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Abstract

We generalize the following classical result of Fubini [12] for pseudo-Riemannian metrics:
if three essentially different metrics on Mn≥3 share the same unparametrized geodesics, and
two of them (say, g and ḡ) are strictly nonproportional (i.e., the minimal polynomial of
giαḡαj coincides with the characteristic polynomial) at least at one point, then they have
constant curvature.

1 Introduction

1.1 Definitions and results

Two Riemannian or pseudo-Riemannian metrics on the same manifold are said to be geodesically
equivalent, if they have the same geodesics considered as unparametrized curves. Two metrics g

and ḡ are strictly nonproportional at a point x ∈ M , if the minimal polynomial of the (1,1)-tensor
Gi

j := gikḡkj coincides with the characteristic polynomial. If one of the metrics is Riemannian,
strict nonproportionality means that all eigenvalues of G have multiplicity 1.

The main result of the present paper is the following

Theorem 1. Let g, ḡ and ĝ be three geodesically equivalent metrics on a connected manifold Mn

of dimension n ≥ 3. Suppose there exists a point at which g and ḡ are strictly nonproportional,
and a point at which g, ḡ and ĝ are linearly independent. Then, the metrics g, ḡ and ĝ have
constant curvature.

If the metrics are Riemannian, the local version of Theorem 1 was proved by Fubini in [12,
13]. The proof of Fubini is short and elegant, but unfortunately, does not work in the pseudo-
Riemannian case. More precisely, Fubuni’s proof is based on the following classical result:
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Theorem 2 (Levi-Civita [20]). Assume g and ḡ are Riemannian geodesically equivalent metrics
that are strictly nonproportional at a point p. Then, in a neighborhood of this point there exists
a coordinate system (x1, ..., xn) such that the metrics g, ḡ are as follows:
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where Xi is a positive function of the variable xi only. Moreover, every two metrics of this form
are geodesically equivalent.

Fubini calculated the riemannian curvature Rij,km of the metric (1) and observed that the com-
ponent Rij,km is non-zero only if (i, j) = (k,m) or if (i, j) = (m, k). Nowadays, such curvature
tensors are called diagonal, see for example [57]. Then he showed that, unless the curvature is
constant, the curvature tensor determines the coordinates lines (x1, ..., xn) uniquely. Thus, the
metrics g, ḡ and ĝ must be simultaneously diagonalisable in a certain coordinate system and a
short analysis shows that they are linearly dependent at every point.

Our proof, which is also valid in the pseudo-Riemannian setting, is as follows. We study the
partial differential equation (5) which is responsible for the fact that the metric ḡ is geodesically
equivalent to g. The unknown functions in this equation are the components of a (0, 2)-tensor aij

canonically constructed by metric ḡ. Then, we find the integrability conditions for this equation.
This is a system of linear equations on a and the Hessian of λ := 1

2
aαβgαβ; the coefficients in these

equations are algebraic expressions of entries of the curvature tensor and the metric. We show
that if the system has two solutions, then for certain K ∈ R the components of the curvature
must satisfy the condition aα

i Zαjkl + aα
j Zαikl = 0, where Zijkl = Rij,kl − K · (gilgjk − gikgjl).

Then, it is an easy exercise in linear algebra to show that if in addition the metrics g and ḡ

are strictly nonproportional, then this condition on the curvature implies that the curvature is
actually constant. Then, the curvature of the metrics ḡ and ĝ is constant as well by the Beltrami
Theorem.

Remark 1. We emphasize that the essential part of our proof is, in fact, the analysis of algebraic
properties of the integrability conditions for the ”geodesic equivalence equation” (5). Algebraic
aspects of the integrability conditions will also be clarified in Section 3 where we discuss an unex-
pected relationship between geodesically equivalent metrics and the so-called sectional operators
on semisimple Lie algebras. As an application of this observation, we give an alternative, pure
algebraic proof of the (local version of the) Fubini theorem, and we believe that this idea might
be useful in a wider context.
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Remark 2. All assumptions in Theorem 1 are important. Indeed:

• if the dimension n is 2, counterexamples were constructed in [16], see also [8];

• if the metrics are not strictly nonproportional, counterexamples can be found in §9 of [48],
see also [46, 49, 50];

• if we omit the assumption that g, ḡ, and ĝ are linearly independent, then we can take ĝ = ḡ,
and the Levi-Civita metrics (1) and (2) for generic Xi give a counterexample to Theorem 1.

1.2 Motivation

The first motivation, which was the reason why Fubini studied this question, came from the study
of projective vector fields of pseudo-Riemannian metrics. Recall that a vector field v is projective
with respect to the metric g if its (local) flow takes geodesics to geodesics. Projective and affine
vector fields are very classical objects of investigation: both Lie [21] and Schouten [44] explicitly
formulated the problem of constructing all metrics admitting one or sufficiently many projective
vector fields. As a direct corollary of Theorem 1 we obtain

Corollary 1. Suppose that g and ḡ are geodesically equivalent metrics of a nonconstant curvature
on a connected manifold Mn of dimension n ≥ 3. Suppose there exists a point such that g and
ḡ are strictly nonproportional. Then, the dimension of the space of projective vector fields minus
the dimension of the space of homothety vector fields is at most one.

Recall that the vector field v is a homothety vector field, if Lvg = const · g, where Lv is the Lie
derivative. We allow the case const = 0, so Killing vector fields are also homothety vector fields.

Remark 3. In dimension 2, Corollary 1 is wrong. Indeed, Darboux-superintegrable metrics admit
three projective vector fields and, as a rule, only one homothety vector field, which is a Killing
vector field. The definition of Darboux-superintegrable metrics and a description of their pro-
jective vector fields can be found in [8]. Moreover, it is possible to show that there are no other
counterexamples to the 2-dimensional version of Corollary 1. This is a very nontrivial statement
which follows from the results of [8, 38], where all 2-dimensional metrics admitting projective
vector fields were constructed.

Moreover, it is possible to use Theorem 1 in order to describe all projective vector fields of a
metric g under the assumptions that there exists a metric ḡ which is geodesically equivalent to
g and strictly nonproportional to g. Indeed, in this case the system of PDE on v is a system of
ODE’s, which is much easier to analyse than a system of PDE’s, see [1, 3, 8, 12, 31, 32, 33, 37, 38],
where this ODE-system was obtained and completely solved in particular cases.

One more motivation comes from the theory of superintegrable systems. Recall that a metric is
called superintegrable, if the number of independent integrals of special form is greater than the
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dimension of the manifold. There are different possibilities for the special form of integrals; de-
facto the most standard special form of the integrals is the so-called Benenti-integrals, which are
essentially the same as geodesically equivalent strictly nonproportional metrics, see [4, 7, 17]. The
results of the present paper show that Benenti-superintegrable metrics of nonconstant curvature
cannot exist, which was a folkloric conjecture.

1.3 History

The theory of projective transformations has a long and fascinating history. The first non-
trivial examples of projective transformations were discovered by Lagrange [19, 35]. Geodesically
equivalent metrics were studied by Beltrami, Darboux, Levi-Civita, Painleve, Eisenhart, Weyl
and other classics. One can find more historical details in the surveys [3, 40, 9] and in the
introduction to the papers [37, 30, 29, 53, 34, 36, 28, 27].

The pseudo-Riemannian version of Fubini’s Theorem was investigated by the Kazan school of
geometry, in particular by A. Aminova and her collaborators. In particular, they tried to mimic
the Fubini proof for pseudo-Riemannian metrics. They used the description of geodesically
equivalent pseudo-Riemannian metrics obtained by Aminova [2], which is a generalization of
Levi-Civita’s Theorem 2. Unfortunately, the description by Aminova is very complicated, which
makes this programm to be computationally very hard. Besides, there are infinitely many different
types of normal forms for pseudo-Riemannian metrics (depending on the Jordan form of the
tensor G), and each of these types require a separate inverstigation. According to [58], they
proved Theorem 1 in dimensions up to 6, though we did not find the place where the proof is
written.
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2 Proof

2.1 Schema of the proof

We first show (Section 2.3) that if geodesically equivalent metrics are strictly non-proportional
at least at one point, than it is so at almost every point. Then, we will show (Section 2.4) that if
g, ḡ, and ĝ are linearly dependent at every point of a neighborhood, they are linearly dependent
at every point of the manifold.

Combining these two observation, we see that if the assumptions of Theorem 1 are fulfilled at one
point, they are fulfilled at almost every point, i.e., though the theorem is global, it is sufficient
to prove it locally. This will be done in Sections 2.5, 2.6.

2.2 What we will use in the proof

There are many tensor reformulations of the condition “metrics g and ḡ are geodesically equiva-
lent”. In our paper we will use the following one, which was suggested by Sinjukov [47], see also
[7, 10]: given two metrics g and ḡ, consider the (0, 2)−tensor

aij :=

∣

∣

∣

∣

det(ḡ)

det(g)

∣

∣

∣

∣

1

n+1

· giαḡαβgjβ, (3)

and the function

λ :=
1

2
aαβgαβ (4)

where and gαβ and ḡαβ denote the tensors dual to gij and ḡij respectively, i.e., giαgαj = δi
j and

ḡiαḡαj = δi
j.

Theorem 3. [47, 7] The metrics g and ḡ are geodesically equivalent, if and only if

aij,k = λ,igjk + λ,jgik, (5)

where the covariant derivative is taken with respect to the (Levi-Civita connection of the) metric
g.

We will also use the following connection between geodesically equivalent metrics and integrable
geodesic flows due to [24].

Let ai
j be as in (3), with one index lifted by g (so now a is a (1, 1)−tensor, self-adjoint with

respect to g). Consider the family St of (1, 1)-tensors

St
def
= det(a − t Id) (a − t Id)−1

, t ∈ R. (6)
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Remark 4. Although (a − t Id)−1 is not defined for t lying in the spectrum of a, the tensor St is
well-defined for every t. Actually, the matrix of St is the comatrix of the matrix of a − t Id. In
particular, St is a polynomial in t of degree n − 1 with coefficients being (1,1)-tensors.

We will identify the tangent and cotangent bundles of Mn by g. This identification allows us to
transfer the natural Poisson structure from T ∗Mn to TMn.

Theorem 4 ([24, 52, 53]). If a is a solution of (5), then for every t ∈ R the function

It : TMn → R, It(ξ)
def
= g(St(ξ), ξ) (7)

is an integral for the geodesic flow of g.

Recall that a function is an integral of the geodesic flow, if it is constant along the trajectories,
i.e., along the curves on the tangent bundle of the form (γ(t), γ̇(t)), where γ is a geodesic and
γ̇(t) is its velocity vector at a point t.

We will also use the following statement, whose Riemannian version was obtained in [24], and
pseudo-Riemannian generalisation is due to Topalov [51]. As in the introduction, we denote by
G the (1, 1)−tensor Gi

j := gikḡkj.

Theorem 5 (follows from Theorem 2 and Section III B of [51]). Suppose the degree of the
minimal polynomial of G is r at every point of the neighbourhood U(p). Then, for arbitrary
mutually different t1, ..., tr+1 ∈ R the functions It1,...,Itr are functionally independent, and the
function Itr+1

is a linear combination of the functions It1,...,Itr (the coefficients of the linear
combination are constant).

Recall that functions f1, ..., fr are functionally independent, if their differentials are linearly in-
dependent almost everywhere.

In other words, the number of independent integrals among It is the degree of the minimal poly-
nomial. In particular, if the metrics are strictly nonproportional at a point p (which immediately
implies that they are strictly non-proportional at every point in a small neighbourhood U(p)),
then the differentials of the integrals are linearly independent at almost every point of TU(p).

2.3 If geodesically equivalent metrics are strictly nonproportional at

one point, then they are strictly nonproportional at almost every

point.

Let geodesically equivalent metrics g and ḡ be strictly nonproportional at p. Consider a geodesic
γ passing through p := γ(0). Let us show that every point q := γ(τ) of the geodesic has a
neighborhood U(q) such that at almost every point of the neighborhood the metrics are strictly
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nonproportional. Since every point can be reached by a finite sequence of geodesics, and since
the condition “the minimal polynomial of G has degree n” is an open condition, this will prove
the statement formulated in the title of this section.

As we recalled in Section 2.2, for almost every point of TU(p) the differentials of the integrals
It1 , ..., Itn are linearly independent. Take a sequence of points (pk, vk) ∈ TU(p) converging to
(γ(0), γ̇(0)) such that dIt1(pk, vk), . . . , dItn(pk, vk) are linearly independent. Consider the sequence
of the geodesics γk such that γk(0) = pk and γ̇k(0) = vk. For sufficiently large k, the geodesics
exist up to time τ and the sequence (γk(τ), γ̇k(τ)) converges to (γ(τ), γ̇(τ)).

Since the integrals are preserved by the geodesic flow, the differentials of the integrals are also
preserved by the geodesic flow. Then, at the points (γk(τ), γ̇k(τ)) the differentials of It1 , ..., Itn

are linearly independent. By Theorem 5, in an arbitrary small neighborhood of γk(τ) there exists
a point qk such that the metrics are strictly nonproportional at qk implying the claim,

2.4 If gik, ḡkj, and ĝkj are linearly dependent at every point of a

neighborhood U , then they are linearly dependent at every point

of M .

Within this section we assume that g, ḡ, ĝ are geodesically equivalent metrics on a connected
manifold M of dimension n ≥ 3. We consider the tensor aij and the function λ given by (3,4).
The same objects for the pair of metrics g, ĝ will be denoted by the capital letters A and Λ, i.e.,

Aij :=

∣

∣

∣

∣

det(ĝ)

det(g)

∣

∣

∣

∣

1

n+1

· giαĝαβgjβ, Λ :=
1

2
Aαβgαβ (8)

We will first prove the following statement (essentially due to Weyl [56]).

Lemma 1. Suppose a and A are solutions of (5). Assume a = C · A, where C is a function.
Then, C is a constant.

Proof. Our proof is different from the proof of Weyl and is based on the ideas developed in
[53]. Note that in the proof we use only the fact that the dimension is greater than one, i.e., it
works in dimension 2 as well.

Consider the integrals I0 from (7) constructed by a (we keep the notation I0 for it) and by ĝ

(we denote it by I0). If a = C · A, then the integrals I0 and I0 are proportional as well, direct
calculations show that I0(ξ) = ±Cn−1 · I0(ξ). Since the functions I0 and I0 are constant along
every trajectory of the geodesic flow, the coefficient of proportionality of these functions is also
constant along every trajectory of the geodesic flow implying that it is constant everywhere.

Now let us assume that at every point of the neighborhood U the tensors g, ḡ, and ĝ are linearly
dependent. Then, for certain functions c, d the tensors g, a, A satisfy (probably in a smaller

7



neighbourhood U ′ ⊆ U ; without loss of generality we can think that U ′ coincides with U .)

aij = c gij + dAij. (9)

We will show that the functions c, d are actually constants.

Differentiating (9) and substituting (5) and its analog for the solution A, we obtain

λ,igjk + λ,jgik = c,k gij + d Λ,igjk + d Λ,jgik + d,k Aij, (10)

which is evidently equivalent to

τigjk + τjgik = c,kgij + d,kAij, (11)

where τi = λ,i − d Λ,i. We see that for every fixed k the left-hand side of (11) is a symmetric
matrix of the form τivj +τjvi. If c,k is not proportional to d,k, this will imply that gij also is of the
form τivj + τjvi, which contradicts the non-degeneracy of g. If c,k = f · d,k, then the coefficient f

of the proportionality should be a constant implying d = const · c and aij = c (gij + const · Aij).
Since the equation (5) is linear and since gij and Aij are its solutions, their sum gij +const ·Aij is
also solution of (5). Then, Lemma 1 implies that c is constant. Thus, c and d are constant in a
neighbourhood U . Since the equation (5) is linear and of finite type, see [10], linear dependence
of solutions in a neighbourhood implies linear dependence of the solutions everywhere.

Remark 5. Though we used that the dimension of the manifold is at least three, the statement
is true in dimension two as well provided the curvature of g is not constant, see [18].

2.5 Main step of the proof of Theorem 1

As we explained in Section 2.1, in view of Sections 2.3, 2.4, it is sufficient to prove Theorem
locally only.

Assume the metrics g, ḡ, and ĝ are linearly independent at a point p. Assume the metrics g, ḡ are
strictly nonproportional at p. Then, for a certain neighborhood U(p) the metrics g, ḡ, and ĝ are
linearly independent, and the metrics g, ḡ are strictly nonproportional at every point of U(p).

Then, the solution a corresponding to ḡ, the solution A corresponding to ĝ, and the metric g are
linearly independent at every point of U(p), and the minimal polynomial of the (1,1)-tensor ai

j

has degree n.

As in Section 2.3 we denote by Λ the function (4) constructed by A.

Let us first consider the case when λ is constant. In this case, the equation (5) implies that aij is
covariant constant. Since ai

j is self-adjoint with respect to g, at every point there exists a basis
(b1(p), ..., bn(p)) such that the matrix of g is diagonal with ±1 on the diagonal and the matrix of
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ai
j is Jordan-matrix. The basis is unique up to signs of the vectors, so locally b1 can be taken to

be smooth vector fields on the manifold. Since the vectors of the basis are invariantly constructed
by two covariantly-constant object, they are covariantly constant as well. Then, the metric g is
flat implying that ḡ and ĝ have constant curvature.

In what follows we assume that λ is not constant.

Theorem 1 is an easy consequence of the following two lemmas.

Lemma 2. Assume that a and A are solutions of (5) such that a,A, g are linearly independent.
Then, at every point there exists K such that the tensor Zijkl := Rij,kl−K ·(gilgjk − gikgjl) satisfy
the condition

aα
i Zαjkl + aα

j Zαikl = 0, (12)

We see that by construction the tensor Zijkl is skew-symmetric with respect to the first two
indexes. Note that in Lemma 2 we did not assume that the minimal polynomial of a has degree
n, i.e., the lemma is valid in a slightly more general setting than we need it.

Remark 6. Tensor Z plays important role in the theory of geodesically equvialent metrics; it
appears quite naturally in the investigation of special metrics such that Einstein metrics, pseudo-
symmetric metrics, Kähler metrics, see for example [14, 15] for details.

The next lemma shows that if in addition the minimal polynomial of a has degree n, then the
condition (25) implies Zijkl = 0. Then, the curvature of g is constant. By Beltrami’s Theorem
(see for example [35], or the original papers [5] and [45]), the metrics ḡ and ĝ have constant
curvature as well which proves Theorem 1.

Moreover, we will not use the indexes k and l in the proof, so Lemma 3 is the matrix reformulation
of the condition aα

i Zαj + aα
j Zαi for arbitrary (1, 1)−tensor a and a skew-symmetric (0,2)-tensor

Z.

Lemma 3. Let Z, a be n × n-matrices such that Z is skew-symmetric. Assume the minimal
polynomial of a has degree n. If Za − atZ = 0, then Z = 0.

The proof of Lemma 3 is an easy exercise in linear algebra and will be left to the reader (it is
a kind of problem such that it is easier to prove than to understand the proof.) We recommend
to consider the coordinates such that the matrix a is in Jordan form, and then to calculate the
matrix Za. One immediately sees that if the matrix Za is symmetric, then Z = 0.

2.6 Proof of Lemma 2.

The proof is straightforward tensor calculations. The geometry behind the calculation could
be understood with the help of [10]. There, the equations (5) were written in the projectively
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invariant form (so that the equations for g and for the geodesically equivalent metric ḡ are the
same). The prolongation of the equations was written as a connection on the projective tractor
bundle, and the curvature of the connection was calculated. Its first part related to (the analog of
the tensor) a is a trace-free object. Moreover, for most objects, the trace-free part of the covariant
derivative coincides with the trace-free part of the corresponding derivative on the tractor bundle.

We will see that in the proof we consider the integrability conditions for the equations (5), and
then ”artificially” write all objects in trace-free form. At the end we obtain the required equation
(12).

Note that in the proof we will essentially use the symmetries of the Riemannian curvature tensor,
which have sense only if the affine connection is the Levi-Civita connection of a metric. That
means, it is important for us that among the solutions of the projective-invariant analog of a

there is a non-degenerate solution.

In Section 3, we give another proof of Lemma 2 which is, in fact, pure algebraic and based on
some ideas from the theory of integrable Hamiltonian systems on Lie algebras.

Proof of Lemma 2. Integrability conditions for the equation (5) are (we use the standard fact
that aij,kl − aij,lk = aiαRα

jkl + aαjR
α
ikl for any (0, 2)−tensor aij)

aiαRα
jkl + aαjR

α
ikl = λ,ligjk + λ,ljgik − λ,kigjl − λ,kjgil. (13)

The same is true for the other solution A

AiαRα
jkl + AαjR

α
ikl = Λ,ligjk + Λ,ljgik − Λ,kigjl − Λ,kjgil. (14)

Starting from this point, the proof is purely algebraic: the statement of Lemma 2 is an algebraic
corollary of (13) and (14). We emphasize this once again in the next section by giving another
version of the proof in the Lie-algebraic language.

Now let us multiply the equation (13) by Al
s and sum over l. After renaming indexes, we obtain

aiαRα
jkβA

β
l + aαjR

α
ikβA

β
l = λ,αiA

α
l gjk + λ,αjA

α
l gik − λ,kiAjl − λ,kjAil. (15)

Using the symmetry of the Riemann tensor we obtain aαjR
α
ikβ = aα

i Rαj,kβA
β
l = aα

i Rβk,jαA
β
l =

aα
i AβlR

β
kjα. Substituting this in (15), we get

aα
i AβlR

β
kiα + aα

j AβlR
β
kjα = λ,αiA

α
l gjk + λ,αjA

α
l gik − λ,kiAjl − λ,kjAil. (16)

Let us now symmetrise (16) by l, k to obtain

aα
i

(

AβlR
β
kjα + AβkR

β
ljα

)

+ aα
j

(

AβkR
β
liα + AβlR

β
kiα

)

= λ,αiA
α
l gjk + λ,αjA

α
l gik − λ,kiAjl − λ,kjAil + λ,αiA

α
kgjl + λ,αjA

α
kgil − λ,liAjk − λ,ljAik.

(17)
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We see that the components staying in brackets are the left-hand side of the equation (14) with
other indexes. Substituting (14) in the first term of the left-hand side we obtain

aα
i

(

AβlR
β
kjα + AβkR

β
ljα

)

= aα
i (Λ,αlgjk + Λ,αkgjl − Λ,jlgkα − Λ,jkglα)

= aα
i Λ,αlgjk + aα

i Λ,αkgjl − Λ,jlaik − Λ,jkail.
(18)

Similarly, the second term of the left-hand side is

aα
j

(

AβlR
β
kiα + AβkR

β
liα

)

= aα
j (Λ,αlgik + Λ,αkgil − Λ,ilgkα − Λ,ikglα)

= aα
j Λ,αlguk + aα

j Λ,αkgil − Λ,ilajk − Λ,ikajl.
(19)

Substituting (18,19) in (17), we obtain

aα
i Λ,αlgjk + aα

i Λ,αkgjl − Λ,jlaik − Λ,jkail + aα
j Λ,αlgik + aα

j Λ,αkgil − Λ,ilajk − Λ,ikajl

= λ,αiA
α
l gjk + λ,αjA

α
l gik − λ,kiAjl − λ,kjAil + λ,αiA

α
kgjl + λ,αjA

α
kgil − λ,liAjk − λ,ljAik.

(20)

Collecting the terms by g, we see that (20) can be written as

(aα
i Λ,αl − λ,αiA

α
l ) gjk + (aα

i Λ,αk − λ,αiA
α
k ) gjl +

(

aα
j Λ,αl − λ,αjA

α
l

)

gik +
(

aα
j Λ,αk − λ,αjA

α
k

)

gil

= Λ,jlaik + Λ,jkail + Λ,ilajk + Λ,ikajl − λ,kiAjl − λ,kjAil − λ,liAjk − λ,ljAik.

(21)

We denote τil := aα
i Λ,αl − Aα

l λ,αi. In this notation, the equation (21) is

τilgjk + τikgjl + τjlgik + τjkgil

= Λ,jlaik + Λ,jkail + Λ,ilajk + Λ,ikajl − λ,kiAjl − λ,kjAil − λ,liAjk − λ,ljAik.
(22)

Let us show that τ is symmetric. Multiplying with gjk and contracting with respect to j, k, we
obtain

(n + 2)τil +
(

τjkg
jk

)

gil = Λ,αla
α
i +

(

gjkΛ,jk

)

ail + Λ,il

(

ajkg
jk

)

+ Λ,iαaα
l

−λ,αiA
α
l −

(

λ,kjg
kj

)

Ail − λ,li

(

Ajkg
jk

)

− λ,lαAα
i .

(23)

We see that the right-hand side is symmetric w.r.t. i, l. Then, so should be the left-hand-side
implying τil = τli. We also see that the sum of the first, fourth, fifth and last terms of the
right-hand side is τil + τli = 2τil. Then, the equation (23) is equivalent to

τil =
1

n

(

−
(

τjkg
jk

)

gil +
(

gjkΛ,jk

)

ail + Λ,il

(

ajkg
jk

)

−
(

λ,kjg
kj

)

Ail − λ,li

(

Ajkg
jk

))

. (24)

Now we return to the equation (22). We alternate the equation with respect to j, k.

τikgjl + τjlgik − τijgkl − τklgij

= Λ,jlaik + Λ,ikajl − λ,kiAjl − λ,ljAik − Λ,klaij − Λ,ijakl + λ,jiAkl + λ,lkAij.
(25)
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Let us now rename i ↔ k in (25). We obtain

τikgjl + τjlgik − τkjgil − τilgkj

= Λ,jlaik + Λ,ikajl − λ,kiAjl − λ,ljAik − Λ,ilakj − Λ,kjail + λ,jkAil + λ,liAkj.
(26)

Adding (22) with (26) and dividing by 2 for cosmetic reasons, we obtain

τikgjl + τjlgik = Λ,jlaik + Λ,ikajl − λ,kiAjl − λ,ljAik.

Substituting the expression for τ from (24), we obtain

1

n

(

−
(

τβαgβα
)

gik +
(

gαβΛ,αβ

)

aik + Λ,ik

(

aαβgαβ
)

−
(

λ,αβgαβ
)

Aik − λ,ki

(

Aαβgαβ
))

gjl

+ 1

n

(

−
(

ταβgαβ
)

gjl +
(

gαβΛ,αβ

)

ajl + Λ,jl

(

aαβgαβ
)

−
(

λ,αβgαβ
)

Ajl − λ,lj

(

Aαβgαβ
))

gik

= Λ,jlaik + Λ,ikajl − λ,kiAjl − λ,ljAik.

Denoting
(

τβαgβα
)

by τ ,
(

λ,βαgβα
)

by µ,
(

Λ,βαgβα
)

by M, and using that
(

aαβgαβ
)

= 2λ, and
(

Aαβgαβ
)

= 2Λ, one obtains

1

n
(−τgik + Maik + 2Λ,ikλ − µAik − 2λ,kiΛ) gjl

+ 1

n
(−τgjl + Majl + 2Λ,jlλ − µAjl − 2λ,ljΛ) gik

= Λ,jlaik + Λ,ikajl − λ,kiAjl − λ,ljAik.

Combining the terms, we obtain

(

− τ
2
gik + 2Λ,ikλ

) gjl

n
−

(

τ
2
gik + λ,kiΛ

) gjl

n
+

(

− τ
2
gjl − 2λ,ljΛ

)

gik

n
+

(

− τ
2
gjl + 2Λ,jlλ

)

gik

n

=
(

− 1

n
Mgjl + Λ,jl

)

aik +
(

Λ,ik −
1

n
Mgik

)

ajl −
(

λ,ki −
1

n
µgik

)

Ajl −
(

λ,lj −
1

n
µgjl

)

Aik.

(27)

Now, let us calculate τ : we multiply (24) by gil and sum over i, l. After dividing by 2, we obtain

τ =
2

n
(Mλ − µΛ) .

Substituting in (27), we obtain

(

−M
n

gik + Λ,ik

)

2λ
n

gjl −
(

−µ

n
gik + λ,ki

)

2Λ

n
gjl +

(

µ

n
gjl − λ,lj

)

2Λ

n
gik +

(

−M
n

gjl + Λ,jl

)

2λ
n

gik

=
(

− 1

n
Mgjl + Λ,jl

)

aik +
(

Λ,ik −
1

n
Mgik

)

ajl −
(

λ,ki −
1

n
µgik

)

Ajl −
(

λ,lj −
1

n
µgjl

)

Aik,
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which is equivalent to

(

Λ,ik −
M
n

gik

) (

ajl −
2λ
n

gjl

)

+
(

Λ,jl −
M
n

gjl

) (

aik −
2λ
n

gik

)

=
(

λ,ki −
µ

n
gik

) (

Ajl −
2Λ

n
gjl

)

+
(

λ,lj −
µ

n
gjl

) (

Aik −
2Λ

n
gik

) (28)

Denoting Bik :=
(

Λ,ik −
M
n

gik

)

, bik :=
(

λ,ki −
µ

n
gik

)

, djl :=
(

ajl −
2λ
n

gjl

)

, Djl :=
(

Aik −
2Λ

n
gik

)

,
we see that (28) is equivalent to

Bikdjl + Bjldik = bikDjl + bjlDik. (29)

Now, it is easy to see that the condition Bαdβ +Bβdα = bαDβ + bβDα for dimensions ≥ 3 implies
that B is proportional to b and D to d, or that B is proportional to D and b to d. We see that the
condition (29) is essentially the same as this condition, the role of α and β play the multi-indexes
ik and jl. Since g, a, and A are linearly independent, D can not be proportional to d. Thus, b

is proportional to d which imply that λ,ij is a linear combination of aij and gij. The coefficients
of the linear combination are not important for us, let

λ,ij = ρ · gij + K · aij

Substituting this equation in (13), we obtain

aiαZα
jkl + aαjZ

α
ikl = 0, (30)

Where Zi
jkl = Ri

jkl − K · (δi
lgjk − δi

kgjl). Clearly, the equation (30) is equivalent to the equation
(12).

We see that by construction the tensor Zijkl is skew-symmetric with respect to the first two
indexes (actually, the tensor Z has the same symmetries as the curvature tensor, i.e., for example,
skew-symmetric with respect to the last two indexes as well, but we will need only the first two
indexes). Thus, Lemma 2 and, therefore, Theorem 1 are proved,

3 Fubini theorem and sectional operators

on semisimple Lie algebras

In this section we discuss an unexpected and remarkable relationship between geodesically equiv-
alent metrics and some special operators on semisimple Lie algebras which appeared in the theory
of integrable systems.

We start with a brief overview on (one special type of) integrable Euler equations on semisimple
Lie algebras (see [6, 11, 23, 41, 42, 43] for details).
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Let g be a semisimple Lie algebra, R : g → g an operator symmetric with respect to the Killing
form 〈 , 〉 on g. The differential equation

ẋ = [R(x), x], x ∈ g, (31)

is Hamiltonian on g with respect to the standard Lie-Poisson structure and called the Euler
equation related to the Hamiltonian function H(x) = 1

2
〈R(x), x〉.

A classical, interesting and extremely difficult problem is to find those operators R : g → g for
which the system (31) is completely integrable.

One of such operators was discovered by S. Manakov in [22] and his idea then led to an elegant
general construction developed by A. Mischenko and A. Fomenko [41] and called argument shift
method. This construction in brief can be presented as follows.

Assume that R : g → g satisfies the following identity

[R(x), a] = [x, b], x ∈ g, (32)

for certain a, b ∈ g, a 6= 0. Then the following statement holds

Theorem 6. [41] Let R : g → g be symmetric and satisfy (32). Then

1) the system (31) admits the following Lax representation with a parameter:

d

dt
(x + λa) = [R(x) + λb, x + λa];

2) the functions f(x + λa), where f : g → R is an invariant of the adjoint representation, are
first integrals of (31) for any λ ∈ R and, moreover, these integrals commute;

3) if a ∈ g is regular, then (31) is completely integrable.

This construction has a very important particular case. If the Lie algebra g admits a Z2-grading,
i.e., a decomposition g = h+v (direct sum of subspaces) such that [h, h] ⊂ h, [h, v] ⊂ v, [v, v] ⊂ h,
then we may consider R : h → h satisfying (32) with a, b ∈ v, and Theorem 6 still holds if we
replace g by h.

The most important example for applications (in particular, in the theory of integrable tops) is
g = sl(n, R), h = so(n, R), with a and b symmetric matrices. This is the situation that was
studied in the pioneering work by S. Manakov [22] leading to integrability of the Euler equations
of n-dimensional rigid body dynamics.

From the algebraic point of view, the above construction still makes sense if we replace so(n) by
so(p, q) and assume a, b to be symmetric operators with respect to the corresponding indefinite
form g. Moreover, if we complexify our considerations we do not even notice any difference.
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However, to indicate the presence (but not influence) of the bilinear form g, we shall denote the
space of g-symmetric operators by Sym(g), and the Lie algebra of g-skew-symmetric operators
by so(g).

Definition 1. We shall say that R : so(g) → so(g) is a sectional operator associated with a, b ∈
Sym(g), if R is symmetric with respect to the Killing form and the following identity holds:

[R(x), a] = [x, b], for all x ∈ so(g). (33)

We follow the terminology introduced by Fomenko and Trofimov in [54, 11] where they studied
various generalizations of such operators. Strictly speaking, the above definition is just a partic-
ular case of a more general construction. The term“sectional” was motivated by the following
reason. The identities (32) and (33) suggest that one may represent R as ad−1

a adb, but in general
we cannot do so because ada, as a rule, is not invertible. That is why the operator R splits into
parts each of which acts independently on its own subspace (section).

A surprising relationship between sectional operators and geodesically equivalent metrics is ex-
plained by the following observation. Notice, first of all, that due to its algebraic symmetries
(skew-symmetry with respect to i, j and k, l and symmetry with respect to permutation of pairs
(ij) and (kl)), the Riemann curvature tensor Rij,kl can be naturally considered as a symmetric
operator R : so(g) → so(g) (strictly speaking we need to raise indices i and k by means of g to
get the tensor of the form R

i,k
j,l ). Having this interpretation of R in mind, we immediately obtain

Theorem 7. Let g and ḡ be geodesically equivalent nonproportional metrics, then the Riemann
curvature tensor R

i,k
j,l of the metric g is a sectional operator in the sense of Definition 1. More

precisely,
[R(x), a] = [x, b]

where a is the g-symmetric operator associated with the form aij defined by (3), and b is the
g-symmetric operator associated with the form 2λ,ij (Hessian of tr a).

The proof of this statement is just the observation that (33) is a translation of the compatibility
condition (13) into Lie-algebraic language.

Before discussing the proof of the Fubini theorem in this ”new” language, we make some remarks
which could also be useful.

Notice, first of all, that in our new notation the condition ”curvature is constant” (at a point)
simply means that R : so(g) → so(g) is a scalar operator, i.e. R(x) = K · x.

Furthermore, it is a very simple Lie-algebraic fact that (33) implies that a and b commute.
Indeed, 〈[b, a], x〉 = 〈a, [x, b]〉 = 〈a, [R(x), a]〉 = 〈[a, a], R(x)〉 = 0 for any x ∈ so(g), so [a, b] = 0.
In the theory of projectively equivalent metrics this means that the operator a commutes with
the Hessian of its trace 2λ = tr a. This fact is, of course, well known, but the above proof seems
to be the simplest one. Moreover, if instead of a we substitute any element ξ from its centralizer
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C(a), we obviously get the same conclusion [b, ξ] = 0, i.e., b lies in the center of the centralizer
of a. This means, in fact, that b is a polynomial of a.

Finally, if a is regular in the Lie-algebraic sense, i.e. its minimal polynomial coincides with
the characteristic one, then the operator ada : so(g) → Sym(g) has trivial kernel so that the
sectional operator R (i.e., the curvature tensor!) can be reconstructed from a and b. Namely,
R(x) = ad−1

a adb(x), a well-known formula in the theory of integrable systems on Lie algebras. If
we take into account the fact that b = P (a) = λn−1a

n−1 + λn−2a
n−2 + · · ·+ λ1a + λ0 (polynomial

of a), then this formula can be rewritten as

R(x) =
d

dt
P (a + tx)|t=0

. (34)

Indeed, [P (a + tx), a + tx] = 0 implies

0 =
d

dt
[P (a + tx), a + tx]|t=0 = [

d

dt
P (a + tx)|t=0, a] + [P (a), x],

i.e., [ d
dt

P (a + tx)|t=0, a] = [x, b]. Since a is regular, we have (34).

This shows, in particular, that the algebraic structure of the curvature tensor can be understood
in terms of the operator a only.

Using this language we now give another proof of the tensor part of the Fubini theorem (Lemmas
2 and 3).

Assume that we have three geodesically equivalent metrics g, ḡ, and ĝ. Then the Riemann
curvature tensor R of the metric g satisfies at the same time two identities :

[R(x), a] = [x, b] and [R(x), A] = [x,B], (35)

where ak
j = gkiaij, Ak

j = gkiAij, bk
j = 2gkiλ,ij, Bk

j = 2gkiΛ,ij (cf. (13) and (14)).

From now on, we may forget about the geometrical meaning of a, b, A,B and start thinking
of them as just certain g-symmetric operators. In addition, without loss of generality we may
assume all these operators to be trace free (as, of course, it should be in the semisimple Lie algebra
sl(n, R) which stands behind this construction). Moreover, we are allowed to complexify all the
objects so that instead of so(g) and Sym(g) we may simply consider the spaces of symmetric and
skew-symmetric complex matrices.

The reformulation of the (algebraic part of) Fubini theorem are the following analogs of Lemmas
2 and 3 respectively.

Lemma 4. Let R : so(g) → so(g) be symmetric and satisfy (35). If a and A are not proportional,
then b is proportional to a and, therefore, [R(x) − K · x, a] = 0 for some K ∈ R.

Lemma 5. If a is regular, i.e., its minimal polynomial coincides with the characteristic one, then
the identity [R(x) − K · x, a] = 0 implies R = K · id (i.e., the curvature is constant).
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Proof of Lemma 4. Let y and z be arbitrary g-symmetric matrices, then [A, y], [a, z] ∈ so(g)
and we have:

[R([A, y]), a] = [[A, y], b], [R([a, z]), A] = [[a, z], B].

Since R is symmetric with respect to the Killing form 〈 , 〉 we have

〈[[A, y], b], z〉 = 〈[R([A, y]), a], z〉 = 〈R([A, y]), [a, z]〉 = 〈[A, y], R([a, z])〉 =

〈y, [R([a, z]), A]〉 = 〈y, [[a, z], B]〉 = 〈[[B, y], a], z〉

Since z is an arbitrary symmetric matrix, we conclude that

[[A, y], b] = [[B, y], a]. (36)

This relation is an analog of (20). Similarly, [[a, y], B] = [[b, y], A]. Using the Jacobi identity, it
is not hard to see that

[b, A] = [a,B]

Rewriting (36) as

y(Ba − Ab) + (aB − bA)y = Bya + ayB − byA − Ayb

and noticing that [b, A] = [a,B] implies Ba − Ab = aB − bA, we get

yT + Ty = Bya + ayB − byA − Ayb

where T denotes aB − bA (this is an analog of τ from (22)).

This formula can be considered as a relation between two linear operators acting on the space of
symmetric matrices (the argument of both operators is y ∈ Sym(g)). To get some consequences
from this identity, we take a kind of its trace. Recall that we consider A, a,B, b, y, T as usual
symmetric (complex) matrices.

Instead of y we substitute the symmetric matrix of the form eiv
⊤ + ve⊤i , where ei and v are

vector-columns (e1, . . . , en is the standard (orthonormal) basis), then apply the result to ei and
take the sum over i. Here is the result:

(eiv
⊤ + ve⊤i )Tei + T (eiv

⊤ + ve⊤i )ei = B(eiv
⊤ + ve⊤i )aei + ...

ei(Tv, ei) + v(Tei, ei) + Tei(v, ei) + Tv(ei, ei) = Bei(av, ei) + Bv(aei, ei) + ...

Using obvious facts from Linear Algebra such as

∑

i

(Tei, ei) = tr T,
∑

i

(ei, ei) = n,
∑

i

ei(v, ei) = v,
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we get
Tv + tr T · v + Tv + n · Tv = Bav + tr a · Bv + ...

Taking into account that a,A, b, B are all trace free we have

((n + 2)T + tr T · Id)v = (Ba + aB − Ab − bA)v

Since v is arbitrary and T = Ba − Ab = aB − bA, we finally get

nT + tr T · Id = 0

But this simply means that T = 0. Hence we come to the identity of the form

Bya + ayB = byA + Ayb. (37)

It remains to use the following simple statement: if a, b, A,B are symmetric, a 6= 0 and (37) holds
for any symmetric y, then either b = K · a, or A = K · a for some constant K ∈ R.

By our assumption, a and A are not proportional, so we conclude that b = K · a and therefore
the identity [R(x), a] = [x, b] becomes [R(x) − K · x, a] = 0, as needed.

Notice that (37) and the rest of the proof almost literally repeat (29) and the end of the proof of
Lemma 2,

Proof of Lemma 5. Let [R(x) − K · x, a] = 0 and a be regular. It is a well known algebraic
fact that the centralizer of a regular matrix a is generated by the powers of a. In particular,
the centralizer of a consists of g-symmetric matrices. On the other hand, R(x) − K · x is skew-
symmetric. Thus, R(x)−K ·x has to be zero for any x, i.e., R = K · id, as was to be proved,
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Grundlegung der Geometrie, Rendiconti Palermo 50 (1926), 142–169.

[45] F. Schur, Ueber den Zusammenhang der Räume constanter Riemann’schen
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