
There are no conformal Einstein rescalings of complete

pseudo-Riemannian Einstein metrics

Volodymyr Kiosak, Vladimir S. Matveev∗

Theorem 1. Let g be a light-line-complete pseudo-Riemannian Einstein metric of indef-
inite signature (i.e., for no constant c the metric c · g is Riemannian) on a connected
(n > 2)−dimensional manifold M . Assume that for the nowhere vanishing function ψ the
metric ψ−2g is also Einstein. Then, ψ is a constant.

Remark 1. Theorem 1 fails for Riemannian metrics (even if we replace light-line complete-
ness by usual completeness) – Möbius transformations of the standard round sphere and
the stereographic map of the punctured sphere to the Euclidean space are conformal nonho-
mothetic mappings. One can construct other examples on warped Riemannian manifolds,
see [6, Theorem 21].

Remark 2. By Theorem 1, light-line complete pseudo-Riemannian Einstein metrics of in-
definite signature do not admit nonhomothetic conformal complete vector fields. The Rie-
mannian version of this result is due to Yano and Nagano [10]. Moreover, the assumption
that the metric is Einstein can be omitted (by the price of considering only essential confor-
mal vector fields): as it was proved by D. Alekseevksii [1], J. Ferrand [3] and R. Schoen [11],
a Riemannian manifold admitting an essential complete vector field is the round sphere or
the Euclidean space. It is still not known whether the last statement (sometimes called
Lichnerowicz-Obata conjecture) can be extended to the pseudo-Riemannian case, see [8]
for a counterexample in the C1− smooth category, and [4, 5] for a good survey on this
topic.

Remark 3. In the 4-dimensional lorenz case, Theorem 1 was known in folklore: more
precisely, conformal Einstein rescalings of 4-dimensional Einstein metrics were described
by Brinkmann [2], see also [7, Corollary 2.10]. The list of all such metrics and their
conformal Einstein rescalings is pretty simple and one can directly verify our Theorem 1
by calculations.

Remark 4. A partial case of Theorem 1 is [7, Theorem 2.2], in which it is assumed that
both metrics are complete. This extra-assumption is very natural in the context of [7] since
the paper is dedicated to the classification of conformal vector fields; moreover, Theorem
2.2 is not the main result of the paper. It is not clear whether in the proof of [7, Theorem
2.2] the assumption that the second metric is complete could be omitted.
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Proof of Theorem 1. It is well-known (see for example [2, eq. (2.21)] or [6, Lemma
1]) that the Ricci curvatures Rij and R̄ij of two conformally equivalent metrics g and
ḡ = ψ−2g = e−2φg are related by

R̄ij = Rij + (∆φ− (n− 2)‖∇φ‖2)gij +
n− 2

ψ
∇i∇jψ. (1)

Consider a light-line geodesic γ(t) of the metric g. Since the metric g is light-line-complete,
γ(t) is defined on the whole R. “Light-line” means that g(γ̇(t), γ̇(t)) = gij γ̇

i(t)γ̇j(t) = 0,
where γ̇ is the velocity vector of γ (it is well-known that if this property is fulfilled in one
point then it is fulfilled at every point of the geodesic).

Now contract (1) with γ̇iγ̇j. Since the metrics are Einstein and conformally equivalent,
R̄ij, Rij and gij are proportional to gij, and therefore the only term which does not vanish
is γ̇iγ̇j n−2

ψ
∇i∇jψ. Thus, γ̇iγ̇j∇i∇jψ = 0.

Clearly, at every point of the geodesic we have γ̇iγ̇j∇i∇jψ = d2

dt2
ψ(γ(t)). Thus, d2

dt2
ψ(γ(t)) =

0 implying ψ(γ(t)) = const1 · t+ const. Since by assumptions the function ψ is defined on
the whole R and is equal to zero at no point, we have const1 = 0 implying ψ ≡ const along
every light-line geodesic.

Now, every two points of a connected manifold can be connected by a finite sequence of
light-line geodesics. Indeed, consider R

n with the standard pseudo-Euclidean metric g0

of the same signature (r, n − r), 1 ≤ r < n as the metric g. The union of all light-line
geodesics passing through points a (resp. b) are the standard cones Ca := {(x1, ..., xn) ∈
R
n | (x1 − a1)

2 + ... + (xr − ar)
2 − (xr+1 − ar+1)

2 − ... − (xn − an)
2} and, resp., Cb :=

{(x1, ..., xn) ∈ R
n | (x1− b1)

2 + ...+(xr− br)
2− (xr+1− br+1)

2− ...− (xn− bn)
2}. These two

cones always have points of transversal intersection. Thus, two arbitrary points of R
n can

be connected by a sequence of two light-line geodesics of g0. Since the restriction of the
metric g to a small neighborhood U ⊆ Mn can be viewed as a small perturbation of the
metric g0 in R

n, two points in U can be connected by a sequence of two light-line geodesics.
Then, the set of points of M that can be connected with a fixed point p ∈ Mn by a finite
sequence of light-line geodesics is open and closed implying it coincides with M .

Since every two points of M can be connected by a sequence of light-line geodesics, and
since as we proved above the function ψ is constant along every light-line geodesic, we have
that ψ is constant on the whole manifold as we claimed,

Theorem 2. Let g be a pseudo-Riemannian Einstein metric of indefinite signature on
a connected closed (i.e., compact with no boundary) (n > 2)−dimensional manifold M .
Assume that for the nowhere vanishing function ψ the metric ψ−2g is also Einstein. Then,
ψ is a constant.

Remark 5. Theorem 2 is not new and is in [9, Theorem 5]. Moreover, Wolfgang Kühnel
explained us how one can obtain the proof combining the results of PhD thesis of Kerckhove,
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equation (1) due to [2], and also [7, Proposition 3.8(1)]. Our proof of Theorem 2 is much
easier than the proofs of Mikes–Radulovich and Kühnel. Actually, the initial version of our
paper did not contain Theorem 2 at all, but after J. Mikes sent us his paper we immediately
saw that the proof of their Theorem 5 can be essentially simplified by using the trick from
the proof of our Theorem 1.

Proof of Theorem 2. Since M is closed, there exists p0 ∈ M such that the value of
ψ is maximal (we denote this value by ψmax). We take a light-line geodesic γ such that
γ(0) = p0. As we explained in the proof of Theorem 1, the function ψ(γ(t)) is equal to
const · t + ψmax. Since the value of φ at the point p0 is maximal, const = 0 implying
ψ(γ(t)) ≡ ψmax. Then, for every point p1 of geodesic γ the value of ψ is maximal. We
can therefore repeat the argumentation and show that for every light-line geodesic γ1 such
that γ1(0) = p1 we have ψ(γ1(t)) ≡ ψmax and so on. Since every two points of M can be
connected by a sequence of light-line geodesics, we have that ψ is constant on the whole
manifold,
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When we obtained the proof, we asked all experts we know whether the proof is new, and
are grateful to those who answered, in particular to M. Eastwood, Ch. Frances, R. Gover,
G. Hall, F. Leitner, and P. Nurowski.

Both authors were partially supported by Deutsche Forschungsgemeinschaft (Priority Pro-
gram 1154 — Global Differential Geometry), and by FSU Jena.

References

[1] D. V. Alekseevskii, Groups of conformal transformations of Riemannian spaces.
(russian) Mat. Sbornik 89 (131) 1972 = (engl.transl.) Math. USSR Sbornik 18 (1972)
285–301

[2] H. W. Brinkmann, Einstein spaces which are mapped conformally on each other. Math.
Ann. 94(1925) 119–145.

[3] J. Ferrand, The action of conformal transformations on a Riemannian manifold.
Math. Ann. 304 (1996) 277 – 291

[4] Ch. Frances, Essential conformal structures in Riemannian and Lorentzian geome-
try. Recent developments in pseudo-Riemannian geometry, 231–260, ESI Lect. Math.
Phys., Eur. Math. Soc., Zürich, 2008.
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