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Abstract

We give necessary and sufficient conditions on a smooth local map of
a Riemannian manifold M

m into the sphere S
m to be the Gauß map of

an isometric immersion u : M
m

→ R
n, n = m + 1. We briefly discuss the

case of general n as well
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1 Introduction

Isometric hypersurface immersions of a Riemannian manifold (M, g) with di-
mension m = n − 1 into Euclidean n-space are characterized by their first and
second fundamental forms, g and h. By a classical theorem going back to Bon-
net, the immersion exists and is uniquely determined by g and h up to Euclidean
motions provided that the pair (g, h) satisfies Gauß and Codazzi equations.

In the present paper we ask what happens if we replace (g, h) by (g, ν) where
ν : M → Sm is the Gauß map. At the first glance the new problems seems more
rigid since h is obtained from the differential dν : TM → ν⊥. However this
observation is true only after identifying TM with the complement of the normal
bundle, ν⊥. This identification is precisely the differential of the immersion
which has to be constructed. In fact uniqueness might fail as it happens with
minimal surfaces: All immersions in the associated family of a minimal surface
have the same g and ν, but they are not congruent. A well-known example is
the deformation of the catenoid to the helicoid.

The first problem is to recover the second fundamental form h from the data.
In our approach, the third fundamental form k = 〈dν, dν〉 will play a major rôle
since it is obtained directly from our data and the second fundamental form is its
square root (using g, all 2-forms are viewed also as endomorphims). However,
the square root of a self adjoint positive semi-definite matrix is not unique,
and if repeated eigenvalues occur, there are even infinitely many solutions as
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it happens in the minimal surface case mentioned above. Moreover, in high
dimensions it might be very difficult to compute.

Fortunately, Theorems 2, 3 give other ways to recover h (using Gauß equa-
tions). The defining equations (2) and (4) in theorems 1 and 2 have been known
already to Obata [O]. In the final chapter we extend these ideas to the case
of higher codimension where ν takes values in the Grassmannian Gn−m(Rn).
Again, uniqueness may fail in non-generic cases; examples have been provided
and classified by Dajczer and Gromoll [DG1]. However we will restrict our at-
tention to the generic cases. In this case, Theorems 4, 5 provide an algorithm
by which we may check if the data (g, ν) are the metric and the Gauss map of
some immersion.

We assume that all objects are sufficiently smooth.

2 Main results

Let (Mm, g) be a Riemannian manifold and ν : Mm → Sm ⊂ R
m+1 be a smooth

mapping. We are interested in the question when the given data (g, ν) are the
first fundamental form and the Gauß map for an immersion u : Mm →֒ R

m+1.
Such data (g, ν) will be called admissible, and u will be called a solution for
(g, ν). Our considerations are local, hence we may always assume that M is a
simply connected open subset of R

m.
Let R = (Rl

ijk) be the Riemann curvature tensor of the metric g, Ric =

TrR =
(

Rl
ijl

)

the Ricci tensor, and s = Tr Ric = gij Ricij the scalar curvature.

Let A = dν ∈ Hom(TM, ν⊥) and put

k(v, w) = 〈Av,Aw〉 = 〈A∗Av,w〉 (1)

for all v, w ∈ TM ; this is a symmetric positive semi-definite bilinear form, which
will be referred to as the third fundamental form. We can raise the indices with
the help of g and consider both Ric and k as fields of operators on the tangent
bundle, denoting the result by the same letter.

Theorem 1 Let (Mm, g) and ν : Mm → Sm be given and assume that A =
dν : TMm → ν⊥ is everywhere invertible. Let k be defined by (1). Then the
data (g, ν) are admissible if and only if there is h ∈ S2T ∗M with

h2 = k (2)

(here we identify symmetric forms with symmetric operators with the help of
g) such that the vector bundle homomorphism

U = −(A∗)−1h : TM → ν⊥ (3)

is isometric and parallel with respect to the Levi-Civita connection on TM and
the projection connection on ν⊥. In fact, the corresponding immersion u :
Mm → R

m+1 is determined by du = U , and h is the second fundamental form
of u, i.e. hij = 〈uij , ν〉.
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The condition that the vector bundle homomorphism U is parallel with re-
spect to the Levi-Civita connection on TM is equivalent to (8) below.

Since k is positive semi-definite, it has a symmetric square root h. However,
as explained in the introduction, (2) is often difficult to solve. Indeed, a general
solution requires finding the roots of a polynomial of the mth degree. For big m,
this is impossible to do explicitly. If k has multiple eigenvalues, the following
additional difficulty appears: at every point there are infinitely many solutions
of (2), so even if we found one solution of (2) such that (3) is not parallel,
there might exist another solution such that (3) is parallel Hence in many cases
Theorem 1 is useless unless we find a better method to compute h from the
data. This is achieved by the following statements:

Theorem 2 If the data (g, ν) are admissible, then for any solution u, the second
fundamental form h and the (unnormalized) mean curvature H = Trh = hijg

ij

solve the following system

hH = Ric +k, H2 = s + Tr k. (4)

Remark 1 Clearly, if s + Tr k > 0, the equations can be solved:

H = ±
√

s + Tr k, h = ± 1√
s+Tr k

(Ric+k) . (5)

Moreover, as we explain in Remark 3, the sign of H and of h is not essential
for our goals.

Theorem 3 If the data (g, ν) are admissible with dν non-degenerate and m =
dim M ≥ 3, then the second fundamental form h of any solution u solves the
homogeneous linear system

h k−1R(Ω) = 2Ωh, ∀Ω ∈ sog(TM), (6)

where R is considered as curvature operator acting on Λ2TM = sog(TM).
Moreover the solution h of (6) is unique up to a scalar factor.

Remark 2 Note that the missing scalar factor in Theorem 3 can be easily found
using condition (2): if h̃ is a nonzero solution of (6) then

h = ±

√

√

√

√

Tr
(

h̃2
)

Tr k
· h̃ (7)

Remark 3 The sign ± in the formulas (5,7) does not affect the existence of a
solution u: If u is a solution for (g, ν) with second fundamental form h (resp.
mean curvatrure H), then −u is also a solution with second fundamental form
−h (resp. mean curvature −H).

The above theorems give us an algorithm to check admissibility of (g, ν):
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1. Check if s + Tr k ≥ 0.1

2. Find h:

(a) If s + Tr k > 0, define h by (5).2

(b) If s + Tr k = 0 and m ≥ 3, then for every x ∈ M solve the linear sys-
tem (6) in TxM := ν⊥. Check whether there exists a (nondegenerate)
solution h̃. Consider the solution h given by (7).

(c) If s + Tr k ≡ 0 and m = 2, verify the Gauß condition (Remark 6
below).

3. Check if h2 = k (this together with 2 implies that h is symmetric).

4. Finally check if U = −(A∗)−1h is parallel, i.e.

∂iuj − 〈∂iuj , ν〉ν = Γk
ijuk (8)

where uj = Uej and Γk
ij are the Christoffel symbols, the components of

the Levi-Civita connection: ∇iej = Γk
ijek.

The data (g, ν) are admissible if and only if all checks are successful.
This answers a question raised in [E] which was discussed by the authors

during and after the 10th conference on Differential Geometry and its Applica-
tions.

Remark 4 Both Gauß and Codazzi equations are hidden in the assumption that
U ∈ Hom(TM, ν⊥) is isometric and parallel. In fact this property is equivalent
to Codazzi equations while Gauß equations follow from it, see Appendix. The
claim that the Gauß condition is a differential consequence of the Codazzi con-
dition in the non-degenerate case is non-trivial. It shall be compared with the
known fact that under some conditions the Codazzi equations are consequences
of the Gauß equations [Al].

Remark 5 The uniqueness of recovering the isometric immersion u : Mm →
R

m+1 with fixed third quadratic form k was considered in [DG2]. This is similar
to recovering of immersions with fixed Gauß map in the case of hypersurfaces,
but not for higher codimension, see the last section.

Remark 6 The only case not covered by our theorems is m = 2 and H =
0, the case of minimal surfaces which is given by the well known Weierstraß
representation [L]; the only restriction for the metric g comes from the Gauß
equation

K +
√

det(k) = 0

and the Gauß map ν : M2 → S2 needs to be conformal. Any such pair (g, ν)
is admissible, and to each admissible pair there exists precisely a one-parameter
family of geometrically distinct isometric minimal immersions, the associated
family.

1In fact, a bit more is necessary: s+Tr k needs to allow a smooth “square root”: a function
H with H

2 = s + Tr k.
2The sign of H is arbitrary, see Remark 3.
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3 Historical motivation

Two classical problems concern the embeddings

u : Mm →֒R
n. (9)

The first is about isometric embedding, i.e. when a metric g on M can be
obtained as u∗ds2

Eucl for some u. In the PDE language this is equivalent to
solvability of the system

〈ui, uj〉 = gij(x), 1 ≤ i, j ≤ m, u = (u1, . . . , un) : Mm → R
n, (10)

where ui := ∂
∂xi

u.
The Janet-Cartan theorem [J, C] guarantees this locally in the analytic cat-

egory for n = m(m+1)
2 , i.e. when the system (10) is determined. This was

improved by Nash [N], Gromov-Rokhlin [GR] and others [Gre, BBG], who re-
laxed analyticity to smoothness (for the price of increasing n or imposing some
non-degeneracy assumptions) and so proving that embedding is always possible.
Recent results include Günter [G1, G2], Han–Hong [HH], and Andrews [An].

When n <
m(m+1)

2 the system is overdetermined. Thus while rigidity
(uniqueness of solutions up to Euclidean motion) is clear in many cases, no
general criterion (existence) for local embedding is known (see [Gro] for details).

The other important problem related to imbeddings (9) is to recover it from
the Gauß map ν : Mm → Gn−m(Rn), x 7→ TxM⊥ ⊂ R

n (also known as
Grassmann map). This problem is unsolvable for hypersurfaces (n = m + 1)
unless the Gauß map is degenerate. In general the problem can be rephrased as
solvability of the following PDE system

〈ui, ν
α(x)〉 = 0, m + 1 ≤ α ≤ n (11)

where να is an orthonormal basis of sections of TM⊥ (no index for hypersur-
faces).

For 2m = n = 4, the system (11) is determined while for the other m < n−1
overdetermined. By the results of Muto, Aminov, Borisenko [M, Am, B1, B2]
the embedding is locally recoverable upon certain non-degeneracy assumptions,
up to a parallel translation and homothety. However not any m-dimensional
submanifold of Gn−m(Rn) is realizable as the image of a Gauß map (except
for the case 2 in 4, when no obstruction equalities exist). The conditions of
realizability are not known so far (partial results can be found in [B3]).

In this note we unite the systems (10)+(11) and ask when the data (g, ν)
are realizable and what is the freedom. In many cases we get indeed rigidity, i.e.
an embedding is recoverable up to a parallel translation (this can be obtained
as a combination of the problems with the data g and the data ν above, but
our conditions are wider; another approach to rigidity within the same problem
was taken in [AE, DG1, DG2]). However in addition to this we write the full
set of constraints, thus solving the problem completely.

Notice that as (n−m) grows, the amount of compatibility constraints coming
from g decreases while that for ν increases, and there are always constraints for
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(g, ν). For the hypersurface case n = m+1, mainly treated here, the Gauß map
alone bears no information (unless it is degenerate), making the problem for the
pair (g, ν) more interesting.

4 Proof of the main results

We will work locally in Mm. Given (M, g) and ν : Mm → Sm, we want to
understand whether there exists a smooth (local) map u : Mm → R

m+1 whose
partial derivatives with respect to a coordinate chart satisfy

〈ui, uj〉 = gij , (12)

〈ui, ν〉 = 0. (13)

This is a system of algebraic equations for the partial derivatives of ui. Once
we obtained an (algebraic) solution U = (ui)i=1,...,m of (12),(13), there exists
a smooth mapping u = (u1, ..., un) : M → R

n if and only if the integrability
conditions

uij = uji (14)

are fulfilled, where the second index means partial derivative: uij := ∂
∂xj

ui.

Equation (14) splits into a tangent and a normal part. The tangent part (ν⊥-
part) can be interpreted as follows. Equations (12), (13) mean that U is a bundle
isometry between TM and ν⊥. Now the tangent part of (14) says that the
canonical connection (via projection) on ν⊥ ⊂ M × R

n is torsion free when ν⊥

and TM are identified using U . Since the connection is also metric preserving,
it is Levi-Civita:

(uij)
T = Γk

ijuk (15)

where ( )T denotes the tangent component (ν⊥-component). In other words,
the tangent part of (14) under the assumptions (12),(13) says precisely that
U : TM → ν⊥ is parallel (affine, connection preserving).

The normal part (ν-part) of (14), in view of (13), is equivalent to

hij = hji

where
hij = 〈uij , ν〉 = −〈ui, νj〉, h = −A∗U. (16)

Once we have got h, we obtain U = −(A∗)−1h : TM → ν⊥ from (16) and check
orthogonality (12) and parallelity (15).

Next we show that h2 = k is necessary. If an immersion u : M → R
n with

Gauß map ν is given, then h = −A∗U where A = dν and U = du because
hij = 〈uij , ν〉 = −〈ui, νj〉. Since h is self adjoint and U orthogonal, we have

h2 = hh∗ = A∗UU∗A = A∗A = k.
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Now let us show that our assumptions are sufficient. Assuming h symmetric
with h2 = k and choosing U = −(A∗)−1h : TM → ν⊥, we obtain

UU∗ = (A∗)−1h2A−1 = (A∗)−1kA−1 = (A∗)−1A∗AA−1 = I,

thus U is an isometry. Moreover h = −A∗U is symmetric, i.e.

〈ui, νj〉 = 〈uj , νi〉.
Since U takes values in ν⊥, we have 〈ui, ν〉 = 0 and hence

〈uij , ν〉 = 〈uji, ν〉.
This is the normal part of (14). The tangent part is obtained from the parallelity
assumption (15), since the Christoffel symbols Γk

ij are symmetric in (ij). Thus
the integrability condition (14) is proved and hence we obtain a map u : M → R

n

with du = U . This finishes the proof of Theorem 1.

Theorem 2 is an obvious consequence of the Gauss equations

Rijkl = hilhjk − hikhjl. (17)

In fact, taking the trace over jk, i.e. multiplying by gjk and summing we obtain

Ric = h · H − k, (18)

Taking again the trace on both sides,

s = H2 − Tr k (19)

This shows (4). Theorem 2 is proved.
In order to prove Theorem 3, we transform equations (17) into its curvature

operator form

R(Ω) = 2 · hΩh, i.e., Rij
klΩ

kl = 2 · hi
lΩ

klh
j
k

(which must be fulfilled for every Ω ∈ Λ2TM = sog(TM)). Multiplying by
h−2 = k−1 from the left, we get

k−1R(Ω) = 2 · h−1Ωh (20)

which is equivalent to
hk−1R(Ω) = 2 · Ωh. (21)

This is the linear equation (6) for h which we wanted to prove. It remains
to show uniqueness of the solution provided m ≥ 3. This will be done in the
following

Lemma. Assume m ≥ 3. If both h, h̃ solve (21) for all Ω ∈ so(Rm), then h and
h̃ are proportional.

Proof. Both h and h̃ satisfy (20) and hence

h−1Ωh = h̃−1Ωh̃

for all Ω ∈ so(Rm). Thus g := h̃h−1 commutes with all Ω ∈ so(Rm). If m ≥ 3,
the centralizer of so(Rm) contains only the scalar matrices, hence g = λI and
h̃ = λh for some λ ∈ R. �
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5 The general case

When we study immersions Mm → R
n with arbitrary n > m, it is not easy to

get a closed formula for h as in the main theorems. But as we will see, in the
generic case h can still be effectively computed from the data.

The given data are again a Riemannian manifold (Mm, g) and a smooth
map ν : M → Gn−m(Rn) into the Grassmannian of (n − m)-planes in R

n, and
we ask if ν is the Gauß map of some isometric immersion u : M → R

n. Choose
an orthonormal basis (να)α=1,...,n−m of ν. Let

Aα = (dνα)T

denote the corresponding Weingarten operators, where ( )T again denotes the
tangent component (ν⊥-component), and let

k =
∑

kαα, kαβ = (Aα)∗Aβ (22)

the corresponding third fundamental on M induced by ν from the standard
symmetric metric on Gn−m(Rn). The second fundamental form h which we
search for, is ν-valued and has also several components hα = 〈h, να〉: Given an
isometric immersion u : M → R

n and U = du = (u1, . . . , um), we have

hα
ij = 〈uij , ν

α〉 = −〈ui, ν
α
j 〉, hα = −(Aα)∗U.

Consequently
hαhβ = hα(hβ)∗ = (Aα)∗UU∗Aβ = kαβ .

There exist deformations of isometric immersions with fixed k, see [V], which
are different from ours for codimensions exceeding 1. However in this case k

bears significantly less information than the Gauß map ν. With the latter we
can restore the immersion up to a translation in a generic case.

Theorem 4 Let (Mm, g) and ν : M → Gn−m(Rn) be given and assume that
at least one of the Aα = (dνα)T : TM → ν⊥ is everywhere invertible. Let
kαβ be as in (22). Then the data (g, ν) are admissible if and only if there exist
hα ∈ S2T ∗M with

hαhβ = kαβ . (23)

and a vector bundle homomorphism U : TM → ν⊥ with

hα = −(Aα)∗U (24)

for all α, such that U is parallel with respect to the Levi-Civita connection on
TM and the projection connection on ν⊥. In fact, the corresponding immersion
u : Mm → R

n is determined by du = U .

The proof is almost the same as before and will be omitted. But as before
we need an effective method to compute hα from the given data. This is given
by the next theorem:
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Theorem 5 Assume that the data (g, ν) are admissible with |H| =
√

s + Tr k

6= 0 and Ric +k invertible. Then

hβ =
∑

α

Hα(Ric +k)−1kαβ . (25)

where Hα = Trhα are the components of the mean curvature vector H = Trh

which is a fixed vector with length
√

s + Tr k for the matrix ρ = (ραβ) on ν

defined by
ραβ = Tr

(

(Ric +k)−1
)

kαβ . (26)

Proof. Suppose that an isometric immersion u : M → R
n with Gauß map ν is

given. The Gauß equations are

Rijkl =
∑

α

hα
ilh

α
jk − hα

ikhα
jl

Taking the trace over jk yields

Ric =
∑

α

(

hαHα − (hα)2
)

=
∑

α

hαHα − k

and hence
∑

α

Hαhα = Ric +k. (27)

Tracing again we obtain the length of the mean curvature vector,

|H| =
√

s + Tr k. (28)

From (27) we can compute the hα since the products hαhβ = kαβ are known:

(Ric +k)hβ =
∑

α

Hαkαβ

and (25) follows. In order to compute Hα we take the trace of (25):

Hβ =
∑

α

Hα Tr
(

(Ric +k)−1kαβ
)

=
∑

α

Hαραβ

with ραβ as in (26). Thus H is a fixed vector of the matrix ρ = (ραβ). In
the generic case this fixed space is only one dimensional (it is at least one-
dimensional since it contains H 6= 0). Using (28) we see that H is uniquely
determined up to sign.3 �

Once again we have got an algorithm by which we may check if the data (g, ν)
are admissible, belonging to some isometric immersion u. From the data we
form the matrix ρ and check if it has a fixed vector. In the generic case, the

3The sign of H cannot be fixed. Indeed, as in Remark 3, if u : M → R
n is an immerion

with mean curvature vector H, then −u has the same Gauß map and mean curvature vector
−H.
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fixed space is at most one-dimensional. We choose a fixed vector H using (28).
Then we define the quadratic form hβ by (25) and check if it satisfies (23).
Setting U = −(Aα∗)−1hα for one α we check if (24) holds true for the other
indices α and if U is parallel. The data (g, ν) are admissible if and only if all
the tests are successful.

In non-degenerate cases, similar to the hypersurface case, the Gauß equation
follows from Codazzi and Ricci equations. Non-uniqueness of solution for this
system means isometric deformation with fixed Gauß image, and was completely
understood by Dajczer and Gromoll in [DG1].

Appendix

We want to show that under the assumptions (12), (13) and (14)⊥, Codazzi
equations are equivalent to parallelity of U , (14)T , and they imply Gauß equa-
tions.

Theorem 6 Let (M, g) and ν : M → Sm be given and dν nondegenerate. Let
U = (u1, . . . , um) : TM → ν⊥ be a vector bundle isometry such that bij :=
〈ui, νj〉 = −hij is symmetric (normal integrability condition). Then

∇U = 0 ⇐⇒ (∇ib)jk = (∇jb)ik, (29)

∇U = 0 ⇒ Rijkl = bilbjk − bikbjl (30)

Proof. “⇒” of (29): From b = U∗dν = 〈U, dν〉 we obtain

∇b = 〈∇U, dν〉 + 〈U,∇dν〉. (31)

Since ∇U = 0, we are left with ∇b = 〈U,∇dν〉 or more precisely,

(∇ib)jk = 〈uj , (∇idν)k〉

Since the right hand side (the hessian of the map ν) is symmetric in ik, we have
proved our claim.

“⇐” of (29): We still have (31), more precisely

(∇ib)jk = 〈(∇iU)j , νk〉 + 〈uj , (∇idν)k〉.

From the symmetry of ∇b and ∇dν in ik we see

〈(∇iU)j , νk〉 = 〈(∇kU)j , νi〉. (32)

On the other hand, by covariant differentiation of the isometry property 〈U,U〉 =
U∗U = g we obtain 〈∇U,U〉 + 〈U,∇U〉 = 0, more precisely

〈(∇iU)j , uk〉 + 〈uj , (∇iU)k〉 = 0. (33)

Since U∗dν = b is self adjoint with respect to g, we can choose local coordinates
in such a way that both tensors g and b are diagonal at the considered point
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and hence uk = λkνk for each k (where we have used the nondegeneracy of b).
Substituting this into (33) and putting θijk = 〈(∇iU)j , νk〉, we get

λkθijk + λjθjik = 0

(no summation). Cycling (ijk) and using (32), θijk = θkji, we get 3 equations
in the 3 unknowns θijk, θjki, θkij . The determinant of this linear system equals
2λiλjλk 6= 0, and therefore 〈(∇iU)j , νk〉 = θijk = 0. Since the vectors νk form
a basis of ν⊥, we obtain ∇U = 0.

Proof of (30): Since U : TM → ν⊥ is isometric and parallel, it carries the
Riemannian curvature tensor on TM into the curvature tensor of the projection
connection ∇ on ν⊥ which is computed as usual:

∇juk = (ukj)
T = ukj + bkj ν

∇i∇juk = (∂i(∇juk))T = (ukji)
T + bkj νi,

〈∇i∇juk, ul〉 = 〈∂i(∇juk), ul〉 = 〈ukji, ul〉 + bkjbil,

Rijkl = 〈(∇i∇j −∇j∇i)uk, ul〉 = bkjbil − bkibjl,

using the symmetry of ukji = ∂i∂juk in ij. The last equality is the Gauß
equation (30) which finishes the proof. �
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