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Abstract. We search for Riemannian metrics whose Levi-Civita connection be-
longs to a given projective class. Following Sinjukov and Mikeš, we show that such
metrics correspond precisely to suitably positive solutions of a certain projectively
invariant finite-type linear system of partial differential equations. Prolonging this
system, we may reformulate these equations as defining covariant constant sections
of a certain vector bundle with connection. This vector bundle and its connection
are derived from the Cartan connection of the underlying projective structure.

1. Introduction

We shall always work on a smooth oriented manifold M of dimension n. Suppose
that ∇ is a torsion-free connection on the tangent bundle of M . We may ask whether
there is a Riemannian metric on M whose geodesics coincide with the geodesics of
∇ as unparameterised curves. We shall show that there is a linear system of partial
differential equations that precisely controls this question.

To state our results, we shall need some terminology, notation, and preliminary
observations. Two torsion-free connections ∇ and ∇̂ are said to be projectively
equivalent if they have the same geodesics as unparameterised curves. A projective
structure on M is a projective equivalence class of connections. In these terms, we
are given a projective structure on M and we ask whether it may be represented by
a metric connection. Questions such as this have been addressed by many authors.
Starting with a metric connection, Sinjukov [9] considered the existence of other
metrics with the same geodesics. He found a system of equations that controls this
question and Mikeš [7] observed that essentially the same system pertains when
starting with an arbitrary projective structure.

We shall use Penrose’s abstract index notation [8] in which indices act as markers
to specify the type of a tensor. Thus, ωa denotes a 1-form whilst Xa denotes a vector
field. Repeated indices denote the canonical pairing between vectors and co-vectors.
Thus, we shall write Xaωa instead of X ω. The tautological 1-form with values in
the tangent bundle is denoted by the Kronecker delta δa

b.
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As is well-known [5], the geometric formulation of projective equivalence may be
re-expressed as

(1.1) ∇̂aX
b = ∇aX

b + ΥaX
b + δa

bΥcX
c

for an arbitrary 1-form Υa. We shall also adopt the curvature conventions of [5]. In
particular, it is convenient to write

(∇b∇a −∇a∇b)X
b = RabX

b,

where Rab is the usual Ricci tensor, as

(∇b∇a −∇a∇b)X
b = (n − 1)PabX

b − βabX
b where βab = Pba − Pab.

If a different connection is chosen in the projective class according to (1.1), then

β̂ab = βab + ∇aΥb −∇bΥa.

Therefore, as a 2-form βab changes by an exact form. On the other hand, the Bianchi
identity implies that βab is closed. Thus, there is a well-defined de Rham cohomology
class [β] ∈ H2(M, R) associated to any projective structure.

Proposition 1.1. The class [β] ∈ H2(M, R) is an obstruction to the existence of a

metric connection in the given projective class.

Proof. The Ricci tensor is symmetric for a metric connection. �

In searching for a metric connection in a given projective class, we may as well
suppose that the obstruction [β] vanishes. For the remainder of this article we sup-
pose that this is the case and we shall consider only representative connections with
symmetric Ricci tensor. In other words, all connections from now on enjoy

(1.2) (∇b∇a −∇a∇b)X
b = (n − 1)PabX

b where Pab = Pba.

A convenient alternative characterisation of such connections as follows.

Proposition 1.2. A torsion-free affine connection has symmetric Ricci tensor if and

only if it induces the flat connection on the bundle of n-forms.

Proof. If ǫpqr···s has n indices and is totally skew then

(∇a∇b −∇b∇a)ǫ
pqr···s = κabǫ

pqr···s

for some 2-form κab. But, by the Bianchi symmetry,

(∇a∇b −∇b∇a)ǫ
abr···s = −2Rabǫ

abr···s,

which vanishes if and only if Rab is symmetric. �

Having restricted our attention to affine connections that are flat on the bundle of
n-forms, we may as well further restrict to connections ∇a for which there is a volume
form ǫbc···d (unique up to scale) with ∇aǫbc···d = 0. We shall refer to such connections
as special. The freedom in special connections within a given projective class is given
by (1.1) where Υa = ∇af for an arbitrary smooth function f . Following [5], the full
curvature of a special connection may be conveniently decomposed:–

(1.3) (∇a∇b −∇b∇a)X
c = Wab

c
dX

d + δa
cPbdX

d − δb
cPadX

d,
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where Wab
c
d is totally trace-free and Pab is symmetric. The tensor Wab

c
d is known as

the Weyl curvature and is projectively invariant.

2. A linear system of equations

In this section we present, as Proposition 2.1, an alternative characterisation of the
Levi-Civita connection. The advantage of this characterisation is that it leads, almost
immediately, to a system of linear equations that controls the metric connections
within a given projective class. The precise results are Theorems 2.2 and 2.3.

Proposition 2.1. Suppose gab is a metric on M with volume form ǫbc···d. Then a

torsion-free connection ∇a is the metric connection for gab if and only if

• ∇ag
bc = δa

bµc + δa
cµb for some vector field µa

• ∇aǫbc···d = 0.

Proof. Write Da for the metric connection of gab. Then

(2.1) ∇aωb = Daωb − Γab
cωc

for some tensor Γab
c = Γba

c. We compute

ǫbc···d∇aǫbc···d = −nǫbc···dΓab
eǫec···d = −n! Γab

b

and so Γab
b = 0. Similarly,

∇ag
bc = Γad

bgdc + Γad
cgbd

and so

(2.2) Γad
bgdc + Γad

cgbd = δa
bµc + δa

cµb.

Let gab denote the inverse of gab and contract (2.2) with gbc to conclude that

2Γab
b = 2µa where µa = gabµ

b

and hence that µa = 0. If we let Γabc = Γab
dgcd, then (2.2) now reads

Γacb + Γabc = 0.

Together with Γabc = Γbac, this implies that Γabc = 0. From (2.1) we see that ∇a = Da,
which is what we wanted to show. �

Theorem 2.2. Suppose ∇a is a special torsion-free connection and there is a metric

tensor σab such that

(2.3) ∇aσ
bc = δa

bµc + δa
cµb for some vector field µa.

Then ∇a is projectively equivalent to a metric connection.

Proof. Consider the projectively equivalent connection

∇̂aX
b = ∇aX

b + ΥaX
b + δa

bΥcX
c where Υa = ∇af

for some function f . If we let σ̂ab ≡ e−2fσab, then

∇̂aσ̂
bc = e−2f

(
−2Υaσ

bc + ∇aσ
bc + 2Υaσ

bc + δa
bΥdσ

dc + δa
cΥdσ

bd
)

= e−2f
(
δa

bµc + δa
cµb + δa

bΥdσ
dc + δa

cΥdσ
bd

)
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and so

(2.4) ∇̂aσ̂
bc = δa

bµ̂c + δa
cµ̂b where µ̂a = e−2f

(
µa + Υbσ

ab
)
.

Similarly, if we choose a volume form ǫbc···d killed by ∇a and let ǫ̂bc···d ≡ e(n+1)fǫbc···d,
then

(2.5) ∇̂aǫ̂bc···d = e(n+1)f
(
∇aǫbc···d + Υ[aǫbc···d]

)
= e(n+1)f∇aǫbc···d = 0.

Define

det(σ) ≡ ǫa···bǫc···dσ
ac · · ·σbd

and compute

d̂et(σ̂) = ǫ̂a···bǫ̂c···dσ̂
ac · · · σ̂bd

= e2(n+1)fe−2nfǫa···bǫc···dσ
ac · · ·σbd = e2f det(σ).

Therefore, if we take

f = −
1
2 log det(σ),

then we have arranged that d̂et(σ̂) = 1. This is precisely the condition that ǫ̂bc···d be
the volume form for the metric σ̂ab. With (2.4) and (2.5) we are now in a position

to use Proposition 2.1 to conclude that ∇̂a is the metric connection for σ̂ab. We have
shown that our original connection ∇a is projectively equivalent to the Levi-Civita
connection for the metric gab ≡ det(σ) σab. �

Evidently, the equations (2.3) precisely control the metric connections within a
given special projective class. Precisely, if gab is a Riemannian metric with associated
Levi-Civita connection ∇a, then

∇̂aĝ
bc = δa

bµ̂c + δa
cµ̂b,

where ∇̂a is projectively equivalent to ∇a according to (1.1) with Υa = ∇af and
where ĝbc = e−2fgbc. In other words, we have shown (cf. [7, 9]):–

Theorem 2.3. There is a one-to-one correspondence between solutions of (2.3) for

positive definite σbc and metric connections that are projectively equivalent to ∇a.

3. Prolongation

Let us consider the system of equations (2.3) in more detail. It is a linear system
for any symmetric contravariant 2-tensor σbc. Specifically, we may write (2.3) as

(3.1) the trace-free part of (∇aσ
bc) = 0

or, more explicitly, as

∇aσ
bc −

1
n+1δa

b∇dσ
cd −

1
n+1δa

c∇dσ
bd = 0.

According to [2], this equation is of finite-type and may be prolonged to a closed
system as follows. According to (1.2) and (1.3) we have

(∇a∇b −∇b∇a)σ
bc = Wab

c
dσ

bd + δa
cPbdσ

bd − nPadσ
cd.
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On the other hand, from (2.3) we have

(∇a∇b −∇b∇a)σ
bc = (n + 1)∇aµ

c −∇b(δa
bµc + δa

cµb) = n∇aµ
c − δa

c∇bµ
b.

We conclude that

n∇aµ
c = δa

c
(
∇bµ

b + Pbdσ
bd

)
− nPadσ

cd + Wab
c
dσ

bd

or, equivalently, that

(3.2) ∇aµ
c = δa

cρ − Padσ
cd + 1

n
Wab

c
dσ

bd,

for some function ρ. To complete the prolongation, we use (1.2) to write

(∇c∇a −∇a∇c)µ
c = (n − 1)Pacµ

c

whereas from (3.2) we also have

(∇c∇a −∇a∇c)µ
c = ∇c

(
δa

cρ − Padσ
cd + 1

n
Wab

c
dσ

bd
)
−∇a

(
nρ − Pcdσ

cd
)
.

Therefore,

(3.3) (n − 1)Pacµ
c = ∇c

(
−Padσ

cd + 1
n
Wab

c
dσ

bd
)
− (n − 1)∇aρ + ∇a(Pcdσ

cd).

The terms involving Weyl curvature

∇c(Wab
c
dσ

bd) = (∇cWab
c
d)σ

bd + Wab
c
d∇cσ

bd

may be dealt with by (2.3) and a Bianchi identity

∇cWab
c
d = (n − 2)(∇aPbd −∇bPad).

We see that
∇c(Wab

c
dσ

bd) = (n − 2)(∇aPbd −∇bPad)σ
bd

and (3.3) becomes

(n − 1)Pacµ
c = n−2

n
(∇aPbd −∇bPad)σ

bd −∇c(Padσ
cd) − (n − 1)∇aρ + ∇a(Pcdσ

cd)

or, equivalently,

(3.4) Pacµ
c = 2

n
(∇aPbd −∇bPad)σ

bd −
1

n−1Pad∇cσ
cd −∇aρ + 1

n−1Pcd∇aσ
cd.

Again, we substitute from (2.3) to rewrite

Pcd∇aσ
cd − Pad∇cσ

cd = Pcd(δa
cµd + δa

dµc) − (n + 1)Padµ
d = −(n − 1)Padµ

d

and (3.4) becomes

Pacµ
c = 2

n
(∇aPbd −∇bPad)σ

bd − Padµ
d −∇aρ,

which we may rearrange as

∇aρ = −2Pabµ
b + 2

n
(∇aPbd −∇bPad)σ

bd.

Together with (2.3) and (3.2), we have a closed system, essentially as in [7, 9]:–

(3.5)

∇aσ
bc = δa

bµc + δa
cµb

∇aµ
b = δa

bρ − Pacσ
bc + 1

n
Wac

b
dσ

cd

∇aρ = −2Pabµ
b + 4

n
Yabcσ

bc
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where Yabc = 1
2(∇aPbc −∇bPac), the Cotton-York tensor. The three tensors σbc, µb,

and ρ may be regarded together as a section of the vector bundle

T =
⊙2TM ⊕ TM ⊕ R

where
⊙

denotes symmetric tensor product and R denotes the trivial bundle. We
have proved:–

Theorem 3.1. If we endow T with the connection

(3.6)




σbc

µb

ρ




7−→




∇aσ
bc − δa

bµc − δa
cµb

∇aµ
b − δa

bρ + Pacσ
bc − 1

n
Wac

b
dσ

cd

∇aρ + 2Pabµ
b − 4

n
Yabcσ

bc




.

then there is a one-to-one correspondence between covariant constant sections of T

and solutions σbc of (2.3).

4. Projective invariance

The equation (2.3) is projectively invariant in the following sense. Following [5],
let E (ab)(w) denote the bundle of symmetric contravariant 2-tensors of projective
weight w. Thus, in the presence of a volume form ǫbc···d, a section σab ∈ Γ(M, E (ab)(w))
is an ordinary symmetric contravariant 2-tensor but if we change volume form

ǫbc···d 7→ ǫ̂bc···d = e(n+1)fǫbc···d for any smooth function f,

then we are obliged to rescale σab according to σ̂ab = ewfσab. Equivalently, we are
saying that E (ab)(w) =

⊙2TM ⊗ (Λn)−w/(n+1), where Λn is the line-bundle of n-forms
on M . The projectively weighted irreducible tensor bundles are fundamental objects
on a manifold with projective structure.

Proposition 4.1. The differential operator

(4.1) E (ab)(−2) −→ the trace-free part of Ea
(bc)(−2)

defined by (3.1) is projectively invariant.

Proof. This is already implicit in the proof of Theorem 2.2. Explicitly, however, we
just compute from (1.1):–

∇̂aσ̂
bc = ∇aσ̂

bc + 2Υaσ̂
bc + δa

bΥdσ̂
dc + δa

cΥdσ̂
bd,

where Υa = ∇af whilst

∇aσ̂
bc = ∇a(e

−2fσbc) = e−2f
(
∇aσ

bc − 2Υaσ
bc
)

= ∇̂aσbc − 2Υaσ̂
bc.

It follows that

∇̂aσ̂
bc = ∇̂aσbc + trace terms,

which is what we wanted to show. �
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In hindsight, it is not too difficult to believe that (3.1) should control the metric
connections within a given projective class. There are very few projectively invariant
operators. In fact, there are precisely two finite-type first order invariant linear
operators on symmetric 2-tensors. One of them is (4.1) and the other is

(4.2) E(ab)(4) → E(abc)(4) given by σab 7→ ∇(aσbc).

In two dimensions, (4.2) and (4.1) coincide. In higher dimensions, however, being in
the kernel of (4.2) for positive definite σab corresponds to having a metric gab and a
totally trace-free tensor Γabc with

Γabc = Γbac and Γabc + Γbca + Γcab = 0

such that the connection

ωb 7−→ Daωb − Γab
cωc

belongs to the projective class of ∇a, where Da is the Levi-Civita connection of gab.
The available tensors Γabc for a given metric have dimension n(n + 2)(n − 2)/3.

5. Relationship to the Cartan connection

On a manifold with projective structure, it is shown in [5] how to associate vector
bundles with connection to any irreducible representation of SL(n + 1, R). These
are the tractor bundles following their construction by Thomas [10]. Equivalently,
they are induced by the Cartan connection [4] of the projective structure. The re-
levant tractor bundle in our case is induced by

⊙2
Rn+1 where Rn+1 is the defining

representation of SL(n + 1, R). It has a composition series

E (BC) = E (bc)(−2) + Eb(−2) + E(−2)

and in the presence of a connection is simply the direct sum of these bundles. Under
projective change of connection according to (1.1), however, we decree that

(5.1)

̂



σbc

µb

ρ




=




σbc

µb + Υcσ
bc

ρ + 2Υbµ
b + ΥbΥcσ

bc




.

Following [5], the tractor connection on E (AB) is given by

∇a




σbc

µb

ρ




=




∇aσ
bc − δa

bµc − δa
cµb

∇aµ
b − δa

bρ + Pacσ
bc

∇aρ + 2Pabµ
b




.

Therefore, we have proved:–

Theorem 5.1. The solutions of (2.3) are in one-to-one correspondence with solutions

of the following system:–

(5.2) ∇a




σbc

µb

ρ


 −

1

n




0
Wac

b
dσ

cd

4Yabcσ
bc


 = 0.
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Corollary 5.2. There is a one-to-one correspondence between solutions of (5.2) for

positive definite σbc and metric connections that are projectively equivalent to ∇a.

Notice that the extra terms in (5.2) are projectively invariant as they should be.
Specifically, it is observed in [5] that

Ŷabc = Yabc + 1
2
Wab

d
cΥd

and so
4Ŷabcσ

bc = 4Yabcσ
bc + 2ΥbWac

b
dσ

cd

in accordance with (5.1).
It is clear from Theorem 3.1 that, generically, (2.3) has no solutions. Indeed, this is

one reason why the prolonged from is so helpful. More generally, we should compute
the curvature of the connection (3.6) and the form (5.2) is useful for this task. A
model computation along these lines is given in [5]. In our case, the tractor curvature
is given by

(∇a∇b −∇b∇a)




σcd

µc

ρ




=




Wab
c
eσ

de + Wab
d
eσ

ce

Wab
c
dµ

d + 2Yabdσ
cd

4Yabcµ
c




and we obtain:–

Proposition 5.3. The curvature of the connection (3.6) is given by



σcd

µc

ρ




7→




Wab
c
eσ

de + Wab
d
eσ

ce

Wab
c
dµ

d + 2Yabdσ
cd

4Yabcµ
c




+
1

n




δa
cUb

d + δa
dUb

c − δb
cUa

d − δb
dUa

c

∗

∗




,

where Ub
d = Wbe

d
fσ

ef and ∗ denotes expressions that we shall not need.

Corollary 5.4. The curvature of the connection (3.6) vanishes if and only if the

projective structure is flat.

Proof. Let us suppose that n ≥ 3. The uppermost entry of the curvature is given by

σcd 7−→ the trace-free part of (Wab
c
eσ

de + Wab
d
eσ

ce)

and it is a matter of elementary representation theory to show that if this expression
is zero for a fixed Wab

c
d and for all σcd, then Wab

c
d = 0. Specifically, the symmetries

of Wab
c
d, namely

(5.3) Wab
c
d + Wba

c
d = 0 Wab

c
d + Wbd

c
a + Wda

c
b = 0 Wab

a
d = 0,

constitute an irreducible representation of SL(n, R). Hence, the submodule
{
Wab

c
d s.t. the trace-free part of (Wab

c
eσ

de + Wab
d
eσ

ce) = 0, ∀ σcd
}

must be zero since it is not the whole space. We have shown that if the curvature of
the connection (3.6) vanishes, then Wab

c
d = 0. For n ≥ 3 this is exactly the condition

that the projective structure be flat. For n = 2, the Weyl curvature Wab
c
d vanishes

automatically since the symmetries (5.3) are too severe a constraint. Instead, a
similar calculation shows that Yabc = 0 and this is the condition that the projective
structure be flat. �
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Following Mikeš [7], the dimension of the space of solutions of (2.3) is called the
degree of mobility of the projective structure. Theorem 3.1 implies that the degree of
mobility is bounded by (n + 1)(n + 2)/2 and Corollary 5.4 implies that this bound is
achieved only for the flat projective structure. Of course, the flat projective structure
may as well be represented by the flat connection ∇a = ∂/∂xa on Rn, which is the
Levi-Civita connection for the standard Euclidean metric. In this case, we may use
(3.5) find the general solution of (2.3):–

(5.4) σab = sab + xamb + xbma + xaxbr.

This form is positive definite near the origin if and only if sab is positive definite. We
conclude that the general projectively flat metric near the origin in Rn is

gab = det(σ) σab,

where σab is as in (5.4) for some positive definite quadratic form sab. In fact, these
metrics are constant curvature. Rather than prove this by calculation, there is an
alternative as follows. As already observed, the Weyl curvature Wab

c
d corresponds to

an irreducible representation of SL(n, R) characterised by (5.3). In the presence of a
metric gab, however, we should decompose Wab

c
d further under SO(n).

Proposition 5.5. In the presence of a metric gab

(5.5) Wab
c
d = Cab

c
d + 1

(n−1)(n−2) (δa
cΦbd − δb

cΦad) + 1
n−2 (Φa

cgbd − Φb
cgad)

where Cab
c
d is the Weyl part of the Riemann curvature tensor and Φab is the trace-free

part of the Ricci tensor.

Proof. According to (1.3),

(5.6) Rab
c
d = Wab

c
d + δa

cPbd − δb
cPad

but the Riemann curvature decomposes according to

(5.7) Rabcd = Cabcd + gacQbd − gbcQad + Qacgbd − Qbcgad,

where Qab is the Schouten tensor

Qab = 1
n−2Φab + 1

2n(n−1)Rgab.

Comparing (5.6) and (5.7) leads, after a short computation, to (5.5). �

Corollary 5.6. A projectively flat metric is constant curvature.

Proof. If n ≥ 3 and the projective Weyl tensor vanishes then the only remaining part
of the Riemann curvature tensor is the scalar curvature. As usual, a separate proof
based on Yabc is needed for the case n = 2. �

This corollary is usually stated as follows. If a local diffeomorphism between two
Riemannian manifolds preserves geodesics and one of them is constant curvature,
then so is the other. This is a classical result due to Beltrami [1].
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6. Concluding remarks

Results such as Theorem 2.3 and Theorem 5.1 are quite common in projective,
conformal, and other parabolic geometries. It is shown in [5], for example, that the
Killing equation in Riemannian geometry is projectively invariant and its solutions are
in one-to-one correspondence with covariant constant sections of the tractor bundle
E[AB] equipped with a connection that is derived from (but not quite equal to) the
tractor connection. The situation is completely parallel for conformal Killing vectors
in conformal geometry and, more generally, for the infinitesimal automorphisms of
parabolic geometries [3]. It is well-known that having an Einstein metric in a given
conformal class is equivalent to having a suitably positive covariant constant section of
the standard tractor bundle EA equipped with its usual tractor connection. Gover and
Nurowski [6] use this observation systematically to find obstructions to the existence
of an Einstein metric within a given conformal class. We anticipate a similar use
for Theorem 5.1 in establishing obstructions to the existence of a metric connection
within a given projective class.
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