e2λy−2)2

(y′)3

We see that all coefficients Ki of the projective connection are independent of x (which was clear
in advance since the vector field ∂

∂x is projective). Substituting (54) in (12), we obtain

a11µ − 2
3 K1a11 + 2K0a12 = 0,

a′
11 + 2 a12µ − 4

3 K2a11 + 2
3 K1a12 + 2K0a22 = 0,

2 a′
12 + a22µ − 2K3a11 − 2

3 K2a12 + 4
3 K1a22 = 0,

a′
22 − 2K3a12 + 2

3 K2a22 = 0,
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which is equivalent to the system

0 = a11µ − 2
3 K1a11 + 2K0a12

a′
11 = −2 a12µ + 4

3 K2a11 − 2
3 K1a12 − 2K0a22

a′
12 = − 1

2a22µ + K3a11 + 1
3 K2a12 − 2

3 K1a22

a′
22 = 2K3a12 − 2

3 K2a22.





(60)

The coefficients Ki of our connections are functions of y only. Differentiated the first equation of (60)
by y and substituting the values of y-derivative of aij given by the last three equations, we obtain the
following equation as a differential consequence of the equations (60): if aij satisfy (60), then they must
satisfy the equation below.

0 =
4µK2 − 2K ′

1 + 6K0K3 − 8
3K1K2

3
a11 +

2µK1 + 4
3K2

1 + 6K ′
0 − 6µ2 + 2K0K2

3
a12 − 3µK0a22

Differentiting this equation by y and substituting the values of y-derivative of aij from the last
three equations of (60), we obtain another linear homogeneous equation on aij , whose coefficients are
polynomial expressions in Ki and their derivatives.

Thus, we have three homogeneous linear equations on three unknown functions aij , which must be
satisfied if aij satisfy (60). Determinant of the corresponding 3 × 3− matrix is given by
−2µ6 + 14

3 µ3K1K0K2 + 10K ′
0µ

2K0K2 − 32
9 K ′

0K
2
1K0K2 − 40

27 µK3
1K0K2 + 64

729 K6
1 + 6µ2K0K

′′
0 −

10µ4K0K2 − 16
3 µ2K2

1K ′
0 − 14

3 µ3K1K
′
0 − 64

81 K4
1K0K2 + 64

27 K3
1K2

0K3 − 64
81 K3

1K0K
′
1 + 16

9 K2
0K2

2K2
1 +

8
3 µK1(K

′
0)

2+ 40
27 µK3

1K ′
0+

8
3 µK2

1K2
0K3− 32

9 µK2
1K0K

′
1+

20
3 µK2

0K2K
′
1−8µK3

0K2K3+
16
3 µ2K2

1K0K2+
4µ2K1K0K

′
1− 32

3 K ′
1K

3
0K3−8µ2K2

2K2
0 −12K3

0µK ′
3−4K1µK0K

′′
0 + 32

3 K1K
′
0K

2
0K3− 32

9 K1K
′
0K0K

′
1−

4
3 µK ′

0K1K0K2− 32
3 K1K

3
0K2K3+4K1µK2

0K ′
2+4K2

0µK ′′
1 + 8

3 µK2
0K2

2K1−16µK ′
0K

2
0K3− 8

3 µK ′
0K0K

′
1+

32
9 K1K

2
0K2K

′
1 + 16

81 µK5
1 + 64

81 K4
1K ′

0− 8
9 µ2K4

1 + 10
3 µ4K2

1 +10K ′
0µ

4− 28
27 µ3K3

1 −8µ2K ′
0
2
+ 16

9 K2
0K ′

1
2
+

16K4
0K2

3 + 16
9 K2

1 (K ′
0)

2 − 14µ3K0K3 − 6µ2K2
0K ′

2 + 14
3 µ3K0K

′
1.

Though the formula for the determinant looks ugly, for explicit Ki given at the beginning of this
paragraph, one can calculate it (Maple R© does it within few seconds, a human needs around one hour
for it). Calculating this formula for the Ki corresponding to the projective connections corresponding
to the metrics 1a, 1b, 1c (explicite formulas for the projective connections are at the beginning of the
present paragraph), we obtain that the result is not zero implying the system (12) corresponding to the
projective connections corresponding to the metrics g from cases 1a– 2c of theorem 1 does not admit
three dimensional A under the additional assumption that the matrix of Lv is the first matrix of (51).

4.4 Calculations related to the proof of Theorem 2 for the metric 1a from
Theorem 1 assuming that the matrix of Lv is as the second matrix of
(51)

For the metric 1a, we consider the coordinate system xnew = xold+yold

2 , ynew = xold−yold

2 .

In this coordinate system, the projective vector field is ∂
∂x , and the projective connection of g is

(59). Direct calculations shows that the matrix of ā is given by





e4 x(c e−3 x−3 y(y−x)−e−3 x+3 y(x+y))
4 3
√

yc
2
3

e4 x(c e−3 x−3 y(y−x)+e−3 x+3 y(x+y))
4 3
√

yc
2
3

e4 x(c e−3 x−3 y(y−x)+e−3 x+3 y(x+y))
4 3
√

yc
2
3

e4 x(c e−3 x−3 y(y−x)−e−3 x+3 y(x+y))
4 3
√

yc
2
3



 . (61)

Direct computations shows that the following matrix P is a partial solution of the equation (57).





x(−2 ye3 y−c xe−3 y+2 yc e−3 y−xe3 y)ex

8 3
√

yc
2
3

x(2 ye3 y−c xe−3 y+2 yc e−3 y+xe3 y)ex

8 3
√

yc
2
3

x(2 ye3 y−c xe−3 y+2 yc e−3 y+xe3 y)ex

8 3
√

yc
2
3

x(−2 ye3 y−c xe−3 y+2 yc e−3 y−xe3 y)ex

8 3
√

yc
2
3



 . (62)
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Thus, the solution of the equation (57) has the form (58). Substituting this ansatz in the equations
(12) and solving the last three equations with respect to the first derivatives, we obtain the system

0 = a11 − 2
3 K1a11 + 2K0a12 +

y
2
3 (−e3y+c e−3 y)

4c
2
3

a′
11 = −2 a12 + 4

3 K2a11 − 2
3 K1a12 − 2K0a22 − y

2
3 (e3y+c e−3 y)

4c
2
3

a′
12 = − 1

2a22 + K3a11 + 1
3 K2a12 − 2

3 K1a22 +
y

2
3 (e3y−c e−3 y)

4c
2
3

a′
22 = 2K3a12 − 2

3 K2a22,






(63)

where Ki are the coefficients of the projective connection (59).
The first equation of (63) plays the role of the first equation of (55). Differentiating the first

equation of (63) by y and substituting the values of derivatives from the last three equations of (63)
inside, we obtain the following nonhomogeneous linear equation on aij , which plays role of the second
equation of (55).
−

 
38 3√yc

5
3 e18 y − 108 y4/3c

11
3 e6 y + 72 y4/3c

8
3 e12 y − 38 3√yc

11
3 e6 y − 108 y4/3c

5
3 e18 y − 9 3√yc

2
3 e24 y + 9 c14/3 3√y

!
a11

−

 
72 y4/3c

11
3 e6 y + 20 3√yc

5
3 e18 y − 72 y4/3c

5
3 e18 y − 9 3√yc

2
3 e24 y + 20 3√yc

11
3 e6 y − 9 c14/3 3√y + 58 3√yc

8
3 e12 y

!
a12

−

 
72 y4/3c

8
3 e12 y + 36 y4/3c

5
3 e18 y + 36 y4/3c

11
3 e6 y

!
a22

= −25 c3e9 yy2 + 72 c3y3e9 y + 72 y3e15 yc2 + 9 e21 yy2c + 25 e15 yy2c2 − 9 c4e3 yy2.

Differentiating this equation by y and substituting the values of derivatives from the last three
equations of (63) inside, we obtain the following nonhomogeneous linear equation on aij , which plays
role of the third equation of (55). 
−132 e24 yc

5
3 + 103 e18 yc

8
3 + 132 c

17
3 + 27 e30 yc

2
3 + 2640 c

14
3 ye6 y + 252 c

17
3 y + 1128 e12 yyc

11
3 − 103 c

14
3 e6 y

−27 c
20
3 e−6 y + 6048 y2c

14
3 e6 y − 6912 y2c

11
3 e12 y + 1980 e24 yyc

5
3 + 14688 e18 yy2c

8
3 − 4656 c

8
3 e18 yy

!
a11

+

 
−144 c

17
3 y + 8640 e18 yy2c

8
3 − 78 c

17
3 − 2592 c

14
3 ye6 y − 107 c

14
3 e6 y − 107 e18 yc

8
3 + 3456 y2c

11
3 e12 y + 27 e30 yc

2
3

−5568 e12 yyc
11
3 + 27 c

20
3 e−6 y − 5184 y2c

14
3 e6 y + 1872 e24 yyc

5
3 − 4 e12 yc

11
3 − 1248 c

8
3 e18 yy − 78 e24 yc

5
3

!
a12

−

 
6048 e18 yy2c

8
3 + 336 c

8
3 e18 yy + 6912 y2c

11
3 e12 y + 108 e24 yyc

5
3 + 864 y2c

14
3 e6 y + 456 e12 yyc

11
3 + 108 c

17
3 y + 336 c

14
3 ye6 y

!
a22

= 1872 e21 yy
8
3 c2 + 57 e21 yy

5
3 c2 − 27 c6y

5
3 e−3 y + 27 e27 yy

5
3 c + 286 c3e15 yy

5
3 + 286 c4e9 yy

5
3 + 5184 c4e9 yy

11
3 − 57 c5y

5
3 e3 y

+ 8640 e15 yy
11
3 c3 + 4944 e15 yy

8
3 c3 + 144 c4e9 yy

8
3 144 c5y

8
3 e3 y

Direct calculations show that det




b1 m12 m13

b2 m22 m23

b3 m32 m33



 is equal to

9
18 e−9 yc4y − 18 c2e3 yy + 32 c3e−3 y + 32 c2e3 y − 18 e9 yyc + 9 e−9 yc4 + 18 c3e−3 yy − c5e−15 y + 9 e9 yc − e15 y

64c
8
3 y7/3

. (64)

We see that it is not zero, which gives us a contradiction which proves Theorem 2 for the metric
from the case 1a of Theorem 1.

4.5 Proof of Theorem 2 for the metrics 3a, 3b, 3c, and 3d

In all these cases the metric has the form 2(Y (y) + x)dxdy. We first explain that the dimension of the
space A coinsides with the dimension of the space of integrals quadratic in momenta for the Hamiltonian

H : T ∗D → R , H(x, y, px, py) :=
pxpy

Y (y) + x
.

Indeed, as we explained in §2.1, for every solution a the function (det(g))2/3aijξ
iξj is an integral of

the geodesic flow of g, and vice versa. Since the mapping a 7→ (det(g))2/3a is linear and bijective, the
dimensions of the space A and of the space of integrals quadratic in momenta coincide.

Note that the space of the integrals quadratic in momenta is at least two-dimensional. Indeed, every
linear combination of the Hamiltonian H and of the integral coming from the projectively equivalent
metric (7) by formula (15) is an integral. In the notations below, these integrals will correspond to
a = const, c = 0. Our goal is to show, that in the cases 3a, 3b, 3c all integrals have a = const, c = 0,
and that in the case 3d there exists an additional linearly independent integral.
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Suppose a function f : T ∗D → R of the form a(x, y)p2
x + b(x, y)pxpy + c(x, y)p2

y is an integral for
the geodesic flow of g. Then, the condition 0 = {H, f}, after multiplication by −(Y + x)2, reads

0 = −(Y + x)2 ·
{

pxpy

Y + x
, ap2

x + bpxpy + cp2
y

}

= p3
x(Y + x)ay + p2

xpy((Y + x)ax + (Y + x)by + 2a + Y ′b)

+ pxp2
y((Y + x)bx + (Y + x)cy + b + 2Y ′c) + p3

y(Y + x)cx,

i.e., is equivalent to the following system of PDE:

ay = 0
(Y + x)ax + (Y + x)by + 2a + Y ′b = 0
(Y + x)bx + (Y + x)cy + b + 2Y ′c = 0

cx = 0





(65)

We see that the first (the last, respectively) equation of (65) implies that the function a (c, respectively)
is a function of the variable x (y, respectively) only.

Solving the second and the third equations with respect to the derivatives of b, we obtain

by = −2a + Y ′b

Y + x
− a′ , bx = −b + 2Y ′c

Y + x
− c′.

Substituting these expressions for the derivatives of b in the identity ∂bx

∂y − ∂by

∂x = 0, we obtain

−a′′x + c′′x + c′′Y − 3a′ + 3c′Y ′ − a′′Y + 2Y ′′c = 0. (66)

Taking the ∂3

∂2x∂y−derivative of this equation, we obtain a′′′′ Y ′ = 0. Since the function Y from cases

3a, 3b, 3c, 3d is not constant, we can assume Y ′ 6= 0. Then, a = α3x
3 + α2x

2 + α1x + α0, where αi are
constants. Substituting this in (66), we obtain

−15α3x
2 + (c′′ − 8α2 − 6Y α3) x − 3α1 + 3c′Y ′ + c′′Y + 2Y ′′c − 2Y α2 = 0. (67)

Left-hand side of this equation is a polynomial in x whose coefficients depend on y only. They must
be zero implying α3 = 0, c = 4α2y

2 + β1y + β0. Then, the equation (67) reads

6Y α2 − 3α1 + (3β1 + 24α2y) Y ′ + (2β0 + 2β1y + 8α2y
2)Y ′′ = 0. (68)

If α1 = α2 = β1 = β0 = 0, then c = 0, a = const implying that the integral is a linear combination of
the Hamiltonian and the integral coming from the projectively equivalent metric (7) by formula (15).
Otherwise (68) is a ODE on the function Y . Substituting the functions Y from the cases 3a, 3b, 3c of
Theorem 1 we see that they are not solutions of this ODE. Thus, the metrics from the cases 3a, 3b, 3c
from Theorem 1 have 2-dimensional A. Substituting the functions Y from the case 3d from Theorem
1, we see that it is a solutions of this ODE, if and only if β1 = α2 = 0, 4β0 = 3α1. We see that there
is precisely one additional parameter (β0) we can freely choose to construct the integral, i.e., the space
of the integrals is at most three-dimensional. Direct calculations show that as the additional integral
we can take the integral corresponding to the metric g̃ by formula (15).

5 Proof of Theorem 3

The goal is to show that no metric from Theorem 1 has a Killing vector field. It is sufficient to do it
for the cases 1a – 2c only, since in view of §4.5, in the cases 3a – 3d we know the space of quadratic
integrals of the metrics 3a – 3d, so it it sufficient to check that no quadratic integral is degenerate at
every point, which is an easy exercise. Moreover, in the case 3d the space of quadratic integrals is
precisely 3-dimensional implying the metric admit no Killing vector field, see [20, Section 5].

We will use the following approach which was known to Darboux [11, §§688,689] and Eisenhart [15,
pp. 323–325], see also [20] for an equivalent approach leading to similar calculations. For every g from
the cases 1a – 2c of Theorem 1, let us consider the following functions on D2:
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• scalar curvature R :=
∑

i,j,k Ri
ijkgjk, where Ri

hjk is the curvature tensor of g,

• The square of the length of the derivative of the scalar curvature L :=
∑

i,j gij ∂R
∂xi

∂R
∂xj

,

• The laplacian of the scalar curvature ∆ := 1√
det(g)

∑
i,j

∂
∂xi

(
gij
√

det(g) ∂R
∂xj

)
.

If the metric admits a Killing vector field K, then in a coordinate system (x1, x2) such that K = ∂
∂x1

, all
these functions depend of x2 only. Then, the differentials dR, dL are proportional, and the differentials
dR, d∆ are proportional. Then, in every coordinate system (x, y) the following determinants are zero:

det

(
∂R
∂x

∂R
∂y

∂L
∂x

∂L
∂y

)
, det

(
∂R
∂x

∂R
∂y

∂∆
∂x

∂∆
∂y

)
. (69)

Calculating these determinants for all metrics from the cases 1a – 2c, we see that in every case
they are not zero implying that the metrics admit no Killing vector field. Note that it is sufficient to
calculate the determinants for the metrics from the cases 1a – 1c only, since the cases 2a – 2c, up to
multiplication by a constant, can be obtained from the cases 1a – 1c by replacing x by z and y by z̄.
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A Appendix: Dini theorem for pseudo-Riemannian metrics

by Alexei V. Bolsinov6, Vladimir S. Matveev7, and Giuseppe Pucacco8

A.1 Introduction

Consider a Riemannian or a pseudo-Riemannian metric g = (gij) on a surface M2. We say that a metric
ḡ on the same surface is projectively equivalent to g, if every geodesic of ḡ is a reparametrized geodesic
of g. In 1865 Beltrami [4] asked9 to describe all pairs of projectively equivalent Riemannian metrics
on surfaces. From the context it is clear that he considered this problem locally, in a neighbourhood
of almost every point.

Theorem A below, which is the main result of this note (which is a short version of [8]), gives an
answer to the following generalization of the question of Beltrami: we allow the metrics g and ḡ to be
pseudo-Riemannian.

Theorem A. Let g, ḡ be projectively equivalent metrics on M2, and ḡ 6= const · g for every const ∈ R.
Then, in the neighbourhood of almost every point there exist coordinates (x, y) such that the metrics
are as in the following table.

6Department of Mathematical Sciences, Loughborough University, LE11 3TU UK, A.Bolsinov@lboro.ac.uk
7Institute of Mathematics, FSU Jena, 07737 Jena Germany, vladimir.matveev@uni-jena.de
8Dipartimento di Fisica Università di Roma “Tor Vergata”, 00133 Rome Italy, pucacco@roma2.infn.it
9Italian original from [4]: La seconda . . . generalizzazione . . . del nostro problema, vale a dire: riportare i punti di

una superficie sopra un’altra superficie in modo che alle linee geodetiche della prima corrispondano linee geodetiche della
seconda.
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Liouville Case Complex-Liouville Case Jordan-block Case

g (X(x) − Y (y))(dx2 ± dy2) 2ℑ(h)dxdy (1 + xY ′(y)) dxdy

ḡ
(

1
Y (y) − 1

X(x)

)(
dx2

X(x) ±
dy2

Y (y)

) −
(

ℑ(h)
ℑ(h)2+ℜ(h)2

)2

dx2

+ 2 ℜ(h)ℑ(h)
(ℑ(h)2+ℜ(h)2)2 dxdy

+
(

ℑ(h)
ℑ(h)2+ℜ(h)2

)2

dy2

1+xY ′(y)
Y (y)4

(
−2Y (y)dxdy

+ (1 + xY ′(y))dy2
)

where h := ℜ(h) + i · ℑ(h) is a holomorphic function of the variable z := x + i · y.
Remark A. It it natural to consider the metrics from the Complex-Liouville Case as the complexification
of the metrics from the Liouville Case: indeed, in the complex coordinates z = x + i · y, z̄ = x − i · y,
the metrics have the form

ds2
g = − 1

4 (h(z) − h(z))
(
dz̄2 − dz2

)
,

ds2
ḡ = − 1

4

(
1

h(z)
− 1

h(z)

)(
dz̄2

h(z)
− dz2

h(z)

)

(this form is used in the proof of Theorem 1).

Remark B. In the Jordan-block Case, if dY 6= 0 (which is always the case at almost every point, if
the restriction of g to any neighborhood does not admit a Killing vector field), after a local coordinate
change, the metrics g and ḡ have the form

ds2
g =

(
Ỹ (y) + x

)
dxdy

ds2
ḡ = −2(Ỹ (y) + x)

y3
dxdy +

(Ỹ (y) + x)2

y4
dy2

(this form is used in the proof of Theorem 1).

We see that the metric g from Complex-Liouville and Jordan-block Cases always have signature
(+,−), and the metric g from the Liouville Case has signature (+,+) or (−,−), if the sign “±” is “+”.
In this case, the formulas from Theorem A are precisely the formulas obtained by Dini in [12].

We do not insist that we are the first to find these normal forms of projectively equivalent pseudo-
Riemannian metrics. According to [2], a description of projectively equivalent metrics was obtained by
P. Shirokov in [40]. Unfortunately, we were not able to find the reference [40] to check it. The result
of Theorem A could be even more classical, see Remark D.

Given two projectively equivalent metrics, it is easy to understand what case they belong to. Indeed,
the (1, 1)-tensor Gi

j :=
∑2

α=1 ḡjαgiα, where giα is inverse to giα, has two different real eigenvalues in the
Liouville Case, two complex-conjugated eigenvalues in the Complex-Liouville Case, and is (conjugate
to) a Jordan-block in the Jordan-block Case.

There exists an interesting and useful connection of projectively equivalent metrics with integrable
systems.

Recall that a function F : T ∗M2 → R is called an integral of the geodesic flow of g, if {H,F} = 0,
where H := 1

2gijpipj : T ∗M2 → R is the kinetic energy corresponding to the metric, and { , } is the
standard Poisson bracket on T ∗M2. Geometrically, this condition means that the function is constant
on the orbits of the Hamiltonian system with the Hamiltonian H. We say the integral F is quadratic
in momenta, if for every local coordinate system (x, y) on M2 it has the form

F (x, y, px, py) = a(x, y)p2
x + b(x, y)pxpy + c(x, y)p2

y (70)

in the canonical coordinates (x, y, px, py) on T ∗M2. Geometrically, the formula (70) means that the
restriction of the integral to every cotangent space T ∗

p M2 ≡ R
2 is a homogeneous quadratic function.

Of course, H itself is an integral quadratic in the momenta for g. We will say that the integral F is
nontrivial, if F 6= const · H for all const ∈ R.

Theorem B. Suppose the metric g on M2 admits a nontrivial integral quadratic in momenta. Then,
in a neighbourhood of almost every point there exist coordinates (x, y) such that the metric and the
integral are as in the following table
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Liouville Case Complex-Liouville Case Jordan-block Case

g (X(x) − Y (y))(dx2 ± dy2) ℑ(h)dxdy (1 + xY ′(y)) dxdy

F
X(x)p2

y±Y (y)p2
x

X(x)−Y (y) p2
x − p2

y + 2ℜ(h)
ℑ(h)pxpy, p2

x − 2 Y (y)
1+xY ′(y)pxpy

where h := ℜ(h) + i · ℑ(h) is a holomorphic function of the variable z := x + iy.

Indeed, as it was shown in [24, 25], and as it was essentially known to Darboux [11, §§600–608], if
two metrics g and ḡ are projectively equivalent, then

I : TM2 → R, I(ξ) := ḡ(ξ, ξ)

(
det(g)

det(ḡ)

)2/3

(71)

is an integral of the geodesic flow of g. Moreover, it was shown in [9, §2.4], see also [27], the above
statement is proven to be true10 in the other direction: if the function (70) is an integral for the geodesic
flow of g, then the metrics g and ḡ are projectively equivalent. Thus, Theorem A and Theorem B are
equivalent. In this paper, we will actually prove Theorem B obtaining Theorem A as its consequence.

Remark C. The corresponding natural Hamiltonian problem on the hyperbolic plane has been recently
treated in [38] following the approach used by Rosquist and Uggla [39].

Remark D. The formulas that will appear in the proof are very close to that in §593 of [11]. Darboux
worked over complex numbers and therefore did not care about whether the metrics are Riemannian
or pseudo-Riemannian. For example, Liouville and Complex-Liouville Case are the same for him.
Moreover, in §594, Darboux gets the formulas that are very close to that of Jordan-block Case, though
he was interested in the Riemannian case only, and, hence, treated this “imaginary” case as not
interesting.

A.2 Proof of Theorem B (and, hence, of Theorem A)

If the metric g has signature (+,+) or (−,−), Theorem A and, hence, Theorem B, were obtained by
Dini in [12]. Below we assume that the metric g has signature (+,−).

A.2.1 Admissible coordinate systems and Birkhoff-Kolokoltsov forms

Let g be a pseudo-Riemannian metric on M2 of signature (+,−). Consider (and fix) two linear inde-
pendent vector fields V1, V2 on M2 such that

• g(V1, V1) = g(V2, V2) = 0 and

• g(V1, V2) > 0.

Such vector fields always exist locally (and, since our result is local, this is sufficient for our proof).
We will say that a local coordinate system (x, y) is admissible, if the vector fields ∂

∂x and ∂
∂y are

proportional to V1, V2 with positive coefficient of proportionality:

V1(x, y) = λ1(x, y)
∂

∂x
, V2(x, y) = λ2(x, y)

∂

∂y
, where λi > 0, i = 1, 2.

Obviously,

• admissible coordinates exist in a sufficiently small neighborhood of every point,

• the metric g in admissible coordinates has the form

ds2 = f(x, y)dxdy, where f > 0, (72)

10with a good will, one also can attribute this result to Darboux
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• two admissibe coordinate systems in one neighbourhood are connected by
(

xnew

ynew

)
=

(
xnew(xold)
ynew(yold)

)
, where

dxnew

dxold
> 0,

dynew

dyold
> 0. (73)

Lemma A. Let (x, y) be an admissible coordinate system for g. Let F given by (70) be an integral
for g. Then, B1 := 1√

|a(x,y)|
dx (B2 := 1√

|c(x,y)|
dy, respectively) is a 1-form, which is defined at points

such that a 6= 0 (c 6= 0, respectively). Moreover, the coefficient a (c, respectively) depends only on x (y,
respectively), which in particular imply that the forms B1, B2 are closed.

Remark E. The forms B1, B2 are not the direct analog of the “Birkhoff” 2-form introduced by Kolokoltsov
in [19]. In a certain sense, they are the real analog of the different branches of the square root of the
Birkhoff form.

Proof of Lemma A. The first part of the statement, namely that the 1√
|a|

dx ( 1√
|c|

dy, respectively)

transforms as a 1-form under admissible coordinate changes is evident: indeed, after the coordinate
change (73), the momenta transform as follows: pxold

= pxnew

dxnew

dxold
, pxold

= pxnew

dxnew

dxold
. Then, the

integral F in the new coordinates has the form

a

(
dxnew

dxold

)2

︸ ︷︷ ︸
anew

p2
xnew

+ b
dxnew

dxold

dynew

dyold︸ ︷︷ ︸
bnew

pxnew
pynew

+ c

(
dynew

dyold

)2

︸ ︷︷ ︸
cnew

p2
ynew

.

Then, the formal expression 1√
|a|

dxold

(
1√
|c|

dyold, respectively

)
transforms in

1√
|a|

dxold

dxnew
dxnew

(
1√
|c|

dyold

dynew
dynew, respectively

)
,

which is precisely the transformation law of 1-forms.
Let us prove that the forms are closed. If g is given by (72), its Hamiltonian H is given by

pxpy

2f ,

and the condition 0 = {H,F} reads

0 =
{

pxpy

2f , ap2
x + bpxpy + cp2

y

}

= 1
f

(
p3

x(fay) + p2
xpy(fax + fby + 2fxa + fyb) + pyp2

x(fbx + fcy + fxb + 2fy) + p3
y(cxf)

)
,

i.e., is equivalent to the following system of PDE:





ay = 0
fax + fby + 2fxa + fyb = 0
fbx + fcy + fxb + 2fyc = 0

cx = 0

(74)

Thus, a = a(x), c = c(y), which is equivalent to B1 := 1√
|a|

dx and B2 := 1√
|c|

dy are closed forms

(assuming a 6= 0 and c 6= 0).

Remark 1. For further use let us formulate one more consequence of the equations (74): if a ≡ c ≡ 0
in a neighborhood of a point, then bf = const implying F ≡ const · H in the neighborhood.

Assume a 6= 0 (c 6= 0, respectively) at a point P0. For every point P1 in a small neighbourhood U
of P0 consider

xnew :=

∫

γ : [0, 1] → U
γ(0) = P0

γ(1) = P1

B1,





ynew :=

∫

γ : [0, 1] → U
γ(0) = P0,
γ(1) = P1

B2, respectively





. (75)
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Locally, in the admissible coordinates, the functions xnew and ynew are given by

xnew(x) =

∫ x

x0

1√
|a(t)|

dt, ynew(y) =

∫ y

y0

1√
|c(t)|

dt.

The new coordinates (xnew, ynew)
(
or (xnew, yold) if cold ≡ 0, or (xold, ynew) if aold ≡ 0

)
are

admissible. In these coordinates, the forms B1 and B2 are given by sign(aold)dxnew, sign(cold)dynew

(we assume sign(0) = 0).

A.2.2 Proof of Theorem B

We assume that g of signature (+,−) on M2 admits a nontrivial quadratic integral F given by (70).

Consider the matrix F ij =

(
a b

2
b
2 c

)
. It can be viewed as a (2, 0)-tensor: if we change the coordinate

system and rewrite the function F in the new coordinates, the matrix changes according to the tensor
rule. Then,

2∑

α=1

gjαF iα

is a (1, 1)-tensor. In a neighborhood U of almost every point the Jordan normal form of this (1, 1)-tensor
is one of the following matrices:

Case 1

(
λ 0
0 µ

)
, Case 2

(
λ + iµ 0

0 λ − iµ

)
, Case 3

(
λ 1
0 λ

)
,

where λ, µ : U → R. Moreover, in view of Remark 1, there exists a neighborhood of almost every point
such that λ 6= µ in Case 1 and µ 6= 0 in Case 2. In the admissible coordinates, up to multiplication
of F by −1, and renaming V1 ↔ V2, Case 1 is equivalent to the condition a > 0, c > 0, Case 2 is
equivalent to the condition a > 0, c < 0, and Case 3 is equivalent to the condition c ≡ 0.

We now consider all three cases.

A.2.3 Case 1: a > 0, c > 0.

Consider the coordinates (75). In this coordinates, a = 1, c = 1, and equations (74) are:

{
(fb)y + 2fx = 0,
(fb)x + 2fy = 0.

This system can be solved. Indeed, it is equivalent to

{
(fb + 2f)x + (fb + 2f)y = 0,
(fb − 2f)x − (fb − 2f)y = 0,

which, after the change of cordinates xnew = x + y, ynew = x − y, has the form

{
(fb + 2f)x = 0,
(fb − 2f)y = 0,

implying fb + 2f = Y (y), fb − 2f = X(x). Thus, f = Y (y)−X(x)
4 , b = 2X(x)+Y (y)

Y (y)−X(x) .

Finally, in the new coordinates, the metric and the integral have (up to a possible multiplication
by a constant) the form

(X − Y )(dx2 − dy2)

2
(
p2

x − X(x)+Y (y)
X(x)−Y (y) (p

2
x − p2

y) + p2
y

)
= 4

p2
yX(x) − p2

xY (y)

X(x) − Y (y)
.

Theorem B is proved under the assumptions of Case 1.
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A.2.4 Case 2: a > 0, c < 0.

Consider the coordinates (75). In this coordinates, a = 1, c = −1, and the equations (74) are:

{
(fb)y + 2fx = 0,
(fb)x − 2fy = 0.

We see that these conditions are the Cauchy-Riemann conditions for the complex-valued function
fb + 2i · f . Thus, for an appropriate holomorphic function h = h(x + i · y), we have fb = ℜ(h),
2f = ℑ(h). Finally, in a certain coordinate system the metric and the integral are (up to multiplication
by constants):

2ℑ(h)dxdy and p2
x − p2

y + 2ℜ(h)
ℑ(h)pxpy.

Theorem B is proved under the assumptions of Case 2.

A.2.5 Case 3: a > 0, c = 0.

Consider admissible coordinates x, y, such that x is the coordinate from (75). In these coordinates,
a = 1, c = 0, and the equations (74) are:

{
(fb)y + 2fx = 0

(fb)x = 0
.

This system can be solved. Indeed, the second equation implies fb = −Y (y). Substituting this in the
first equation we obtain Y ′ = 2fx implying

f =
x

2
Y ′(y) + Ŷ (y) and b = − Y (y)

x
2Y ′(y) + Ŷ (y)

.

Finally, the metric and the integral are

(
Ŷ (y) +

x

2
Y ′(y)

)
dxdy and p2

x − Y (y)

Ŷ (y) + x
2Y ′(y)

pxpy (76)

Moreover, by the change ynew = β(yold) the metric and the integral (76) will be transformed to:

(
Ŷ (y)β′ +

x

2
Y ′(y)

)
dxdy and p2

x +
Y (y)

Ŷ (y)β′ + x
2Y ′(y)

pxpy

Thus, by putting β(y) =
∫ y

y0

1bY (t)
dt, we can make the metric and the integral to be

(
1 +

x

2
Y ′(y)

)
dxdy and p2

x − Y (y)

1 + x
2Y ′(y)

pxpy.

Moreover, after the coordinate change xnew = xold

2 and dividing/multiplication of the metric/integral
by 2, the metric and the integral have the form from Theorem B

(1 + xY ′(y)) dxdy and p2
x − 2

Y (y)

1 + xY ′(y)
pxpy

Theorem B is proved.
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