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Abstract

We prove that every complete Einstein (Riemannian or pseudo-Riemannian) met-
ric g of nonconstant curvature is geodesically rigid: if any other complete metric ḡ

has the same (unparametrized) geodesics with g, then the Levi-Civita connections of
g and ḡ coincide.

MSC: 83C10, 53C27, 53A20, 53B21, 53C22, 53C50, 70H06, 58J60, 53D25,70G45.

1 Introduction

1.1 Definitions and results

Let (Mn, g) be a connected Riemannian (= g is positive definite) or pseudo-Riemannian
manifold of dimension n ≥ 3. We say that a metric ḡ on Mn is geodesically equivalent
to g, if every geodesic of g is a (reparametrized) geodesic of ḡ. We say that they are
affine equivalent, if their Levi-Civita connections coincide. We say that g is Einstein, if
Rij = R

n
· gij, where Rij is the Ricci tensor of the metric g, and R := Rijg

ij is the scalar
curvature. Our main result is

Theorem 1. Let g and ḡ be complete geodesically equivalent metrics on a connected man-
ifold Mn, n ≥ 3. If g is Einstein, then at least one of the following possibilities holds:

• they are affine equivalent, or

• for certain constants c, c̄ ∈ R \ {0} the metrics c · g and c̄ · ḡ are Riemannian metrics
of curvature 1 (and, in particular, the manifolds (Mn, c · g) and (Mn, c̄ · ḡ) are finite
quotients of the standard sphere with the standard metric).
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For dimension ≥ 5, the assumption that the metrics are complete is important: if one of
them is not complete, one can construct counterexamples (essentially due to [16, 42]). For
dimensions 3 and 4, (a natural modification of) Theorem 1 is true also locally:

Theorem 2. Let g and ḡ be geodesically equivalent metrics on a connected 3- or 4-
dimensional manifold M . If g is Einstein, then at least one of the following possibilities
holds:

• the metrics are affine equivalent, or

• the metrics g and ḡ have constant curvature.

Remark 1. In dimensions 3 and 4, Einstein metrics admitting nontrivial affine equivalent
one are completely understood [47, 48]

Theorem 2 was announced in [25, 44], with the extended sketch of the proof. The proof
from [25, 44] is very complicated: they prolonged (= covariantly differentiated) the basic
equations (8) 6 times, and used the condition that the metric is Einstein at every stage of
the prolongation. A partial case of Theorem 2 is also proved in [20].

Our proof of Theorem 2 is a relatively easy Linear Algebra (inspired by [9, 14]) combined
with a certain statement which is a relatively easy generalization of a certain result of
Levi-Civita.

Remark 2. Theorem 1 is also true in dimension 2 provided the scalar curvature of g is
constant. Without this additional assumption Theorem 1 is evidently wrong, since every
2-dimensional metric satisfies Rij = R

2
· gij.

1.2 History and motivation

The first examples of geodesically equivalent metrics are due to Lagrange [24]. He observed
that the radial projection f(x, y, z) =

(
−x

z
,−y

z
,−1

)
takes geodesics of the half-sphere S2 :=

{(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1, z < 0} to the geodesics of the plane E2 := {(x, y, z) ∈

R
3 : z = −1}, see the left-hand side of Figure 1, since the geodesics of both metrics are

intersection of the 2-plane containing the point (0, 0, 0) with the surface. Later, Beltrami [5]
generalized the example for the metrics of constant negative curvature, and for the pseudo-
Riemannian metrics of constant curvature. In the example of Lagrange, he replaced the half
sphere by the half of one of the hyperboloids H2

± := {(x, y, z) ∈ R
3 : x2 + y2 − z2 = ±1},

with the restriction of the Lorentz metrics dx2 +dy2−dz2 to it. Then, the geodesics of the
metric are also intersections of the 2-planes containing the point (0, 0, 0) with the surface,
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Figure 1: Surfaces of constant curvature are (locally) geodesically equivalent

and, therefore, the stereographic projection sends it to the straight lines of the appropriate
plane, see the right-hand side of Figure 1 with the (half of the) hyperboloid H2

−.

Though the examples of the Lagrange and Beltrami are two-dimensional, one can easily
generalize them for every dimension.

One of the possibilities in Theorem 1 is geodesically equivalent metrics of constant pos-
itive Riemannian curvature on closed manifold. Examples of such metrics are also due
to Beltrami [4], we describe their natural multi-dimensional generalization. Consider the
sphere

Sn def
= {(x1, x2, ..., xn+1) ∈ R

n+1 : x2
1 + x2

2 + ... + x2
n+1 = 1}

with the metric g which is the restriction of the Euclidean metric to the sphere. Next,
consider the mapping a : Sn → Sn given by a : v 7→ A(v)

‖A(v)‖ , where A is an arbitrary

non-degenerate linear transformation of R
n+1.

The mapping is clearly a diffeomorphism taking geodesics to geodesics. Indeed, the geo-
desics of g are great circles (the intersections of 2-planes that go through the origin with
the sphere). Since A is linear, it takes planes to planes. Since the normalization w 7→ w

‖w‖
takes punctured planes to their intersections with the sphere, the mapping a takes great
circles to great circles. Thus, the pullback a∗g is geodesically equivalent to g. Evidently, if
A is not proportional to an orthogonal transformation, a∗g is not affine equivalent to g.

The success of general relativity suggested (see for example the popular paper [57]) to look
for geodesically equivalent Einstein metrics. In particular, the classical textbook [15] has
a chapter on geodesic equivalence. In our paper, in the proof of Corollary 1, we will use
the following classical result of Weyl [56]: he proved that two conformally and geodesically
equivalent metric are proportional with a constant coefficient of the proportionality.

Later, geodesic equivalence of Einstein metrics was studied by many geometers and physi-
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cists (a simple search in mathscinet gives about 50 papers and few books). In particular,
Petrov [46] proved that 4-dimensional Ricci-flat metrics of Lorenz signature can not be
geodesically equivalent, unless they are affine equivalent. It is one of the results he ob-
tained the Lenin prize (the most important scientific award of the Soviet Union) in 1972
for. He also explicitly asked [47, Problem 5 on page 355] whether the result remains true
in other dimensions.

As we will prove in Lemma 3, the assumption that the second metric is Einstein is not
important, since it is automatically fulfilled. By Theorem 2, the result of Petrov remains
true for 4-dimensional metrics of other signatures. As we already mentioned in Section
1.1, the counterexamples independently constructed by Mikes [42] and Formella [16] show,
that the result of Petrov fails in higher dimensions (so one indeed needs certain additional
assumptions, for example the assumption that the metrics are complete as in Theorem 1,
which is a standard assumption in problems motivated by physics.)

Recent references include Barnes [3], Hall and Lonie [17, 21], Hall [18, 19]. They in partic-
ular studied the existence of projective transformations of Ricci-flat, Einstein, and FRW
metrics, which is a stronger condition than the existence of geodesically equivalent met-
rics. Indeed, projective transformation of g allows to construct ḡ geodesically equivalent
to g. Moreover, if g is Einstein, then ḡ is automatically Einstein as well, which essentially
simplifies all formulas.

One can find more historical details in the surveys [2, 7, 13, 43], and in the introductions
to the papers [33, 34, 38, 39, 41, 40].

Acknowledgments. The results were obtained because Gary Gibbons asked the second
author to check whether certain explicitly given Einstein metrics admit geodesic equivalence
(these metrics admit integrals quadratic in velocities, and geodesic equivalence could lay
behind the existence of such integrals, see [22, 23, 28, 29, 30, 31, 32, 35, 36, 37, 49]).

There exists a algorithmic method to understand whether an explicitly given metric admits
an nontrivial geodesic equivalence (assuming we can explicitly differentiate components
of the metrics, and perform algebraic operations). Unfortunately, the method is highly
computational, and applying it to the metrics suggested by Gibbons, which are given by
quite complicated formulas, resulted so huge output, that we could not convince even
ourself that everything is correct. Therefore, we started to look for a theory that could
simplify the calculations, and solved the problem in the whole generality.

We thank Gary Gibbons for his question, and the referee for stylistic and grammatical cor-
rections. The second author thanks Oxford, Cambridge, and Loughborough Universities,
and MSRI for hospitality, and R. Bryant, A. Bolsinov, M. Eastwood, and G. Hall for useful
discussions. Both authors were partially supported by Deutsche Forschungsgemeinschaft
(Priority Program 1154 — Global Differential Geometry), and by FSU Jena.
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2 Proof of Theorem 1

2.1 Schema of the proof

In Section 2.2 we list standard facts from theory of geodesically equivalent metrics, and
introduce notation we will use through the paper. Most of these facts can be found in
the book of Sinjukov [52], but unfortunately they are spread over the text, and it in not
clear under which assumption they are true (Sinjukov always assumes real-analicity, but
actually needs smoothness). All the facts could be obtained by relatively simple tensor
calculations, we will indicate how.

The main result of Section 2.3 are Corollaries 3, 4. In Section 2.4 we explain that the
ODE along geodesics given by Corollary 4 (that controls the reparametrization that makes
g-geodesics from ḡ-geodesics) can not have solutions such that they satisfy the condition
that both metrics are complete provided that the Einstein metric g is pseudo-Riemannian,
or Riemannian of nonpositive scalar curvature.

Corollary 3 will be used in Section 2.5: we will see that combining Corollary 3 with an
nontrivial result of Tanno [54] immediately gives Theorem 1 under additional assumption
that the metric is Riemannian of positive scalar curvature.

2.2 Standard formulas we will use

We work in tensor notations with the background metric g. That means, we sum with
respect to repeating indexes, use g for raising and lowing indexes (unless we explicitly
mention), and use the Levi-Civita connection of g for covariant differentiation.

As it was known already to Levi-Civita [26], two connections Γ = Γi
jk and Γ̄ = Γ̄i

jk have
the same unparameterized geodesics, if and only if their difference is a pure trace: there
exists a (0, 1)-tensor φ such that

Γ̄i
jk = Γi

jk + δi
kφj + δi

jφk. (1)

The reparameterization of the geodesics for Γ and Γ̄ connected by (1) is done according to
the following rule: for a parametrized geodesic γ(τ) of Γ̄, the curve γ(τ(t)) is a parametrized
geodesic of Γ, if and only if the parameter transformation τ(t) satisfies the following ODE:

φαγ̇α =
1

2

d

dt

(

log

(∣
∣
∣
∣

dτ

dt

∣
∣
∣
∣

))

. (2)

(We denote by γ̇ the velocity vector of γ with respect to the parameter t, and assume
summation with respect to the repeating index α.)
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If Γ and Γ̄ related by (1) are Levi-Cevita connections of metrics g and ḡ, then one can find
explicitly (following Levi-Civita [26]) a function φ on the manifold such that its differential
φ,i coincides with the covector φi: indeed, contracting (1) with respect to i and j, we obtain
Γ̄α

αi = Γα
αi + (n + 1)φi. From the other side, for the Levi-Civita connection Γ of a metric g

we have Γα
αk = 1

2
∂ log(|det(g)|)

∂xk
. Thus,

φi =
1

2(n + 1)

∂

∂xi

log

(∣
∣
∣
∣

det(ḡ)

det(g)

∣
∣
∣
∣

)

= φ,i (3)

for the function φ : M → R given by

φ :=
1

2(n + 1)
log

(∣
∣
∣
∣

det(ḡ)

det(g)

∣
∣
∣
∣

)

. (4)

In particular, the derivative of φi is symmetric, i.e., φi,j = φj,i.

The formula (1) implies that two metrics g and ḡ are geodesically equivalent if and only if
for a certain φi (which is, as we explained above, the differential of φ given by (4)) we have

ḡij,k − 2ḡijφk − ḡikφj − ḡjkφi = 0, (5)

where “comma” denotes the covariant derivative with respect to the connection Γ. Indeed,
the left-hand side of this equation is the covariant derivative with respect to Γ̄, and vanishes
if and only if Γ̄ is the Levi-Civita connection for ḡ.

The equations (5) can be linearized by a clever substitution: consider aij and λi given by

aij = e2φḡαβgαigβj, (6)

λi = −e2φφαḡαβgβi, (7)

where ḡαβ is the tensor dual to ḡαβ: ḡαiḡαj = δi
j. It is an easy exercise to show that

the following linear equations on the symmetric (0, 2)−tensor aij and (0, 1)−tensor λi are
equivalent to (5).

aij,k = λigjk + λjgik. (8)

Remark 3. For dimension 2, the substitution (6,7) was already known to R. Liouville [27]
and Dini [12], see [10, Section 2.4] for details and a conceptual explanation. For arbitrary
dimension, the substitution (6,7) and the equation (8) are due to Sinjukov [52]. The
background geometry is explained in [14].

Note that it is possible to find a function λ such that its differential is precisely the the
(0, 1)−tensor λi: indeed, multiplying (8) by gij and summing with respect to repeating
indexes i, j we obtain (gijaij),k = 2λk. Thus, λi is the differential of the function

λ := 1
2
gαβaαβ. (9)
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In particular, the covariant derivative of λi is symmetric: λi,j = λj,i.

Integrability conditions for the equation (8) (we substitute the derivatives of aij given by
(8) in the formula aij,lk − aij,kl = aiαRα

jkl + aαjR
α
ikl, which is true for every (0, 2)−tensor

aij) were first obtained by Solodovnikov [53] and are

aiαRα
jkl + aαjR

α
ikl = λl,igjk + λl,jgik − λk,igjl − λk,jgil. (10)

For further use let us recall the fact which can also be obtained by simple calculations: the
Ricci-tensors of connections related by (1) are connected by the formula

R̄ij = Rij − (n− 1)(φi,j − φiφj), (11)

where Rij is the Ricci-tensor of Γ and R̄ij is the Ricci-tensor of Γ̄.

2.3 Local results

Within the whole paper we work on a smooth manifold of dimension n ≥ 3.

Lemma 1 (Folklore). Let aij be a solution of (8) for the metric g. Then, it commutes
with the Ricci-tensor:

aα
i Rαj = aα

j Riα. (12)

Proof. Consider the equations (10). We “cycling” the equation with respect to i, k, l: we
sum it with itself after renaming the indexes according to (i 7→ k 7→ l 7→ i) and with itself
after renaming the indexes according to (i 7→ l 7→ k 7→ i). The first term at the left-hand
side of the equation disappears because of the Bianchi equality Rα

ikl + Rα
kli + Rα

lik = 0, the
right-hand side vanishes completely, and we obtain

aαiR
α
jkl + aαkR

α
jli + aαlR

α
jik = 0. (13)

Multiplying with gjk, using the symmetries of the curvature tensor, and summing over the
repeating indexes we obtain aαiR

α
l − aαlR

α
i = 0 implying the claim,

Lemma 2. Suppose the curvature tensor of the metric g satisfies

Rα
ijk,α = 0.

Then, for every solution aij of (8) such that λi 6= 0 at a point p ∈ Mn, in a sufficiently
small neighborhood U(p) of p we have

λk,j =
1
c gkj+

2
c Rkj+

3
c akj+

4
c aα

j Rαk, (14)

7



where the coefficients
1
c,

2
c,

3
c,

4
c are given by the formulas

1
c=
−λαaα

βξβR + 2λλ
β

α,β ξα + aα
βRβ

α − 4λ α
α,

4n
;

2
c= 1

4
λαaα

βξβ;
3
c= −1

4
λ

β
α,β ξα;

4
c= −1

4
aα

βRβ
α,

where ξ is an arbitrary vector field such that λiξ
i = 1.

Remark 4. The assumptions of the lemma are automatically fulfilled for Einstein spaces.
Indeed, the second Bianchi identity for the curvature tensor is

Rh
ijk,l + Rh

ikl,j + Rh
ilj,k = 0.

Contracting with respect to h and l, we obtain

Rα
ijk,α + Rα

ikα,j
︸ ︷︷ ︸

−Rik,j

+ Rα
iαj,k
︸ ︷︷ ︸

Rij,k

= 0.

If the metric is Einstein, then the second and the third components of the equation vanishes,
and we obtain Rα

ijk,α = 0. Moreover, we see that actually the condition Rik,j −Rij,k = 0 is
a necessary and sufficient condition for Rα

ijk,α = 0.

Remark 5. The tensor Rik,j−Rij,k is called projective Yano tensor, and plays important role
in the theory of geodesically equivalent metrics; in particular, it is projectively invariant
in dimension 2 [27, 10], and is an essential part of the so-called tractor approach for the
investigation of geodesically equivalent metrics [14].

Proof of Lemma 2. Consider the solution aij of the equation (8). Let us take the
covariant derivative of the equations (10) (the index of differentiation is “m”), and replace
the covariant derivative of a by formula (8). We obtain

λαRα
jklgim + λiRmjkl + aαiR

α
jkl,m + λαRα

iklgjm + λjRmikl + aαjR
α
ikl,m

= λl,imgjk + λl,jmgik − λk,imgjl − λk,jmgil.
(15)

We multiply with glm, sum with respect to repeating indexes l,m, and use Rα
ijk,α = 0. We

obtain:

λαRα
ikj + λαRα

jki − λiRjk − λjRik = λ α
i,α gjk + λ α

j,α gik − λk,ij − λk,ji. (16)

We now skew-symmetrise the equation (16) with respect to k, j to obtain

4λαRα
ikj = λ α

j,α gik − λ α
k,α gij − λkRij + λjRik. (17)

Let us now rename the indexes i 7→ k 7→ j 7→ α in (17), multiply the result by aα
i , use the

symmetries of the curvature tensor and sum over the repeating index α. We obtain

8



4aα
i Rαjkβλβ = 4aα

i R
β
kjαλβ

= aα
i

(

λ
β

α,β gkj − λ α
k,α gij − λ

β
j,β gkα − λjRαk + λαRjk

)

= aα
i λ

β
α,β gkj − λ

β
j,β aki − λja

α
i Rαk + λαaα

i Rkj.

(18)

Now we multiply the equation (10) by λl and sum over the repeating index l. We see that
the first component of the result is precisely the left-hand side of (18); we replace it by the
right-hand side of (18). We obtain

0 =
(

aα
i λ

β
α,β − 4λαλα,i

)

gkj − λ
β

j,β aki + λj (−aα
i Rαk + 4λk,i) + λαaα

i Rkj

+
(

aα
j λ

β
α,β − 4λαλα,j

)

gki − λ
β

i,β akj + λi

(
−aα

j Rαk + 4λk,j

)
+ λαaα

j Rki

(19)

We now skew-symmetrise (18) with respect to k, j, rename k ←→ i, and add the result
to (19). After dividing by 2 for cosmetic reasons, and using that by Lemma 1 the tensor
aα

i Rαk is symmetric with respect to i, k, we obtain

(

aα
i λ

β
α,β − 4λαλα,i

)

gkj + λαaα
i Rkj − λ

β
i,β akj + λi

(
−aα

j Rαk + 4λk,j

)
= 0. (20)

We multiply (20) by gkj and sum over the repeating indexes k, j. We obtain (after dividing
by n)

(

aα
i λ

β
α,β − 4λαλα,i

)

= −R
n
λαaα

i +
2λ

n
λ

β
i,β − λi

(
−aα

βRβ
α + 4λ α

α,

)

n
= 0, (21)

where R := Rαβgαβ is the scalar curvature of g. Substituting the expression for
(

aα
i λ

β
α,β − 4λαλα,i

)

from (21) in (20), we obtain

0 = λαaα
i

(
Rkj − R

n
gkj

)
+ λ

β
i,β

(
2λ
n

gkj − akj

)

− λi

(
−aα

β
R

β
α+4λ α

α,

n
gkj + aα

j Rαk − 4λk,j

)
(22)

Since λi 6= 0 at a point p, then λiξ
i = 1 for a certain vector field ξ in a sufficiently small

neighborhood U(p). Contracting the equation (22) with this ξi, we obtain

0 = λαaα
i ξi
(
Rkj − R

n
gkj

)
+ ξiλ

β
i,β

(
2λ
n

gkj − akj

)

− λi

(
−aα

β
R

β
α+4λ α

α,

n
gkj + aα

j Rαk − 4λk,j

)
(23)

9



We see that λj,k is a linear combination of aα
j Rαk, gjk, Rjk and akj as we want. The

coefficients in the linear combination are as in the formula below ,

4λk,j = aαkR
α
j +
−λαaα

βξβR + 2λλ
β

α,β ξα + aα
βRβ

α − 4λα
α

n
gjk + λαaα

βξβRjk − λ
β

α,β ξαakj.

Corollary 1. Assume g is an Einstein metric. Let aij be a solution of (8). Assume λi 6= 0
at a point p. Then, in a sufficiently small neighborhood of p, λi,j is a linear combination
of gij and aij:

λi,j = µgij + Kaij, (24)

where the coefficients K := − R
n(n−1)

and µ :=
λ α

α, −2Kλ

n
.

Proof. By assumption, in a small neighborhood of p we have λi 6= 0; this implies that aij

is not proportional to gij, because by the result of Weyl [56] if two metrics are geodesically
and conformally equivalent, then they are proportional (with a constant coefficient of
proportionality).

As we explained in Remark 4, the assumptions of Lemma 2 are fulfilled if the metric is
Einstein. Moreover, if the metric is Einstein, then the second term of the right-hand side of
(14) is proportional to g, and the last term is proportional to a implying that λi,j is a linear
combination of gij and aij. We need to calculate the coefficients of the linear combination.

Substituting the condition that the metric is Einstein in (17), we obtain

λαRα
ikj = τjgik − τkgij, (25)

where
τi := 1

4

(
λ α

i,α + R
n
λi

)
. (26)

Contracting the equation (25) with gij we obtain (n− 1)τj = −R
n
λj implying

τj = − R
n(n−1)

λj. (27)

Now, since the metric is Einstein, the first bracket in the sum (22) is zero, and the term
aα

βRβ
α equals R

n
δβ
αaα

β = 2R
n
λ, so the formula (22) reads

λ
β

i,β

(
2λ

n
gkj − akj

)

− λi

(

−2λR
n

+ 4λ α
α,

n
gkj + R

n
akj − 4λk,j

)

= 0 (28)

Combining (26) and (27), we obtain

λ
β

i,β =
(
4k − R

n

)
λi. (29)
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Substituting this in (28), we obtain

(
4k − R

n

)
(

2λ

n
gkj − akj

)

λi −
(

−2λR
n

+ 4λ α
α,

n
gkj + R

n
akj − 4λk,j

)

λi = 0. (30)

Since by assumption λi 6= 0, we obtain (24),

Remark 6. Assume g is an Einstein metric. Let aij be a solution of (8). Then,

λαY α
ijk = 0, (31)

where Y h
ijk := Rh

ijk − R
n(n−1)

(
δh
j gik − δh

kgij

)
is the so-called concircular curvature of g intro-

duced by Yano [58].

Proof. Substituting (27) in (25), we obtain the claim,

Corollary 2. Assume g is an Einstein metric. Let aij be a solution of (8). Consider

K := − R
n(n−1)

and the function µ :=
λ α

α, −2Kλ

n
. Then, the function µ satisfies the equation

µ,i = 2Kλi. (32)

Remark 7. In particular, under the assumptions of Corollary 2, for a certain const ∈ R,
the function λ + const is an eigenfunction of the laplacian of g.

Proof of Corollary 2. If λ is constant in a neighborhood of a point, the equation (32)
is automatically fulfilled. Below we will assume that λ is not constant. Differentiating the
definition of µ and multiplying by n for cosmetic reasons, we obtain

nµ,i = 2λ α
α, i − 2Kλi. (33)

By definition of curvature we have λi,jk − λi,kj = λαRα
ijk. Contracting this with gij, and

using Rij = R
n
gij, we obtain

λ α
α, k − λ α

k,α = −R
n
λk.

The formula (29) gives us λ α
k,α , whose substitution gives

λ α
α, k =

(
−2R

n
+ 4K

)
λk.

Substituting this in (33), we obtain µ,i = − 2R
n(n−1)

λi = 2Kλi,

Corollary 3. Let g and ḡ be geodesically equivalent metrics, assume g is an Einstein
metric. Then, the function λ given by (9) satisfies

λ,ijk −K · (2λ,kgij + λ,jgik + λ,igjk) = 0, (34)

where K := − R
n(n−1)

.
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Proof. If λ is constant in a neighborhood of p, the equation is automatically fulfilled.
Then, it is sufficient to prove Corollary 3 at points p such that λi(p) 6= 0.

Covariantly differentiating (24), we obtain λi,jk = µ,kgij +Kaij,k. Substituting µ,k by (32),
and aij,k by (8), we obtain the claim,

Lemma 3. Let g and ḡ be geodesically equivalent. Assume g is Einstein, and assume that
λi 6= 0 at a point p.

Then, the restriction of ḡ to a sufficiently small neighborhood U(p) is Einstein as well.
Moreover, the following formula holds (at every point of U(p)).

φi,j − φiφj = R
n(n−1)

gij − R̄
n(n−1)

ḡij, (35)

where R̄ is the scalar curvature of the metric ḡ.

Remark 8. The first statement of the lemma easily follows from certain formulas obtained
in [42]. In dimension 4, under additional assumptions (R = 0 and Lorentz signature), the
first statement was proved in [20].

Proof of Lemma 3. We covariantly differentiate (7) (the index of differentiation is “j”);
then we substitute the expression (5) for ḡij,k to obtain

λi,j = −2e2φφjφαḡαβgβi − e2φφα,j ḡ
αβgβi + e2φφαḡαγ ḡγl,j ḡ

lβgβi

= −e2φφα,j ḡ
αβgβi + e2φφαφγ ḡ

αγgij + e2φφjφlḡ
lβgβi

, (36)

where ḡαβ is the tensor dual to ḡαβ. We now substitute λi,j from (24), use that aij is given
by (6), and divide by e2φ for cosmetic reasons to obtain

e−2φµgij + Kḡαβgαjgβi
= −φα,j ḡ

αβgβi + φαφγ ḡ
αγ ḡij + φjφlḡ

lβgβi. (37)

Multiplying with giξḡξk, we obtain

φk,j − φkφj = (φαφβ ḡαβ − e−2φµ)ḡkj −Kgkj. (38)

Let us now show that the coefficient K̄ := −φαφβ ḡαβ−e−2φµ

n−1
is constant. Substituting (38)

in (11), and using Rij = R
n
gij, we obtain

R̄ij = R
n
gij − R

n
gij − (φαφβ ḡαβ − e−2φµ)ḡij.

We see that R̄ij is proportional to ḡij. Then, ḡ is an Einstein metric; in particular, K̄ :=

−φαφβ ḡαβ−e−2φµ

n−1
is a constant equal to − R̄

n(n−1)
, and (38) gives us the formula

K̄ḡij = Kgij + φi,j − φiφj, (39)

which is evidently equivalent to (35),
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Corollary 4. Let g and ḡ be geodesically equivalent metrics, assume g is an Einstein
metric. Consider a (parametrized) geodesic γ of the metric g, and denote by φ̇, φ̈ and

...
φ

the first, second and third derivatives of the function φ given by (4) along the geodesic.
Then, along the geodesic, the following ordinary differential equation holds:

...
φ = 4Kg(γ̇, γ̇)φ̇ + 6φ̇φ̈− 4(φ̇)3 , (40)

where g(γ̇, γ̇) := gij γ̇
iγ̇j.

Proof. If φi ≡ 0 in a neighborhood U , the equation is automatically fulfilled. Then, it is
sufficient to prove Corollary 4 assuming φ is not constant.

The formula (35) is evidently equivalent to (39), which is evidently equivalent to

φi,j = K̄ḡij −Kgij + φiφj. (41)

Taking covariant derivative of (41), we obtain

φi,jk = K̄ḡij,k + 2φi,kφj + 2φj,kφi. (42)

Substituting the expression for ḡij,k from (5), and substituting K̄ḡij given by (39), we
obtain

φi,jk = K̄(2ḡijφk + ḡikφj + ḡjkφi) + 2φi,kφj + 2φj,kφi

= K(2gijφk + gikφj + gjkφi) + 2(φkφi,j + φiφj,k + φjφk,i)− 4φiφjφk
(43)

Contracting with γ̇iγ̇j γ̇k and using that φi is the differential of the function (4) we obtain
the desired ODE (40),

Corollary 5. Let ḡ (on a connected Mn≥3) be geodesically equivalent to an Einstein metric
g, but is not affine equivalent to g. Then, the restrictions of g and ḡ to any neighborhood
are also not affine equivalent.

Remark 9. The assumption that g is Einstein is important: Levi-Civita’s description of
geodesically equivalent metrics [26] immediately gives counterexamples.

Proof of Corollary 5. We consider the function φ given by (4). Suppose φi 6= 0 at a
point p. Consider a geodesic γ(t) such that γ(0) = p, γ̇α(0)φα(p) 6= 0. Note that almost
every geodesic with γ(0) = p satisfies γ̇α(0)φα(p) 6= 0.

By Corollary 4, the function φ(t) = φ(γ(t)) (whose t−derivative is φ̇(t) = γ̇i(t) φi(γ(t)))
satisfies equation (40) along the geodesic. Clearly, every constant is a solution of the
equation. Since φ̇(0) 6= 0, by uniqueness of the solutions of ODE, the restriction φ(t) to
every open interval can not be constant. Hence, the subset of t such that φ̇(t) 6= 0 is
everywhere dense. Since as we mentioned above, φ̇(0) 6= 0 for almost every geodesic γ

(with γ(0) = p), we have that for every point p0 of every geodesic passing through p there

exists a sequence pk ∈ Mn such that φi(pk) 6= 0 and such that pk
k→∞−→ p0. Since every

point can be reached from the point p by a sequence of geodesics, we have that φi 6= 0 at
every point of an open everywhere dense subset of Mn,
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2.4 Proof of Theorem 1 for Riemannian metrics of nonpositive

scalar curvature, and for pseudo-Riemannian metrics

Assume the metric g on a connected Mn≥3 is Einstein and is either Riemannian (i.e.,
positive definite) with nonpositive scalar curvature, or there exist light-like vectors (i.e.,
for no constant c 6= 0 the metric c · g is Riemannian). Let ḡ be geodesically equivalent to
g. Assume both metrics are complete. Our goal is to show that φ given by (4) is constant,
because in view of (1) this implies that the metrics are affine equivalent.

Consider a parameterized geodesic γ(t) of g. If the metric g is pseudo-Riemannian, we
additionally assume that γ is a light-like geodesic i.e., γ̇iγ̇jgij = 0. Since the metrics are
geodesically equivalent, for a certain function τ : R→ R the curve γ(τ) is a geodesic of ḡ.
Since the metrics are complete, the reparameterization τ(t) is a diffeomorphism τ : R→ R.
Without loss of generality we can think that τ̇ := d

dt
τ is positive, otherwise we replace t by

−t. Then, the equation (2) along the geodesic reads

φ(t) = 1
2
log(τ̇(t)) + const0. (44)

Now let us consider the equation (40). Substituting

φ(t) = −1
2
log(p(t)) + const0 (45)

in it (since τ̇ > 0, the substitution is global), we obtain

...
p = 4Kg(γ̇, γ̇)ṗ. (46)

Since the length of the tangent vector is preserved along a geodesic, g(γ̇, γ̇), and therefore
4Kg(γ̇, γ̇) is a constant. The assumptions above imply that this constant is nonnegative.

Indeed, if γ̇ is a light-like vector, this constant is zero, since γ is an light-like geodesic.
If the metric is Riemannian of nonpositive curvature, g(γ̇, γ̇) ≥ 0, and K ≥ 0, so their
product is nonnegative.

The equation (46) can be solved. We will first consider the case Kg(γ̇, γ̇) = 0. In this
case, the solution of (46) is p(t) = C2t

2 + C1t + C0. Combining (45) with (44), we see that
τ̇ = 1

C2t2+C1t+C0
. Then

τ(t) =

∫ t

t0

dξ

C2ξ2 + C1ξ + C0

+ const. (47)

We see that if the polynomial C2t
2 + C1t + C0 has real roots (which is always the case

if C2 = 0, C1 6= 0), then the integral diverges (goes to infinity in finite time). If the
polynomial has no real roots, but C2 6= 0, the function τ is bounded. Thus, the only
possibility for τ to be a diffeomorphism is C2 = C3 = 0 implying τ(t) = 1

C0
t + const1

implying τ̇ = 1
C0

implying φ is constant along the geodesic.
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Now, let us consider the case Kg(γ̇, γ̇) > 0. In this case, the general solution of the
equation (46) is

C + C+e2
√

Kg(γ̇,γ̇)t + C−e−2
√

Kg(γ̇,γ̇)t. (48)

Then, the function τ satisfies the ODE τ̇ = 1

C+C+e2
√

Kg(γ̇,γ̇)t+C
−

e−2
√

Kg(γ̇,γ̇)t
implying

τ(t) =

∫ t

t0

dξ

C + C+e2
√

Kg(γ̇,γ̇)ξ + C−e−2
√

Kg(γ̇,γ̇)ξ
+ const. (49)

If one of the constants C+, C− is not zero, the integral (49) is bounded from one side,
or diverges (goes to infinity in finite time). Thus, the only possibility for τ to be a dif-
feomorphism of R on itself is C+ = C− = 0. Finally, φ is a constant along the geodesic
γ.

Since every point of a connected manifold can be reached by a sequence of light like
geodesics in the pseudo-Riemannian case, or by a sequence of geodesics in the Riemannian
case, φ is a constant, so that φi ≡ 0, and the metrics are affine equivalent by (1),

Remark 10. A similar idea was used by Couty [11] in an investigation of projective trans-
formations of Einstein manifolds, and by Shen [51] in an investigation of Finsler Einstein
geodesically equivalent metrics.

2.5 Proof of Theorem 1 for Riemannian metrics of positive scalar

curvature

We assume that g is a complete Einstein Riemannian metric of positive scalar curvature
on a connected manifold (we do not need that the second metric is complete). Then,
by Corollary 3, λ is a solution of (34). If the metrics are not affine equivalent, λ is not
identically constant.

The equation (34) was studied by Obata and Tanno in [45, 54] in a completely different
geometrical context. They proved (actually, Tanno [54], because the proof of Obata [45] has
a mistake) that a complete Riemannian g such that there exists a nonconstant function
λ satisfying (34) must have a constant positive curvature. Applying this result in our
situation, we obtain the claim,

3 Proof of Theorem 2

It is sufficient to prove Theorem 2 in a neighborhood of a point p such that λi given by
(7) does not vanish. Indeed, by Corollary 5, either such points are everywhere dense, or
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the metrics are affine equivalent. We will first formulate two simple lemmas from Linear
Algebra, then prove a simple Lemma 6 which generalizes certain result of Levi-Civita [26],
and then obtain Theorem 2 as an easy corollary.

3.1 Two simple lemmas from Linear Algebra

We say that the vector vi lies in kernel of the tensor Zijkl, if viZijkl = 0.

Lemma 4. Assume the tensor Zijkl on R
4 has the following symmetries:

Zijkl = Zklij , Zijkl = −Zjikl, (50)

and satisfies Zijklg
ik = 0. Suppose the vector vi such that g(v, v) := vivjgij 6= 0 lies in the

kernel of Zijkl. Then, Z = 0.

Remark 11. The assumption g(v, v) 6= 0 is important: one immediately constructs a coun-
terexample. The dimension is also important: the claim fails for dimensions ≥ 5.

Proof of Lemma 4 is an easy exercise and will be left to the reader. We recommend to
consider a basis such that the first vector is v and the metric is given by the matrix







ε1

ε2

ε3

ε4







,

where all εi 6= 0. Then, the conditions viZijkl = 0 and Zijklg
ik = 0 are a system of

homogeneous linear equations on the components of Z which admits only trivial solution
implying the claim,

Lemma 5. Let a and Z be n×n matrices over C such that Z is skew-symmetric and such
that their product aZ is symmetric. Let the geometric multiplicity of the eigenvalue ρ ∈ C

of the matrix a be 1. Then, every vector v from the generalized eigenspace of ρ lies in the
kernel of the matrix Z.

(Recall that geometric multiplicity of ρ is the dimension of the kernel of (a − ρ · 1) , and
the generalized eigenspace of ρ is the kernel of (a− ρ · 1)n.)

The proof of Lemma 5 is an easy exercise in linear algebra and will be left to the reader.
We recommend to consider the basis such that the matrix a is in Jordan form, and then
to calculate the matrix aZ. One immediately sees that it is block diagonal, and that if the
eigenspace is one dimensional then the corresponding block is trivial,
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Corollary 6. Suppose Zijkl is skew-symmetric with respect to indexes i, j. Suppose

aα
i Zαjkl + aα

j Zαikl = 0 (51)

for a (1,1)-tensor a satisfying aα
j gαi = aα

i gαj, where (the metric) g is a symmetric nonde-
generate (0, 2)-tensor. We assume that all components of Z, g, and a are real. Suppose
there exists a (possibly, complex) eigenvalue ρ with geometric multiplicity 1. Then, there
exists a vector v such that gijv

ivj 6= 0 lying in the kernel of Z.

Proof. The condition aα
j Zαi+aα

i Zαj = 0 precisely means that the matrix aZ is symmetric.
We see that this condition is the condition (51) with “forgotten” indexes k and l. Then,
by Lemma 5, every vector v from the sum of the generalized eigenspaces of ρ and of its
complex-conjugate ρ̄ lies in kernel of Z. Since the generalized eigenspaces of ρ and of ρ̄ are
orthogonal to all other generalized eigenspaces because of the condition aα

j gαi = aα
i gαj, and

because the direct sum of all all generalized eigenspaces coincides with the whole vector
space, the sum of the generalized eigenspaces of ρ and of ρ̄ contains a (real) vector v such
that gijv

ivj 6= 0,

3.2 If all eigenspaces are more than one-dimensional, the metrics

are affine equivalent.

Lemma 6. If geometric multiplicity of every eigenvalue of the solution aij of (8) is at
least two, then the function λ given by (9) is constant.

Remark 12. For Riemannian metrics, the statement is due to Levi-Civita [26]. The proof
for the pseudo-Riemannian case is essentially the same, the additional difficulties are due
to possible Jordan blocks. In a certain form, it appears in [1].

Proof of Lemma 6. We prove the lemma assuming every Jordan-Block of ai
j is as most

3-dimensional, this is sufficient for our four-dimensional goals. The proof for arbitrary
dimensions of Jordan blocks can be done by induction.

Let ρ be an eigenvalue of ai
j; let ui be an eigenvector corresponding to ρ. In a small

neighborhood of almost every point, ρ a smooth (possibly, complex-valued) function. We
will show that the differential ρ,i is proportional to ui. If the eigenspace of ρ is more than
one-dimensional, this will imply that ρ,i is constant. This implies that if all eigenspaces
are more than one-dimensional, the trace of ai

j is constant implying the metrics are affine
equivalent.

Let u be an eigenvector corresponding to ρ, i.e.,

uαaα
i = ρui. (52)
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We take the covariant derivative and use (8). We obtain

uα,ja
α
i + uαλαgij + λiuj = ρ,jui + ρui,j. (53)

We multiply (53) with ui and sum over i, to obtain (using (52))

2λαuαuj = uαuαρ,j. (54)

We see that if uαuα 6= 0 (which is in particular always the case when the Jordan block
corresponding to ρ is 1-dimensional), we are done.

Suppose the Jordan block corresponding to ρ is more than 1-dimensional, i.e., there exists
vi such that

vαaα
i = ρvi + ui. (55)

Then, ui is automatically a light like vector: indeed, multiplying (55) by ui, summing over
i, and using (52), we obtain

uαuα = 0. (56)

Differentiating (56), we obtain
uα,iu

α = 0. (57)

Substituting (56) in (54), we obtain λαuα = 0. Differentiating (55) and using (8), we obtain

vα,ja
α
i + vαλαgij + λivj = ρ,jvi + ρvi,j + ui,j. (58)

Multiplying (58) by ui and summing over i, we obtain

vαλαuj = vαuαρ,j. (59)

We see that if vαuα 6= 0, (which is in particular always the case when the Jordan block
corresponding to ρ is 2-dimensional), we are done.

Suppose the Jordan block corresponding to ρ is precisely 3-dimensional, i.e., there exists
wi such that

wαuα 6= 0 (60)

and such that
wαaα

i = ρwi + vi. (61)

We multiply (61) with vi and sum over i, to obtain

wαuα = vαvα. (62)

We multiply (61) with ui and sum over i, to obtain

uαvα = 0. (63)

Differentiating (63), we obtain
uα,iv

α = −uαvα,i. (64)
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Moreover, combining (63) with (59), we obtain λαvα = 0. Differentiating (61), we obtain

wα,ja
α
i + wαλαgij + λiwj = ρ,jwi + ρwi,j + vi,j.

Contracting this with ui, we obtain

wαλαuj = wαuαρ,j + uαvα,j

(64)
= wαuαρ,j − uα,iv

α. (65)

We multiply (58) with vi and sum over i to obtain

vα,ju
α = vαvαρ,j + uα,jv

α. (66)

Using (64), we obtain

2vα,ju
α = vαvαρ,j

(62)
= wαuαρ,j. (67)

Combining (67) with (65), we obtain 2wαλαuj = 3uαwαρ,j. Combining this with (60), we
obtain that the differential ρ,i is proportional to the eigenvector ui. If the eigenspace of ρ

is more that one-dimensional, this implies that ρ,i = 0,

3.3 Proof of Theorem 2

If the dimension is 3, Theorem 2 follows from the well-known fact that every Einstein
3-manifold has constant curvature.

We assume that g is an Einstein metric on M4. Let ḡ be geodesically equivalent to g. We
consider the solution aij of (8) given by (6). Assume that the corresponding λi 6= 0 at
p. We will show that in a small neighborhood of p the metric g has constant curvature
implying the metrics ḡ and ĝ have constant curvature as well by Beltrami Theorem (see
for example [38], or the original papers [4] and [50]).

Substituting equation (24) in (10), we obtain aiαZα
jkl + aαjZ

α
ikl = 0, where

Zi
jkl = Ri

jkl −K · (δi
lgjk − δi

kgjl). (68)

We see that by construction the tensor Zijkl has the symmetries (50). Since g is Einstein,
the tensor Zijkl satisfies Zijklg

ik = 0.

By Lemma 6, at almost every point there exists an eigenvalue of ai
j with geometric multi-

plicity one. Then, by Corollary 6, there exists a vector vi such that g(v, v) 6= 0 and such
that vi lies in the kernel of Z. By Lemma 5, the tensor Z ≡ 0 implying in view of (68) the
claim,
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