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Abstract

In Theorem 1, we generalize some results of Szabó [Sz1, Sz2] for Berwald metrics that are
not necessarily strictly convex: we show that for every Berwald metric F there always exists
a Riemannian metric affine equivalent to F . Further, we investigate geodesic equivalence
of Berwald metrics. Theorem 2 gives a system of PDE that has a (nontrivial) solution
if and only if the given essentially Berwald metric admits a Riemannian metric that is
(nontrivially) geodesically equivalent to it. The system of PDE is linear and of Cauchy-
Frobenius type, i.e., the derivatives of unknown functions are explicit expressions of the
unknown functions.

As a corollary, we obtain that geodesic equivalence of an essentially Berwald metric
and a Riemannian metric is always affine equivalence provided both metrics are complete.

1 Definitions and results

A Finsler metric on a smooth manifold M is a function F : TM → R≥0 such that:

1. It is smooth on TM \ TM0, where TM0 denotes the zero section of TM .

2. For every x ∈ M , the restriction F|TxM is a norm on TxM , i.e., for every ξ, η ∈ TxM
and for every nonnegative λ ∈ R we have

(a) F (λ · ξ) = λ · F (ξ),

(b) F (ξ + η) ≤ F (ξ) + F (η),

(c) F (ξ) = 0 =⇒ ξ = 0.

We always assume that n := dim(M) ≥ 2. We do not require that (the restriction of) the
function F is strictly convex. In this point our definition is more general than the usual
definition. In addition we do not assume that the metric is reversible, i.e., we do not assume
that F (−ξ) = F (ξ). Some standard references for Finsler geometry are [Al2, BCS, BBI, Sh1].

Example 1 (Riemannian metric). For every Riemannian metric g on M , the function F (x, ξ) :=
√

g(x)(ξ, ξ) is a Finsler metric.
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A Finsler metric is Berwald, if there exists a symmetric affine connection Γ such that the
parallel transport with respect to this connection preserves the function F . In this case, we
call the connection Γ the associated connection.

Riemannian metrics are always Berwald. For them, the associated connection coincides with
the Levi-Civita connection. We say that a Finsler metric is essentially Berwald, if it is
Berwald, but not Riemannian. The simplest examples of essentially Berwald metrics are
Minkowski metrics.

Example 2 (Minkowski metric). Consider a smooth norm on R
n, i.e., a smooth function

p : R
n → R≥0 satisfying 2a, 2b, 2c. We canonically identify TR

n with R
n×R

n with coordinates
(x1, ..., xn
︸ ︷︷ ︸

x∈Rn

, ξ1, ..., ξn

︸ ︷︷ ︸

ξ∈TxRn

). Then, F (x, ξ) := p(ξ) is a Finsler metric. We see that the metric is

translation invariant. Hence, the standard flat connection preserves it, i.e., it is a Berwald
metric. If the norm p does not satisfy the parallelogram equality, the Minkowski metric is
essentially Berwald.

Let F1, F2 be Finsler metrics on the same manifold. We say that F1 is geodesically equivalent
(or projectively equivalent) to F2, if every F1−geodesic, considered as unparametrized curve,
is also an F2−geodesic. We say that they are affine equivalent, if every F1−geodesic, considered
as parametrized curve, is also an F2−geodesic. Of course, in the definition we can replace any
of the Finsler metrics by a Riemannian or pseudo-Riemannian one, or by an affine connection.

Remark 1. Geodesic equivalence (or affine equivalence) of Finsler metrics is not a priori a
symmetric relation, as Example 3 below shows. The reason is that for certain Finsler met-
rics the uniqueness theorem for the geodesics does not hold: two different geodesics can have
the same velocity vector, as in Example 3 below. Then, even under the assumption that all
F1−geodesics are F2−geodesics, there may exist F2−geodesics that are not F1−geodesics.

This phenomenon evidently does not happen, if the metrics are strictly convex (and of course
in the Riemannian case); for such metrics, F1 is geodesically equivalent to F2 if and only if
F2 is geodesically equivalent to F1. We will show in the beginning of Section 2.2.2 that under
the assumption that the metric F is Berwald, if g is geodesically (or affine) equivalent to F ,
then g is geodesically (or affine, resp.) equivalent to the connection Γ associated to F .

p o s s i b l e  g e o d e s i c s

Figure 1: The unit sphere in the norm p and possible geodesics of the corresponding Minkowski
metric

Example 3. Consider the Minkowski metric F (x, ξ) = p(ξ) such that the unit sphere S1 :=
{ξ ∈ R

n | p(ξ) = 1} is as on Figure 1: the important feature of the picture is that the part of
the unit sphere lying in the marked sector is a straight line segment. Then every curve such
that its velocity vectors are in the sector is a geodesic. Beside such curves, the straight lines
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are also geodesics. We see that the standard flat metric is geodesically and affine equivalent to
F , but the metric F is neither geodesically nor affine equivalent to the standard flat metric.

Geodesic equivalence of metrics is a classical subject. The first non-trivial examples of geodesi-
cally equivalent Riemannian metrics were discovered by Lagrange [La]. Geodesically equivalent
Riemannian metrics were studied by Beltrami [Bel], Levi-Civita [LC], Painlevé [Pa] and other
classics. One can find more historical details in the surveys [Am, Mi2] and in the introduction
to the papers [Ma1, Ma4]. Geodesic equivalence of Riemannian and Finsler metrics is discussed
in particular in Hilbert’s 4th problem, see [Al1, Po]. Recent results on geodesic equivalence of
Riemannian and Finsler metrics include [MBB, Sh2].

Our main results are

Theorem 1. Let F be a Berwald metric. Then there exists a Riemannian metric which is
affine equivalent to F .

For strictly convex Finsler metrics, Theorem 1 is due to [Sz1]. Later, other proofs were
suggested in [Sz2, To]. Our proof is similar to the proof in [Sz2]; the modification is based on
the construction from [MRTZ].

Theorem 2. Let F be an essentially Berwald metric on a connected manifold, and let Γ be its
associated connection. Suppose a Riemannian or pseudo-Riemannian metric g is geodesically
equivalent to F , but is not affine equivalent to F . Then there exists a constant µ, a symmetric
(2, 0)−tensor aij, and a nonzero vector field λi such that the following equations are fulfilled,
where “ ,” denotes the covariant derivative with respect to Γ:

aij
,k = λiδj

k + λjδi
k (1)

λi
,j = µ δi

j (2)

We see that equations (1,2) are of Cauchy-Frobenius type, i.e., the derivatives of the unknown
functions aij , λi are explicitly expressed as functions of the unknown functions and known
data (connection Γ).

Remark 2. If a Riemannian metric g is affine equivalent to F , equations (1,2) also have a
nontrivial solution, namely aij = gij, λi ≡ 0, µ = 0.

Remark 3. The converse of Theorem 2 is also true: the existence of a nondegenerate aij

and of a nonzero λi satisfying equations (1,2) for a certain constant µ implies the existence
of a Riemannian or a pseudo-Riemanninan metric geodesically equivalent to F , but not affine
equivalent to g.

Recently, a system of Cauchy-Frobenius type for metrics geodesically equivalent to Berwald
Finsler metrics was obtained [MBB, Theorem 2]. Our system is much easier than one in
[MBB]: first of all, it is linear in the unknown functions, second, it contains less equations,
and, third, the equations are much simpler than those of [MBB] and, in particular, contain no
curvature terms. One cannot obtain our equations from the equations of [MBB] by a change
of unknown functions. In order to obtain our equations from those of [MBB], one should
prolong the equations of [MBB] two times, and use the result of the prolongation to simplify
the system.
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Corollary 1. Let F be an essentially Berwald metric on a connected closed (= compact with-
out boundary) manifold. Then every Riemannian or pseudo-Riemannian metric geodesically
equivalent to F is affine equivalent to F .

Corollary 2. Let F be a complete essentially Berwald metric on a connected manifold. Then
every complete Riemannian or pseudo-Riemannian metric geodesically equivalent to F is affine
equivalent to F .

The assumptions in Theorem 2 and Corollaries are important: it is possible to construct
counterexamples if the Berwald metric is not essentially Berwald (i.e., is a Riemannian metric),
or if one of the metrics is not complete.

Corollary 3 (Hilbert’s 4th problem for Berwald metrics). Suppose an essentially Berwald
metric F on a connected manifold is projectively flat, that is, there exists a flat Riemannian
metric geodesically equivalent to F . Then F is isometric to a Minkowski metric.

2 Proofs

2.1 Averaged metric and proof of Theorem 1

Given a Finsler Berwald metric F , we construct a Riemannian metric g = gF such that the
associated connection Γ of F is the Levi-Civita connection of g implying that the metric g
is affine equivalent to F . As we mentioned in the introduction, the construction is due to
[MRTZ], and is similar to one from [Sz2].

Given a smooth norm p on R
n≥2, we canonically construct a positive definite symmetric bilinear

form g : R
n ×R

n → R. For the Finsler metric F , the role of p will be played by the restriction
of F to TxM . We will see that the constructed g smoothly depends on x, and hence it is a
Riemannian metric.

Consider the sphere S1 = {ξ ∈ R
n | p(ξ) = 1}. Consider the (unique) volume form Ω on R

n

such that the volume of the 1-ball B1 = {ξ ∈ R
n | p(ξ) ≤ 1} is equal to 1.

Denote by ω the volume form on S1 whose value on the vectors η1, ..., ηn−1 tangent to S1 at
the point ξ ∈ S1 is given by ω(η1, ..., ηn−1) := Ω(ξ, η1, η2, ..., ηn−1).

Now, for every point ξ ∈ S1, consider the symmetric bilinear form b(ξ) : R
n × R

n → R,
b(ξ)(η, ν) = D2

(ξ)p
2(η, ν). In this formula, D2

(ξ)p
2 is the second differential at the point ξ of the

function p2 on R
n. The analytic expression for b(ξ) in the coordinates (ξ1, ..., ξn) is

b(ξ)(η, ν) =
∑

i,j

∂2p2(ξ)

∂ξi∂ξj
ηiνj . (3)

Since the norm p is convex, the bilinear form is nonnegative definite. Clearly, for every ξ ∈ S1,
we have

b(ξ)(ξ, ξ) > 0 (4)
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(this is actually the reason why we take p2 and not p in the definition of b).

Now consider the following symmetric bilinear 2−form g on R
n: for η, ν ∈ R

n, we put

g(η, ν) =

∫

S1

b(ξ)(η, ν)ω. (5)

We assume that the orientation of S1 is chosen in such a way that
∫

S1
ω > 0. Because of (4),

g is positive definite.

Now let us extend this construction to every tangent space TxM of the manifold, then F|TxM

plays the role of p. Since the construction depends smoothly on the point x ∈ M , we have
that g := gF is a Riemannian metric on M . We show that if the metric F is Berwald with the
associated connection Γ, then Γ is the Levi-Civita connection of g.

Indeed, consider a smooth curve γ connecting the points γ(0), γ(1) ∈ M . Let

τ : Tγ(0)M → Tγ(1)M

be the parallel transport of the vectors along the curve with respect to the connection Γ. τ is
a linear map. Since the metric is Berwald, τ preserves the function F and, in particular, the
one-sphere S1. Since the forms Ω, ω were constructed by using the sphere S1 and the linear
structure of the space only, τ preserves the form ω. Since the function F is preserved as well,
everything in formula (5) is preserved by the parallel transport which implies τ∗g = g. Then
gij,k = 0, therefore every (parametrized) geodesic of g is a geodesic of F . Theorem 1 is proved.

2.2 Proof of Theorem 2 and Corollaries 1, 2, 3

Within the whole section we assume that our underlying manifold is connected, orientable
(otherwise we pass to an orientable cover), and has dimension at least two.

2.2.1 Holonomy group of a Berwald metric F

Lemma 1. Let F be an essentially Berwald metric on a connected manifold M , and let g
be a Riemannian metric affine equivalent to F (the existence of such metric is guaranteed by
Theorem 1). Then, the metric g is symmetric of rank ≥ 2, or there exists one more Riemannian
metric h such that it is not proportional to g, but is affine equivalent to g.

Proof. We essentially repeat the argumentation of [Sz1, Sz2]. Take a fixed point q ∈ M .
For every (smooth) loop γ(t), t ∈ [0, 1] with the origin in q (i.e., γ(0) = γ(1) = q), we consider
the parallel transport τγ : TqM → TqM along the curve. It is well known (see for example,
[Ber, Sim]), that the set

Hq := {τγ | γ : [0, 1] → M is a smooth loop, γ(0) = γ(1) = q}

is a subgroup of the group of the orthogonal transformations of TqM . Moreover, it is also
known that at least one of the following conditions holds:
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1. Hq acts transitively on the unit sphere S1 := {ξ ∈ TqM | g(ξ, ξ) = 1},

2. the metric g is symmetric of rank ≥ 2,

3. there exists one more Riemannian metric h such that it is nonproportional to g, but is
affine equivalent to g.

In the first case, since the holonomy group preserves both g and F , the ratio F (ξ)2/g(ξ, ξ)
is the same for all ξ ∈ TqM, ξ 6= 0, implying that the metric g is Riemannian. Lemma 1 is
proved.

2.2.2 Metrics with degree of mobility ≥ 3

If the dimension of the manifold is 2, an essentially Berwald metric is a Minkowski metric, and
Theorem 2 and Corollaries 1, 2, 3 are evident. Below, we assume that the dimension of the
manifold is ≥ 3. Suppose the (Riemannian or pseudo-Riemannian) metric ḡ is geodesically
equivalent to F , but is not affine equivalent to F . Then the metric ḡ is geodesically equivalent
to the averaged metric g = gF , but is not affine equivalent to g. If the uniqueness theorem for
geodesics holds, the latter statement is trivial; for generic Finsler metrics, it probably requires
additional explanation.

In order to explain why the metric ḡ is geodesically equivalent to the averaged metric g = gF ,
let us consider the set

N := {(x, ξ) ∈ TM \ TM0 | D2F 2
|TqM nondegenerate}.

This set is evidently open. As from the following standard (see for example [Ku]) argument
from differential geometry it turns out, its intersection with every TqM \ TM0 is not empty.

We need to show that for a smooth norm p := F|TqM on R
n = TqM there exists a point such

that D2p2 is nondegenerate at this point. We fix an Euclidean metric in R
n and consider the

sphere in R
n (with respect to the chosen Euclidean metric in TqM) of large radius such that

the Finsler sphere S1 := {ξ ∈ TqM | F (ξ) = 1} lies inside, see the left-hand side of Figure 2.
Then, we make the radius smaller until the first point of the intersection of the sphere with
S1, see the right-hand side of Figure 2. Clearly, at the point of the intersection, the second
differential of p2 is nondegenerate as we claimed.

Figure 2: For a smooth norm p, there always exists a point such that the second differential
of p2 is nondegenerate
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It is well known that for (x, ξ) ∈ N the uniqueness theorem of geodesics holds: locally, there
exists a unique F−geodesic γ such that γ(0) = x and γ̇(0) = ξ. Moreover, the geodesic γ is also
the geodesic of the associated connection Γ. Then, every ḡ−geodesic such that (γ(0), γ̇(0)) ∈ N
is also a Γ−geodesic. Since the set N ∩ TqM is open for every q, the connection Γ̄ of ḡ satifies
the Levi-Civita condition

Γi
jk − Γ̄i

jk − 1
n+1

(
δi
k

(
Γα

jα − Γ̄α
jα

)
+ δi

j

(
Γα

kα − Γ̄α
kα

))
= 0

at every point (in the proof from [LC] it is sufficient to assume that only the geodesics whose
velocity vectors are from certain open set N ⊆ TM ; N ∩ TqM 6= ∅ are common for both met-
rics) implying that Γ and ḡ are geodesically equivalent, and hence g and ḡ are also geodesically
equivalent.

Thus, the metric ḡ is geodesically equivalent to the averaged metric g as well, but not affine
equivalent to g. By Lemma 1, the metric g is symmetric, or there exists a Riemannian metric
h affine equivalent to g but not proportional to g. We show that if the metric g is symmetric,
the assumptions of Theorem 1 imply that it is flat from which it follows that there exists a
metric h = hij affine equivalent to g but not proportional to g at least on the universal cover
of M , which is sufficient for our goals.

By a result of Sinjukov [Si1], every symmetric metric geodesically equivalent to g is affine
equivalent to g, unless the metric has constant curvature. In the latter case, the metric must
be flat, otherwise the holonomy group discussed in the previous section acts transitively on
the unit sphere, and the Finsler metric F is actually Riemannian.

Thus, at least on the universal cover of the manifold there exists a Riemannian metric h affine
equivalent to g but not proportional to g.

We consider the symmetric (1,1)-tensor aij :=
∣
∣
∣
det(ḡ)
det(g)

∣
∣
∣

1/(n+1)
ḡαβgαigβj , where ḡij is the tensor,

dual to ḡij so that giαḡαj = δj
i , the function λ := 1

2aαβgαβ , and its differential λi := (dλ)i := λ,i.
By the result of Sinjukov [Si2], see also [BM] and [EM], if the metric ḡ is geodesically equivalent
to g, the tensor aij and the (0,1) tensor λi satisfy the equation

aij,k = λigjk + λjgik. (6)

Moreover, if the metrics g and ḡ are not affine equivalent, λi is not identically zero.

Recall that the degree of mobility of the metric g is the dimension of the space of solutions
of equation (6) considered as equation on the unknown aij and λi. In our case, the degree of

mobility is at least 3. Indeed, āij := gij , λ̄i := 0 and âij := hij , λ̂i := 0 are also solutions, but
by the assumptions they are linearly independent of the solution aij , λi.

Metrics with degree of mobility ≥ 3 on manifolds of dimensions ≥ 3 were studied, in particular,
in [KM], see also references therein. The last part of the present paper will essentially use the
results of [KM], so we recommend the reader to have [KM] at hand.

By results of [KM, Lemma 3], under the above assumptions, for every solution aij , λi of
equation (6), in a neighbourhood of almost every point there exists a constant B and a function
µ such that the following equations hold:
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λi,j = µ gij + Baij (7)

µ,i = 2Bλi. (8)

Indeed, equation (7) is equation (30) of [KM], and equation (8) is in [KM, Remark 8] (where
the function µ is denoted by ρ).

Our next goal is to show that in our case B = 0 (and, therefore, equations (7) are fulfilled at
every point of the manifold, and the function µ is actually a constant by (8)). This will also
imply that (6, 7) coincide with (1, 2) after raising indices with the help of g.

In order to do this, let us consider the solution Aij := aij +hij , Λi := λi +0 = λi, which is the
sum of the solutions aij , λi and hij , 0. The data Aij , λi satisfy equation (6). As we explained
above, they therefore also satisfy equation (7) in a neighbourhood of almost every point, i.e.,
in a neighbourhood of almost every point there exist a function µ̃ and a constant B̃ such that

λi,j = µ̃gij + B̃(aij + hij). (9)

Subtracting equation (7) from (9), we obtain

(µ − µ̃)gij = (B̃ − B)aij + B̃hij . (10)

We see that the right-hand side of equation (10) is a linear combination of two solution aij

and hij and is therefore also a solution of (6) (with an appropriate λi). As it was proved in
[BKM, Lemma 1] (the result is essentially due to Weyl [We]), the function µ − µ̃ must be a
constant. Since g, a, and h are linearly independent, all coefficients in the linear combination
(10) are zero implying B = 0.

Thus, equations (6, 7) coincide with equations (1,2) after raising the indexes. Theorem 2 is
proved.

Proof of Corollaries 1,2. As we explained above, we can assume that the dimension of
the manifold is ≥ 3 and the degree of mobility is ≥ 3. Under these assumptions, Corollary 1
follows from [KM, Theorem 2] (if g is Riemannian, the result is due to [Ma4, Theorem 16]; in
view of Theorem 2, the result follows from [Mi1, Theorem 5]), and Corollary 1 follows from
[Ma3, Theorem 2] (if g is Riemannian, the result is due to [KM, Theorem 1]).

Proof of Corollary 3. Suppose that a flat Riemannian metric ḡ is geodesically equivalent to
an essentially Berwald metric F . Consider the averaged metric g = gF constructed in Section
2.1. It is affine equivalent to F , and, therefore, as we explained in Section 2.2.2, is geodesically
equivalent to ḡ.

By the classical Beltrami Theorem (see for example [Ma2], or the original papers [Bel] and
[Sc]), the metric g has constant curvature. If the curvature of g is not zero, the holonony
group of g acts transitively on the unit sphere implying the metric F is actually Riemannian.
Thus, the metric g is flat. Then, there exists a coordinate system such that Γ ≡ 0. In this
coordinate system, parallel transport along a curve does not depend on the curve and is the
usual parallel transation x 7→ x + T . Since the parallel transport preserves F , we have that F
is translation-invariant implying it is Minkowski metric as we claimed.
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Basel und Stuttgart, 1956.

11


