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Abstract

We introduce the notion of entropy pseudonorm for an action of Rn and prove that it
vanishes for the group actions associated with a big class of integrable Hamiltonian systems.

1. Entropy pseudonorm

Let W be a smooth manifold and Φ : (Rn, +) → Diff(W ) a smooth action on it. Assume there
exists a compact Φ-invariant exhaustion of W . Define the following function on Rn (where htop is
the topological entropy):

ρΦ(v) = htop(Φ(v)), v ∈ Rn.

This function is a pseudonorm on Rn (ρΦ(v) is well-defined because with our hypothesis the
entropy hd of [Bo] does not depend on the distance function d, homogeneity is standard and the
triangle inequality follows from the Hu formula [H]). We call ρΦ the entropy pseudonorm.

We will investigate it in the case of the Poisson action corresponding to an integrable Hamil-
tonian system on a symplectic manifold (W 2n, ω). Namely, let (W 2n, ω) possess pair-wise Poisson
commuting functions I1, I2, . . . , In, which are functionally independent almost everywhere.

Denote by ϕτ
i the time τ shift along the Hamiltonian vector field of the function Ii. The maps

ϕτ
i commute and therefore generate the Poisson action of the group (Rn, +),

Φ(τ1, . . . , τn) def= ϕτ1
1 ◦ · · · ◦ ϕτn

n : W 2n → W 2n,

with the corresponding momentum map Ψ = (I1, . . . , In) : W 2n → Rn, see [A].
The entropy pseudonorm ρΦ vanishes in the following important cases:

− Williamson-Vey-Eliasson-Ito non-degenerate singularities [E, I];

− Taimanov non-degeneracy condition [T].

In the first case vanishing of topological entropy of the Hamiltonian flow was proved in [P2],
in the second case in [T]. Since there is nothing special about the Hamiltonian in these situations,
it can be changed to any of the integrals and ρΦ ≡ 0 follows. Also in [P1, BP]) vanishing of htop

was proven for the cases:

− Systems integrable with periodic integrals;

− Collectively integrable systems (the definition is in [GS]).

It is not difficult to see that in both cases the entropy pseudonorm ρΦ vanishes as well.
Note that Liouville integrability does not imply vanishing of topological entropy, see [BT] (more

examples in [Bu]). For these examples the entropy pseudonorm is degenerate, but it is possible to
construct integrable examples [K] such that ρΦ is a norm.

In the present paper we prove vanishing of the entropy pseudonorm for another class of in-
tegrable systems. These systems were recently actively studied in mathematical physics in the
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framework of the theory of separation of variables. In different contexts they are called Benenti-
systems [IMM], L-systems [B2, B3], cofactor systems [LR] or quasi-bi-hamiltonian systems [CST].
Benenti systems are certain integrable Hamiltonian systems on T ∗M with the Hamiltonian of
the form H = Kg + V , where Kg : T ∗M → R, Kg(x, p) = 〈p, p〉g, is twice the kinetic energy
corresponding to a Riemannian metric g and V : M → R is a potential. Important feature of
these systems is that every integral is a sum of a function quadratic in momenta and a function
on M . Moreover, the quadratic forms corresponding to the quadratic in momenta terms are si-
multaneously diagonalizable. We will provide precise definitions, the conditions on the metric g
and potential V as well as formulas for integrals in Section 2.1, where we also explain how these
systems are related to the theory of geodesic equivalence.

Theorem 1. Let M be a compact connected manifold. Then the entropy pseudonorm of the action
Φ associated with any Benenti integrable Hamiltonian system on T ∗M vanishes: ρΦ ≡ 0.

For geodesic flows (V ≡ 0) degeneracy of htop(H) was proven in our earlier paper [KM].
Theorem 1 generalizes the result of [KM] in the following two directions. First, it includes the
potential energy in the picture. Second, it shows that the topological entropy of the Hamiltonian
flow of every integral (not only the Hamiltonian) vanishes.

Outline of the proof will be presented in Section 2.2. We describe singular orbits of the
Poisson action and show that the restriction of our integrable system to every singular orbit is
a subsystem of a Benenti system on a manifold of smaller dimension. Then we apply induction
in the dimension. Again as in the case of geodesic flows the set of singular points can be very
complicated: If n

def= dim(M) > 2, then there exists a singular point over every point from M and
the set of singular points in Ψ−1(c) can project to a fractal in Mn of Hausdorff dimension > n−1.

The class of mechanical systems covered by Theorem 1 contains Lagrange spinning tops, von
Neumann system, Braden system, Bogoyavlensky systems, some Manakov systems and many other
quadratically integrable (Stäckel) systems. For most of them our vanishing result is new.

Let us also discuss vanishing of other entropies. The well-known entropy for the group action
htop(Φ) [C] vanishes for Benenti systems by elementary reasons: htop(Φ) = 0. Actually, if this
entropy is positive, then (directly from the definition) all entropies of sub-group actions are infinite,
in particular htop(H) = +∞, which is wrong.

However there is another definition of the entropy for group actions hU (Φ), which behaves
naturally w.r.t. restrictions to sub-group actions [HS]. Here U is the cube [−1, 1]n ⊂ Rn defining
the strongly regular system (U, 2U, 3U, . . . ) exhausting our group (Rn, +). With respect to this
definition and the action Φ of Rn associated to a Benenti integrable system we have:

hU (Φ) = 0.

This follows from the following inequalities:

max
1≤k≤n

htop(Ik) ≤ sup
v∈U

ρΦ(v) ≤ hU (Φ) ≤ n · max
1≤k≤n

htop(Ik).

Here the first inequality is obvious, the second is Proposition 2.6 from [HS] and the third follows
easily from the definition of hU . Thus vanishing of the entropy pseudonorm ρΦ is equivalent to
vanishing of the entropy hU (Φ).

2. Definitions and sketch of the proof

2.1 Benenti systems and geodesically equivalent metrics

Let g, ḡ be two Riemannian metrics on a connected manifold Mn and [g : TM → T ∗M ,
]ḡ : T ∗M → TM be the corresponding bundle morphisms. We will consider the bundle morphism
]ḡ ◦ [g : TM → TM as a (1,1)-tensor.
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The metrics g, ḡ are called geodesically equivalent, if every geodesic of ḡ, considered as an
unparameterized curve, is a geodesic of g. They are said to be strictly non-proportional at
P ∈ Mn, if the spectrum Sp(]ḡ ◦ [g) ⊂ R+ is simple at P .

Consider the (1,1)-tensor L
def= (]ḡ ◦ [g)/ n+1

√
det(]ḡ ◦ [g) : TM → TM . For every t ∈ R,

consider the (1, 1)-tensor St
def= det(L − t Id) (L− t Id)−1. The family St is polynomial in t of

degree n− 1.
We will always identify the tangent and the cotangent bundle of M with the help of [g. This

identification gives us a symplectic form and a Poisson structure on TM .

Theorem 2 ([MT, M]). If g, ḡ are geodesically equivalent, then for all t1, t2 ∈ R the functions

Iti
: TM → R, Iti

(v) def= g(Sti
(v), v)

are commuting integrals for the geodesic flow of g.
If, in addition, the metrics are strictly non-proportional at one point, then it is so for almost

every point. Consequently for all t1 < · · · < tn the integrals Iti
are functionally independent almost

everywhere so that the geodesic flow of g is Liouville integrable.

It is possible to add potential energy to the picture. In local coordinates, it was done in [B1]
(see also [B2, B3, BM]); other approaches are in [IMM] and [CST].

Let g and ḡ be geodesically equivalent Riemannian metrics on Mn. A smooth function V :
Mn → R will be called compatible with respect to g and ḡ, if the 1-form

dV ◦ (L− trace(L)Id)

is exact. For every pair of geodesically equivalent metrics, which are not affine equivalent, we can
prove the existence of a nonconstant compatible V (actually of a continuum-dimensional family).

It is possible to show that if there exists a compatible function V , then there exists a family
Vt, t ∈ R, of smooth functions on Mn such that the following two conditions are fulfilled:

{
Vt is polynomial in t of degree ≤ n− 1,

dV ◦ St = dVt for every t ∈ R. (1)

Potential V defines the family Vt up to (addition of) a constant polynomial P (t) of degree ≤ n−1.
Note that the family Vt also defines the function V up to a constant. In fact, the function V is
the coefficient at tn−1.

Locally, the existence of such Vt was explained in [B3]. From the normal form for the functions
Vt, given in Theorem 4 below, it is clear that near generic points we have a lot of freedom in
choosing the functions V and Vt: They depend on arbitrary n functions of one variable. Globally
on M the existence of such Vt is nontrivial, for instance because the functions Xi from Theorem 4
can have singularities near the bifurcation points of the spectrum of L.

Theorem 3 ([B2, B3, CST, BM]). Let g, ḡ on a connected Mn be geodesically equivalent.
Suppose V is compatible with respect to g, ḡ. Consider a family Vt of functions satisfying condi-
tions (1). Then for all t1, t2 ∈ R the functions Îti

def= Iti + Vti are commuting integrals for the
Hamiltonian system with the Hamiltonian Kg + V , where Kg is twice the kinetic energy corre-
sponding to g. If, in addition, the metrics are strictly non-proportional at least at one point, then
for all t1 < · · · < tn the integrals Îti are functionally independent almost everywhere.

We will call a Benenti system the integrable system on TMn generated by the integrals
Ît1 , ..., Îtn from Theorem 3 assuming that the metrics g, ḡ are strictly non-proportional at least at
one (and hence at almost every) point.
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2.2 Logic of the proof of Theorem 1

We use induction on the dimension. If dimension of the manifold is n < 2, Theorem 1 is trivial.
Assume that for every dimension less than n Theorem 1 is true and consider dim M = n.

Suppose the topological entropy of the Hamiltonian flow corresponding to an integral Ît is not
zero. Then, by the variational principle, there exists an ergodic Ît-invariant Borel probability mea-
sure µ such that hµ(g) 6= 0 [KH]. By ergodicity the support Supp(µ) is contained in a connected
component of some fiber Ψ−1(c). If Supp(µ) contains a point P with rank(dÎt1 , . . . , dÎtn) = n,
then the orbit of P is diffeomorphic to a cylinder over torus, Φ(Rn, P ) ' T k × Rn−k, 0 ≤ k ≤ n
([A]). By the implicit function theorem a small neighborhood of a point P in Supp(µ) lies in the
orbit Φ(Rn, P ). Since Supp(µ) is a closed invariant subset and its point P cannot be wandering,
the support is diffeomorphic to a sub-torus T l, l ≤ k, with the flow of Ît being conjugated to a
standard linear flow. This implies that the entropy hµ vanishes.

Now suppose that every point of Supp(µ) is singular, so that rank(dÎt1 , . . . , dÎtn
) ≤ k < n and

rank = k on the support µ-a.e. In this case, we can reduce the dimension. Namely, there exists a
closed proper submanifold Nk ⊂ Mn with the induced Benenti system and a subgroup Rk ⊂ Rn

with Φ̃ = Φ|Rk such that Supp(µ) is Φ̃-invariant and Φ̃| Supp(µ) is a sub-system of the Poisson
action corresponding to the Benenti system on Nk. Then hµ = 0 by the inductional assumption.

This is actually the main point of the proof. Precisely the same logic was used in [KM]. To a
certain extent not only the statement, but also most of the proofs from [KM] can be generalized
for our more general setting. In Sections 2.3, 2.4 we will explain how to construct these closed
submanifolds under the additional assumption that all eigenvalues of L are non-constant. This
additional assumption makes the proof much shorter (for instance, because in this case we can
take k = n−1; in the paper [KM] the biggest part was dedicated to deal with constant eigenvalues
of L), so that we can hope to make the main ideas of the proof clear to everyone.

2.3 Benenti systems and singular points in Levi-Civita coordinates

Theorem 4 (follows from [LC], [BM], [B3]). Let g and ḡ be geodesically equivalent Rieman-
nian metrics on Mn. Suppose they are strictly non-proportional at P ∈ Mn. Let the function V
be compatible with respect to g and ḡ, and suppose the functions Vt satisfy conditions (1).

Then in a small neighborhood U ⊂ Mn of P there exist coordinates (called Levi-Civita coordi-
nates) such that the metrics g, ḡ and the functions Vt are given by the formulas

ds2
g =

n∑

i=1

(−1)i−1
∏

j 6=i

(λj − λi) dx2
i , (2)

ds2
ḡ =

n∑

i=1

(−1)i−1

λi

∏
α λα

∏

j 6=i

(λj − λi) dx2
i , (3)

Vt =
n∑

i=1

(−1)i−1Xi

∏

j 6=i

λj − t

λj − λi
. (4)

where, for every i, λi and Xi are functions of one variable xi. If in a neigborhood of almost every
point the metrics g, ḡ and the functions Vt are given by (2,3,4), then the metrics are geodesically
equivalent and the functions satisfy conditions (1) with respect to some compatible function V .

In the Levi-Civita coordinate system L is diagonal Diag(λ1, ..., λn). We will always assume that
at every point the eigenvalues λi of L are indexed according to their value, so that λi(P ) ≤ λi+1(P )
for every P ∈ Mn and every 1 ≤ i ≤ n− 1.

We see that the metric g and the tensor L define the Levi-Civita coordinate system up to a
shift of the origin and change of the direction of coordinate axes. Indeed, the vector vi

def= ∂
∂xi

is
defined up to a sign by the conditions

{
Lvi = λivi,

g(vi, vi) = (−1)i−1
∏

j 6=i (λj − λi).
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In this coordinate system the integrals Ît = It + Vt (as the functions of the cotangent bundle)
are given by

Ît =
n∑

i=1

(−1)i−1(p2
i + Xi)

∏

j 6=i

λj − t

λj − λi
. (5)

Note that the functions Xi can be invariantly obtained from Vt and λi, namely

Xi(P ) = (−1)i−1Vλi(P )(P ).

Let Î ′t = d
dt Ît. For every t the function Î ′t is a linear combination of the integrals It1 , ..., Itn .

Corollary 1. Let the metrics g and ḡ be geodesically equivalent on closed connected M and strictly
non-proportional at P ∈ M . If a point (P, ξ) ∈ TM is singular w.r.t. the Poisson action Φ,
corresponding to the integrals Îti

= Iti
+ Vti

, then d(P,ξ)Îλ̃i
= 0 for some i, where λ̃i

def= λi(P ). In
addition, in Levi-Civita coordinates the ith component of ξ vanishes: ξi = 0.

Proof: Consider the function Îλi(x). Expressed in Levi-Civita coordinates on the cotangent
bundle T ∗M , it equals (−1)i−1

(
p2

i + Xi(xi)
)
, so that its differential is (−1)i−1 ( 2pi dpi + X ′

i(xi)dxi).
On the other hand,

dÎλ̃i
= dÎλi(xi) − Î ′

λ̃i
dλi(xi) = (−1)i−12pidpi +

(
(−1)i−1X ′(xi)− λ′i(xi) Î ′

λ̃i

)
dxi.

Thus if a linear combination
∑

µidÎλ̃i
vanishes, then for every µi 6= 0 the corresponding dÎλ̃i

vanishes. Then its dpi and dxi components vanish, yielding pi = 0 (which implies ξi = 0). ¤

2.4 Submanifolds Mi and Singi

In this section we assume that g and ḡ are geodesically equivalent metrics on a closed connected
Mn, that every eigenvalue λi of L is not constant and that the functions Vt satisfy (1) with respect
to a compatible V . For every i = 1, . . . , n− 1 denote

Regi = {x ∈ M : λi(x) 6= λi+1(x)}

and for i = 0 let Reg0 = Mn. At every point of Regi ∩Regi−1 the eigenvalue λi is simple. In

particular, at every point of Reg def= ∩i Regi the eigenvalues λ1, . . . , λn are mutually different.
For every x ∈ Regi ∩Regi−1 denote by Di(x) ⊂ TxMn the subspace spanned by the eigenspaces

corresponding to λj , j 6= i. The distribution Di is smooth. By Theorem 4, it is integrable in
Regi ∩Regi−1. Denote by Mi(P ) its integral manifold containing P ∈ Mn (beware, in [KM] we
used the notations DC(i) and MC(i) instead of present Di and Mi). By Theorem 4 the functions
λi and Xi are constant along Mi(P ).

For every i = 1, ..., n− 1 let λ̄i = 1
2 (maxx∈M λi + minx∈M λi+1). By Corollary 1 from [M] for

every point P ∈ Mn we have λi(P ) ≤ λ̄i ≤ λi+1(P ). Consider

Singi
def= {P ∈ Mn : (λi(P )− λ̄i)(λi+1(P )− λ̄i) = 0}.

In [M] (see Theorem 5 there) it was proven that if Singi is non-empty, then, under the assump-
tion that all λi are not constant, it is a connected submanifold of codimension 1. Moreover, almost
all points of Singi belong to Reg and the intersection Singi ∩Regi (Singi ∩Regi+1 respectively) is
a finite union of leaves Mi (Mi+1 respectively).

In [KM] (see Lemma 2 there) we proved that if the function λi is not constant, then every
Mi(P ) is a closed submanifold or is a part of Singi or Singi+1. Combining this observation and
Corollary 1, we obtain that the projection of every singular orbit belongs to some compact Mi or
to one of Singi. Since our measure µ from §2.2 is ergodic, Supp(µ) belongs to the closure of an
orbit. Then the projection of Supp(µ) belongs to a compact submanifold of smaller dimension.
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The last step is to explain that the dynamics on Supp(µ) is a subsystem of a certain Benenti
system on this submanifold. Since almost every point of Singi belongs toMi∪Mi+1, it is sufficient
to consider only Mi. Mi ∩ Reg is dense in Mi, so we can use Levi-Civita coordinates. Since
T ∗Mi is a symplectic submanifold of T ∗Mn, the claim follows from the fact that restrictions of
the integrals Ît to T ∗Mi are linear combinations of the integrals of the induced Benenti system
on Mi. This latter can be checked in Levi-Civita coordinates using formula (5).

In fact, the family Vt is defined up to a constant polynomial of degree n−1. Since the function
Xi is constant on Mi(P ), without loss of generality we can assume that Xi = 0 on Mi(P ).
Since the coordinate pi vanishes along T ∗Mi(P ) and the function λi is constant on Mi(P ), the
restriction of the integral Ît = It + Vt to T ∗Mi(P ) is equal to

Ît =
∑

k 6=i

(−1)k−1(p2
k + Xk)

∏

j 6=k

λj − t

λj − λk
= (λi − t) ·

[∑

k 6=i

(−1)k−1−θ(k−i)(p2
k + Xk)

|λi − λk|
∏

j 6=k,i

λj − t

λj − λk

]
,

where θ(x) is the Heaviside function, so that ψ(k) = k − θ(k − i) enumerates {1, . . . , n} \ {i}.
By the direct calculation we check that for every t the above expression in square brackets

is a linear combinations of the integrals Înew
τ1

, . . . , Înew
τn−1

of the Benenti system corresponding to

geodesically equivalent metrics gnew def= g|Mi(P )
, ḡnew def= λiḡ|Mi(P )

on Mi(P ) and the family

V new
t : Mi(P ) → R, V new

t
def= 1

λi−tVt|Mi(P ). The facts that the metrics gnew, ḡnew are geodesically
equivalent and strictly non-proportional at least at one point and that the family Vt satisfies
condition (1) follow from Theorem 4, because on Mi(P ) the coefficient |λk − λi| depends on xk

only and therefore can be “hidden” in the corresponding dxk and Xk. Thus our system is a
subsystem of a Benenti system and the induction hypothesis finishes the proof of Theorem 1.

3. Discussion

It is clear that all the difficulties with vanishing of entropies for integrable systems are due to
a complicated singularity set (we explained essentially in §2.2 that the set of regular points bears
no entropy), as positive-entropy examples of [BT, K, BP, Bu] demonstrate. In all good cases,
where vanishing of the entropy was proven, some stratification of singularities was achieved, see
e.g. [P1, P2, T, BP, KM]. We formulate here a scheme for most vanishing results.

We will consider systems on non-compact W 2n, but such that the variation principle holds.
This is, for instance, the case when W 2n admits an exhaustion by compact invariant sets (other
cases are discussed in [Pe]). Define the following Φ-invariant subsets of W 2n:

Σk = {x ∈ W 2n | rank(dxΦ) = k}.

Theorem 5. Suppose for every k < n we can decompose Σk = Σ+
k ∪ Σ−k , where Σ+

k is a closed
invariant subset of Σk and Σ−k consists of non-recurrent points of Φ(v) for a.e. v ∈ Rn. Let
also the momentum map Ψ : Σ+

k → Rn can be factorized to the composition of continuous maps
πk : Σ+

k → Ak to a Hausdorff space Ak and σk : Ak → Rn, such that each fiber Σα
k = π−1

k (α) is a
Φ-invariant k-dimensional submanifold of W 2n. Then the entropy pseudonorm vanishes: ρΦ ≡ 0.

Proof: By the variational principle it suffices to prove hµ(Φ(v)) = 0 for a.e. v and every Φ(v)-
invariant ergodic measure µ. By ergodicity Ψ is constant on the support of µ. Consequently it
suffices to prove that for every k the system has zero entropy on Ψ−1(c)∩Σk. SinceR(v)∩Σk ⊂ Σ+

k ,
where R(v) denotes the set of Φ(v)-recurrent points, it is enough to show vanishing of entropy on
the set Σ+

k ∩Ψ−1(c).
But this set is foliated by strata Σα

k and hence µ should be supported on one connected compo-
nent of it only. This components possesses a transitive Poisson Rk-action and so is isomorphic to a
torus T k (it cannot be a cylinder T k−l×Rl because consists of recurrent points) with quasi-periodic
dynamics and hence hµ(Φ(v)|Σ+

k ∩Ψ−1(c)) = 0 implying the claim. ¤
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The hypotheses of Theorem 5 are satisfied for integrable systems with Williamson-Vey-Eliasson-
Ito non-degenerate singularities or with Taimanov non-degeneracy condition. Our induction ap-
proach implies that the singularities of Benenti systems are also stratified in the manner of the
theorem. It is feasible that a kind of good stratification is necessary for vanishing of the entropies.
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