
Gallot-Tanno theorem for pseudo-Riemannian metrics

and a proof that decomposable cones over closed
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Introduction. Let g be a Riemannian or pseudo-Riemannian metric

g =
n
∑

i,j=1

gij(x1, ..., xn)dxidxj

on an n−dimensional manifold M . We consider the following equation on the unknown
function λ on M .

∇k∇j∇iλ + 2∇kλ · gij + ∇iλ · gjk + ∇jλ · gik = 0. (1)

This equation is a famous one; it naturally appeared in different parts of differential geom-
etry. Couty [2] and De Vries [11] studied it in the contex of conformal transformations of
Riemannian metrics. They showed that, under certan additional assumptions, conformal
vector fields generate nonconstant solutions of the equation (1).

The equation also appears in investigation of geodesically equivalent metrics. Recall that
two metrics on one manifold are geodesically equivalent, if every geodesic of one metric is a
reparametrized geodesic of the second metric. Solodovnikov [9] has shown that Riemannian
metrics on (n > 3)−dimensional manifolds admitting nontrivial 3-parameter family of
geodesically equivalent metrics allow nontrivial solutions of (a certain generlaization of)
(1). Recently, this result was generalised for pseudo-Riemannian metrics [6, Corollary
4]. Moreover, as it was shown in [5, Corollary 3] (see also [4]), an Einstein manifold
of nonconstant scalar curvature admitting nontrival geodesic equivalence, after a proper
scaling, admits a nonconstant solution of (1). Tanno [10] (see also [4]) related the equation
(1) to projective vector fields, i.e., to vector fields whose local flows take unparametrized
geodesics to geodesics. He has shown that every nonconstant solution λ of this equation
allows to construct a nontrivial projective vector field.
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Obata used this equation trying to understand the relation between the eigenvalues of
the laplacian ∆g and the geometry and topology of the manifold. He observed [8] that
the eigenfunctions corresponding to the second eigenvalue of the Laplacian of the metrics
of constant curvature +1 on the sphere satisfy the equation (1), and asked the question
whether the existence of a nonconstant solution of this equation on a complete manifold
implies that the manifold is covered by the sphere with the standard metric. The positive
answer to this question was indepedently and simultaneously obtained by Gallot [3] and
Tanno [10].

This note generalizes the result of Gallot [3] and Tanno [10] to pseudo-Riemannian metrics:

Theorem 1. Let g be a light-line-complete connected pseudo-Riemannian metric of in-
definite signature (i.e., for no constant c the metric c · g is Riemannian) on a closed
n−dimensional manifold Mn. Then, every solution of (1) is constant.

Theorem 2. Let g be a negative-definite metric (i.e., −g is a Riemannian metric) on a
closed connected manifold M . Then, every solution of (1) is constant.

Example of Alexeevsky, Cortes, Galaev and Leistner [1, Example 3.1] combined with
Lemma 2 below shows that in the pseudo-Riemannian case the assumption that the metric
is complete (but the manifold is not closed) is not sufficient to ensure that every solution
of (1) is constant.

The equation (1) naturally appears also in the investigation of the holonomy group of
cones over pseudo-Riemannian manifolds. Recall that the cone over (Mn, g) is the pseudo-
Riemannian manifold (M̂n+1, ĝ), where M̂ = R>0 × M and

ĝ = (dx0)
2 + x2

0 ·

(

n
∑

i,j=1

gij(x1, ..., xn)dxidxj

)

, (2)

where x0 is the standard coordinate on R>0 and x1, ..., xn are local coordinates on Mn.
Following [1, 3], we will show that the decomposability of the cone (i.e., the existence of a
proper nondegenerate subspace U ⊂ TpM̂ invariant with respect to the holonomy group)
implies the existence of an nonconstant solution of (1) on (M, g), see Lemma 2 below.
Combining this with Theorems 1, 2, we obtain

Corollary 1. Let g be a light-line-complete pseudo-Riemannian metric of indefinite sig-
nature on a closed n−dimensional manifold Mn. Then, the corresponding cone (M̂, ĝ) is
not decomposable.

Corollary 2. Let g be a complete negative-definite pseudo-Riemannian metric on a closed
n−dimensional manifold Mn. Then, the corresponding cone (M̂, ĝ) is not decomposable.

A partial case of Corollaries 1, 2 is [1, Theorem 6.1]. Our proof is different from that of
[1] and is shorter. The case when the metric g is Riemannian was solved in [3, Proposition
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3.1]: Gallot used the Riemannian version of Theorems 1, 2 to show that if the cone (M̂, ĝ)
over complete Riemannian (M, g) is decomposable, then g has constant curvature +1.

Proof of Theorem 1. Let g be an indefinite pseudo-Riemannian metric on Mn. Suppose
the function λ satisfies (1). We take a light-line geodesic γ(t) whose velocity vector will
be denoted by γ̇ = (γ̇i), multiply (1) by γ̇iγ̇j γ̇k, and sum over i, j, k. Since the geodesic is
light-line, at every point γ(t) we have

n
∑

i,j=1

gij γ̇
iγ̇j =

n
∑

i,k=1

gikγ̇
iγ̇k =

n
∑

j,k=1

gjkγ̇
j γ̇k ≡ 0 implying

n
∑

i,j,k=1

γ̇iγ̇j γ̇k∇k∇j∇iλ = 0.

By definition of the geodesic, ∇γ̇ γ̇ = 0 implying

n
∑

i,j,k=1

γ̇iγ̇j γ̇k∇k∇j∇iλ =
n
∑

k=1

γ̇k∇k

(

n
∑

j=1

γ̇j∇j

(

n
∑

i=1

γ̇i∇iλ

))

= d3

dt3
λ(γ(t))

implying d3

dt3
λ(γ(t)) = 0 implying that λ = const2t

2 + const1t + const0.

But by assumption the manifold M is compact implying that the function λ is bounded,
and the function const2t

2 + const1t + const0 is bounded if and only if const2 = const1 = 0.
Then, λ is constant along every light-line geodesic. Since every two points of a connected
pseudo-Riemannian manifold of indefinite signature can be connected by a sequence of
light-line geodesics, the function λ is a constant. Theorem 1 is proved.

Proof of Theorem 2. We multiply (1) by gij and sum over i, j ∈ 1, ..., n. We obtain:
∇k (∆gλ) = −2(n+1)∇kλ, where ∆g :=

∑n

i,j=1 gij∇i∇j : C∞(M) → C∞(M) is the laplacian of g.

Then, for a certain constant C we have ∆g(λ + C) = −2(n + 1)(λ + C). Thus, λ + C is
an eigenfunction of ∆g with negative eigenvalue −2(n + 1). Since the metric g is negative-
definite and the manifold is closed, laplacian of g is positive definite on nonconstant func-
tions implying λ + C ≡ const. Thus, λ is constant. Theorem 2 is proved.

Proof of Corollaries 1, 2. It is well-known that if a manifold (M̂, ĝ) is decomposable,
then there exists a symmetric tensor â = (âij), i, j = 0, ..., n such that â 6= const·ĝ for every

const ∈ R and such that its covariant derivative vanishes: ∇̂kâij ≡ 0. We denote by µ the
(0, 0)−componenent of â, by λi the (0, i)−component of â (the symmetric (i, 0)−component
is also λi), and by aij the (i, j)−component of â for i, j = 1, ..., n, so that the matrix of â

is

(âij) =











µ λ1 . . . λn

λ1 a11 . . . a1n

...
...

...
λn an1 . . . ann











(3)

3



The components of µ, λi, aij can a priori depend on t. For a fixed t (say, for t = 1), one can
view µ, λi, aij as geometrical objects on M : µ is a function on M , λi is an (0, 1)−tensor
on M , and aij is a symmetric (0, 2)−tensor on M (i.e., if we change the local coordinate
system on M the componenents of λi and aij change according to the tensor rules). We

will denote by ∇ (∇̂, resp.) the covariant derivative in the sense of g (ĝ, resp.) and by Γk
ij

(Γ̂k
ij, resp.) the corresponding Christoffel symbols. We will need the following

Lemma 1. Let â given by (3) satisfy ∇̂â = 0. Then, the tensors λi, aij, and the function
µ on M satisfy (we assume t = 1)

∇kaij = −λigjk − λjgik, (4)

∇jλi = aij − µgij, (5)

∇iµ = 2λi. (6)

Proof. Let us calculate Γ̂i
jk in terms of gij and Γi

jk at the point (1, x1, ..., xn) of the cone

M̂ : substututing (2) in Γ̂i
jk = 1

2

∑n

h=0 ĝih (∂kĝjh + ∂j ĝhk − ∂hĝjk) we obtain

Γ̂0
j0 = Γ̂0

0j = 0 ∀j ∈ 0, ..., n | Γ̂0
jk = −gjk ∀j, k ∈ 1, ..., n

Γ̂j
j0 = Γ̂j

0j = 1 ∀j ∈ 1, ..., n | Γ̂i
j0 = Γ̂i

0j = 0 ∀i 6= j ∈ 1, ..., n.

Γ̂i
jk = Γi

jk ∀i, j, k ∈ 1, ..., n |

(7)

Substituting (3) and (7) in the equation ∇̂kâij = 0, we obtain that for every i, j, k ∈ 1, ..., n

0 = ∇̂kâij = ∂kaij − Γ̂0
kj âi0 − Γ̂0

ikâ0j −
n
∑

h=1

[

Γ̂h
kj âih + Γ̂h

ikâhj

]

= ∇kaij + gkjλi + gikλj,

which proves (4). Similarly, substituting (3) and (7) in ∇̂j âi0 = 0 we obtain (5), and

substituting (3) and (7) in ∇̂iâ00 = 0 we obtain (6). Lemma 1 is proved.

Lemma 2. The (0, 1)−tensor λi is the differential of a certain function λ on M , i.e.,
λi = ∇iλ = ∂iλ. Moreover, the function λ satisfies the equation (1). Moreover, if λ is
constant, then â is proportional to ĝ (with a constant coefficient of proportionality).

Proof. We multiply (4) by gij (which is the dual tensor to gij:
∑n

h=1 gihghj = δi
j) and

sum over i and j: since ∇kg
ij = 0 we obtain ∇k

∑n

i,j=1 aijg
ij = −2λk. Thus, λk =

∇k

(

−1
2

∑n

i,j=1 aijg
ij
)

= ∇kλ for the function λ := −1
2

∑n

i,j=1 aijg
ij. Now, covariantly

differentiating (5), replacing λi by ∇iλ and replacing the covariant derivatives of aij and
µ using (4) and (6) we obtain

0 = ∇k (∇jλi − aij + µgij) = ∇k∇j∇iλ −∇kaij + ∇kµ · gij

= ∇k∇j∇iλ + ∇iλ · gjk + ∇jλ · gik + 2∇kλ · gij,
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which is the equation (1).

If λ is constant, µ is constant by (6). Then, (5) implies a = µ · g. Since λi = ∂iλ = 0, we
have â = µ · ĝ, i.e., â is proportional to ĝ at every point of M̂ with t = 1. Since â and ĝ

are covariantly constant, â is proportional to ĝ at every point of M̂ . Lemma 2 is proved.

Remark 1. Corollaries 1, 2 easily follow from Theorems 1, 2 and Lemma 2.

Certain generalizations. One can easily generalize our proof of Theorem 1 for higher
Gallot equations Ep introduced in [3, Section 4]: for every p ∈ N the equation Ep is

Dp+1f(Y1, ..., Yp+1) +
∑

1≤s≤
p+1
2

∑

σ∈Sp+1

λ(s, σ)
(

gs ⊗ Dp+1−2sf
)

(Yσ(1), ..., Yσ(p+1)) = 0, (8)

where f is the unknown function, Sp+1 denotes the set of all permutations of {1, ..., p+1},
λ(s, σ) denotes certain numbers depending on s ∈ 1, ..., [p+1

2
] and on σ ∈ Sp+1 whose precise

values are not important for our proof, Y1, ..., Yp+1 are arbitrary vector fields, and Dk

denotes the k−th covariant derivative (so for example D2f(X,Y ) =
∑n

i,j=1 X iY j∇j∇if).

Theorem 3. Let g be a light-line-complete connected pseudo-Riemannian metric of indef-
inite signature on a closed n−dimensional manifold Mn. Then, every solution of (8) is
constant.

Proof. We take a light-line geodesic γ, and take arbitrary vector fields Yi such that at
every point of the geodesic γ we have Yi = γ̇. Since g(γ̇, γ̇) = 0 and s ≥ 1, we obtain
(gs ⊗ Dp+1−2sf) (Yσ(1), ..., Yσ(p+1)) = 0 at every point of the geodesic γ. Then, Dp+1(γ̇, ..., γ̇) =

0 implying dp+1

dtp+1 f(γ(t)) ≡ 0 implying f = constpt
p + ... + const0. Since the manifold is

compact, the function f must be bounded implying constp = ... = const1 = 0. Thus,
the function f must be constant along every light-line geodesic. Since every two points
of a connected pseudo-Riemannian manifold of indefinite signature can be connected by a
sequence of light-line geodesics, the function λ is a constant. Theorem 3 is proved.

Another possible generalization is due to the observation that in our proof of Corollaries
1, 2 we actually used the existence of a covariantly-constant symmetric (0, 2)−tensor âij 6=
const · ĝij only. Decomposability of the metric ĝ implies the existence of such a tensor
â, but not vice versa: in the pseudo-Riemannian case there exist metrics g admitting
covariantly-constant symmetric a 6= const · g, see [7]. So, in fact we proved

Corollary 3. Let g be a light-line-complete pseudo-Riemannian metric of indefinite sig-
nature on a closed n−dimensional manifold Mn. Then, every symmetric (0, 2)−tensor âij

on the corresponding cone (M̂, ĝ) such that ∇̂kâij ≡ 0 is proportional to ĝij.

Corollary 4. Let g be a complete negative-definite pseudo-Riemannian metric on a closed
n−dimensional manifold Mn. Then, every symmetric (0, 2)−tensor âij on the correspond-

ing cone (M̂, ĝ) such that ∇̂kâij ≡ 0 is proportional to ĝij.
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