
PROOF OF THE YANO-OBATA CONJECTURE FOR
HOLOMORPH-PROJECTIVE TRANSFORMATIONS

VLADIMIR S. MATVEEV AND STEFAN ROSEMANN

Abstract. We prove the classical Yano-Obata conjecture by showing that the connected
component of the group of holomorph-projective transformations of a closed, connected
Riemannian Kähler manifold consists of isometries unless the metric has constant positive
holomorphic curvature.

1. Introduction

1.1. Definitions and main result. Let (M, g, J) be a Riemannian Kähler manifold of
real dimension 2n ≥ 4. We denote by ∇ the Levi-Civita connection of g. All objects we
consider are assumed to be sufficiently smooth.

Definition 1. A regular curve γ : I → M is called h-planar, if there exist functions
α, β : I → R such that the ODE

(1) ∇γ̇(t)γ̇(t) = αγ̇(t) + βJ(γ̇(t))

holds for all t, where γ̇ = d
dt
γ.

In certain papers, h-planar curves are called complex geodesics. The reason is that if we
view the action of J on the tangent space as the multiplication with the imaginary unit
i, the property of a curve γ to be h-planar means that ∇γ̇(t)γ̇(t) is proportional to γ̇(t)
with a complex coefficient of the proportionality α(t) + i · β(t). Recall that geodesics (in
an arbitrary, not necessary arc length parameter t) of a metric can be defined as curves
satisfying the equation ∇γ̇(t)γ̇(t) = α(t)γ̇(t).

Example 1. Consider the complex projective space

CP (n) = {1-dimensional complex subspaces of C
n+1}

with the standard complex structure J and the standard Fubini-Study metric gFS. Then,
a regular curve γ is h-planar, if and only if it lies in a projective line.

Indeed, it is well known that every projective line L is a totally geodesic submanifold
of real dimension two such that its tangent space is invariant with respect to J . Since
L is totally geodesic, for every regular curve γ : I → L ⊆ CP (n) we have ∇γ̇(t)γ̇(t) ∈
Tγ(t)L. Since L is two-dimensional, the vectors γ̇(t), J(γ̇(t)) form a basis in Tγ(t)L. Hence,
∇γ̇(t)γ̇(t) = α(t)γ̇(t) + β(t)J(γ̇(t)) for certain α(t), β(t) as we claimed.
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Conversely, given a regular curve σ in CP (n) that satisfies equation (1) for some functions
α and β, we consider the projective line L such that σ(0) ∈ L and σ̇(0) ∈ Tσ(0)L. Solving
the initial value problem γ(0) = σ(0) and γ̇(0) = σ̇(0) for ODE (1) with these functions
α and β on (L, gFS|L, J|L), we find a curve γ in L. Since L is totally geodesic, this curve
satisfies equation (1) on (CP (n), gFS, J). The uniqueness of a solution of an ODE implies
that σ coincides with γ and, hence, is contained in L.

Definition 2. Let g and ḡ be Riemannian metrics on M such that they are Kähler with
respect to the same complex structure J . They are called h-projectively equivalent, if every
h-planar curve of g is an h-planar curve of ḡ and vice versa.

Remark 1. If two Kähler metrics g and ḡ on (M,J) are affinely equivalent (i.e., if their Levi-
Civita connections ∇ and ∇̄ coincide), then they are h-projectively equivalent. Indeed,
the equation (1) for the first and for the second metric coincide if ∇ = ∇̄.

Definition 3. Let (M, g, J) be a Kähler manifold. A diffeomorphism f : M →M is called
an h-projective transformation, if f is holomorphic (that is, if f∗(J) = J), and if f ∗g is
h-projectively equivalent to g. A vector field v is called h-projective, if its local flow Φv

t

consists of (local) h-projective transformations. Similarly, a diffeomorphism f : M → M
is called an affine transformation, if it preserves the Levi-Civita connection of g. A vector
field v is affine, if its local flow consists of (local) affine transformations. An h-projective
transformation (resp. h-projective vector field) is called essential, if it is not an affine
transformation (resp. affine vector field).

Clearly, the set of all h-projective transformations of (M, g, J) is a group. As it was
shown in [16] and [56], it is a finite-dimensional Lie group. We denote it by HProj(g, J). By
Remark 1, holomorphic affine transformations and holomorphic isometries are h-projective
transformations, Iso(g, J) ⊆ Aff(g, J) ⊆ HProj(g, J). Obviously, the same is true for the
connected components of these groups containing the identity transformation: Iso0(g, J) ⊆
Aff0(g, J) ⊆ HProj0(g, J).

Example 2 (Generalisation of the Beltrami construction from [3, 29]). Consider a non-
degenerate complex linear transformation A ∈ Gln+1(C) and the induced bi-holomorphic
diffeomorphism fA : CP (n) → CP (n). Since the mapping fA sends projective lines to
projective lines, it sends h-planar curves (of the Fubiny-Study metric gFS) to h-planar
curves, see Example 1. Then, the pullback gA := f ∗

AgFS is h-projectively equivalent to gFS

and fA is an h-projective transformation. Note that the metric gA coincides with gFS (i.e.,
fA is an isometry), if and only if A is proportional to a unitary matrix.

We see that for (CP (n), gFS, J) we have Iso0 6=HProj0. Our main result is

Theorem 1 (Yano-Obata conjecture). Let (M, g, J) be a closed, connected Riemannian
Kähler manifold of real dimension 2n ≥ 4. Then, Iso0(g, J) = HProj0(g, J) unless (M, g, J)
can be covered by (CP (n), c · gFS, J) for some positive constant c.

Remark 2. The above Theorem is not true locally; one can construct counterexamples. We
conject that Theorem 1 is also true if we replace closedness by completeness; but dealing
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with this case will require a lot of work. In particular, one will need to generalize the
results of [7] to the complete metrics.

1.2. History and motivation. h-projective equivalence was introduced by Otsuki and
Tashiro in [41, 49]. They have shown that the classical projective equivalence is not in-
teresting in the Kähler situation since only simple examples are possible, and suggested
h-projective equivalence as an interesting object of study instead. This suggestion was very
fruitful. During 60th-70th, the theory of h-projectively equivalent metrics and h-projective
transformations was one of the main research topics in Japanese and Soviet (mostly Odessa
and Kazan) differential geometry schools, see for example the survey [37] with more than
one hundred fifty references. Two classical books [44, 54] contain chapters on h-projectivity.

The attribution of the Yano-Obato conjecture to Yano and Obata is in folklore - we
did not find a paper of them where they state this conjecture. It is clear though that
both Obata and Yano (and many other geometers) tried to prove this statement and did
this under certain additional assumptions, see below. The conjectures of similar type
were standard in 60th-70th, in the time when Yano and Obata were active (and it was
also, unfortunately, standard in that time not to publish conjectures or open questions).
For example, another famous conjecture of that time states that an essential group of
conformal transformations of a Riemannian manifold is possible if and only if the manifold
is conformally equivalent to the standard sphere or to the Euclidean space; this conjecture
is also attributed to Lichnerowicz and Obata though it seems that neither Lichnerowicz
nor Obata published it as a conjecture or a question; it was solved in Alekseevskii [2],
Ferrand [8] and Schoen [43]. One more example is the so-called projective Lichnerowicz-
Obata conjecture stating that a complete Riemannian manifold, such that the connected
component of the neutral element of the projective group contains not only isometries,
has constant positive sectional curvature. This conjecture was proved in [28, 27, 30, 34].
Though this conjecture is also attributed in folklore to Lichnerowicz and Obata, neither
Lichnerowicz nor Obata published this conjecture (however, this particular conjecture was
published as “a classical conjecture” in [13, 38, 52]).

In view of these two examples, it would be natural to call the Yano-Obata conjecture
the Lichnerowicz-Obata conjecture for h-projective transformations.

Special cases of Theorem 1 were known before. For example, under the additional
assumption that the scalar curvature of g is constant, the conjecture was proven in [15, 55].
The case when the Ricci tensor of g vanishes or is covariantly constant was proven earlier
in [16, 17, 18]. Obata [39] and Tanno [48] proved this conjecture under the assumption
that the h-projective vector field lies in the so-called k-nullity space of the curvature tensor.
Many local results related to essential h-projective transformations are listed in the survey
[37]. For example, in [35, 42] it was shown that locally symmetric spaces of non-constant
holomorphic sectional curvature do not admit h-projective transformations, even locally.

Recent developments in the theory of h-projective equivalence are partially due to its
relation to integrable systems, see [19, 20, 51]. In most cases, additional nondegeneracy
conditions are assumed. These conditions imply that the manifold is a toric manifold and
the geodesic flow of its metric is completely integrable, see for example in [20] where strong
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topological results were obtained. We will intensively use the relation to the integrable
systems in our paper, but we do not require any additional assumptions.

One more group of results that is very important for the present paper was obtained
in the recent paper [7]. In this paper, the Yano-Obata conjecture was proven under the
assumption that the degree of mobility (see Definition 4) is ≥ 3. The methods of [7] came
from the theory of overdetermined systems of finite type and are very different from the
methods of the present paper.

2. The main equation of h-projective geometry and the scheme of the
proof of Theorem 1

2.1. Main equation of h-projective geometry. Let g and ḡ be two Riemannian (or
pseudo-Riemannian) metrics on M2n≥4 that are Kähler with respect to the same complex
structure J . We consider the induced isomorphisms g : TM → T ∗M and ḡ−1 : T ∗M →
TM . Let us introduce the (1, 1)-tensor A(g, ḡ) by the formula

(2) A(g, ḡ) =

(
det ḡ

det g

) 1
2(n+1)

ḡ−1 ◦ g : TM → TM

(in coordinates, the matrix of ḡ−1 ◦ g is the product of the inverse matrix of ḡ and the
matrix of g).

Obviously, A(g, ḡ) is non-degenerate, complex (in the sense that A ◦ J = J ◦ A) and
self-adjoint with respect to both metrics. Let ∇ be the Levi-Civita connection of g.

Theorem 2 ([35]). The metric ḡ is h-projectively equivalent to g, if and only if there exists
a vector field Λ such that A = A(g, ḡ) given by (2) satisfies

(3) (∇XA)Y = g(Y,X)Λ + g(Y,Λ)X + g(Y, JX)Λ̄ + g(Y, Λ̄)JX,

for all x ∈M and all X,Y ∈ TxM , where Λ̄ = J(Λ).

Remark 3. One may consider the equation (3) as a linear PDE-system on the unknown
(A,Λ); the coefficients in this system depend on the metric g. Indeed, if the equation is
fulfilled for X,Y being basis vectors, it is fulfilled for all vectors, see also the formula (4)
below.

One can also consider equation (3) as a linear PDE-system on the (1, 1)-tensor A only,
since the components of Λ can be obtained from the components of ∇A by linear algebraic
manipulations. Indeed, fix X and calculate the trace of the (1, 1)-tensors on the left and
right-hand side of (3). The trace of the right-hand side equals 4g(Λ, X). Clearly, the trace
of ∇XA is trace(∇XA) = X(traceA). Then, Λ = gradλ, where the function λ is equal to
1
4
traceA. In what follows, we prefer the last point of view and speak about a self-adjoint,

complex solution A of equation (3), instead of explicitly mentioning the pair (A,Λ).

Remark 4. Let g and ḡ be two h-projectively equivalent Kähler metrics and A(g, ḡ) the
corresponding solution of (3). It is easy to see that g and ḡ are affinely equivalent, if and
only if the corresponding vector field Λ vanishes identically on M .
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Remark 5. The original and more standard form of the equation (3) uses index (tensor)
notation and reads

(4) aij,k = λigjk + λjgik − λ̄iJjk − λ̄jJik.

Here aij, λi and λ̄i are related to A,Λ and Λ̄ by the formulas aij = gipA
p
j , λi = gipΛ

p and

λ̄i = −gipΛ̄
p.

Remark 6. Note that formula (2) is invertible if A is non-degenerate: the metric ḡ can be
reconstructed from g and A by

(5) ḡ = (det A)−
1
2 g ◦ A−1

(we understand g as the mapping g : TM → T ∗M ; in coordinates, the matrix of g ◦ A−1

is the product of the matrices of g and A−1).
Evidently, if A is g-self-adjoint and complex, ḡ given by (5) is symmetric and invariant

with respect to the complex structure. It can be checked by direct calculations that if g
is Kähler and if A is a non-degenerate, g-self-adjoint and complex (1, 1)-tensor satisfying
(3), then ḡ is also Kähler with respect to the same complex structure and is h-projectively
equivalent to g.

Thus, the set of Kähler metrics, h-projectively equivalent to g, is essentially the same
as the set of self-adjoint, complex (in the sense J ◦ A = A ◦ J) solutions of (3) (the only
difference is the case when A is degenerate, but since adding const ·Id to A does not change
the property of A to be a solution, this difference is not important).

By Remark 3, the equation (3) is a system of linear PDEs on the (1, 1)-tensor A.

Definition 4. We denote by Sol(g) the linear space of complex, self-adjoint solutions of
equation (3). The degree of mobility D(g) of a Kähler metric g is the dimension of the
space Sol(g).

Remark 7. We note that 1 ≤ D(g) <∞. Indeed, since Id is always a solution of equation
(3), we have D(g) ≥ 1. We will not use the fact that D(g) <∞; a proof of this statement
can be found in [35].

Let us now show that the degree of mobility is the same for two h-projectively equivalent
metrics: we construct an explicit isomorphism.

Lemma 1. Let g and ḡ be two h-projectively equivalent Kähler metrics on (M,J). Then
the solution spaces Sol(g) and Sol(ḡ) are isomorphic. The isomorphism is given by

A1 ∈ Sol(g) 7−→ A1 ◦ A(g, ḡ)−1 ∈ Sol(ḡ),

where A(g, ḡ) is constructed by (2). In particular, D(g) is equal to D(ḡ).

Proof. Let A = A(g, ḡ) be the solution of (3) constucted by formula (2). If A1 ∈ Sol(g) is

non-degenerate, then g1 = (det A1)
− 1

2 g ◦ A−1
1 is h-projectively equivalent to g by Remark

(6) and, hence, g1 is h-projectively equivalent to ḡ. It follows that A2 = A(ḡ, g1) ∈ Sol(ḡ).
On the other hand, using formula (2) we can easily verify that A2 = A1 ◦ A−1. If A1 is
degenerate, we can choose a real number t such that A1+tId is non-degenerate. As we have



6 VLADIMIR S. MATVEEV AND STEFAN ROSEMANN

already shown, (A1+tId)◦A−1 = A1◦A−1+tA−1 is contained in Sol(ḡ). Since A−1 ∈ Sol(ḡ),
the same is true for A1 ◦A−1. We obtain that the mapping A1 7−→ A1 ◦A(g, ḡ)−1 is a linear
isomorphism between the spaces Sol(g) and Sol(ḡ). �

Lemma 2 (Folklore). Let (M, g, J) be a Kähler manifold and let v be an h-projective vector
field. Then the (1, 1)-tensor

(6) Av := g−1 ◦ Lvg −
trace(g−1 ◦ Lvg)

2(n+ 1)
Id

(where Lv is the Lie derivative with respect to v) is contained in Sol(g).

Proof. Since v is h-projective, ḡt = (Φv
t )

∗g is h-projectively equivalent to g for every t. It
follows that for every t the tensor At = A(g, ḡt) is a solution of equation (3). Since (3) is
linear, Av :=

(
d
dt
At

)

|t=0
is also a solution of (3) and it is clearly self-adjoint. Since the flow

of v preserves the complex structure, Av is complex. Using equation (2), we obtain that
Av is equal to

d

dt

[(
det ḡt

det g

) 1
2(n+1)

ḡ−1
t ◦ g

]
∣
∣
∣
t=0

=
1

2(n+ 1)

(
d

dt

det ḡt

det g

∣
∣
∣
t=0

)

Id +

(
d

dt
ḡ−1

t ◦ g
) ∣

∣
∣
t=0

=
1

2(n+ 1)

(
d

dt

det ḡt

det g

) ∣
∣
∣
t=0

Id −
(

ḡ−1
t ◦

(
d

dt
ḡt

)

◦ ḡ−1
t ◦ g

) ∣
∣
∣
t=0

=
1

2(n+ 1)

(
d

dt

det ḡt

det g

) ∣
∣
∣
t=0

Id + g−1 ◦ Lvg = −trace(g−1 ◦ Lvg)

2(n+ 1)
+ g−1 ◦ Lvg.

Thus, Av ∈ Sol(g) as we claimed. �

2.2. Scheme of the proof of Theorem 1. If the degree of mobility D(g) ≥ 3, Theorem
1 is an immediate consequence of [7, Theorem 1]. Indeed, by [7, Theorem 1], if D(g) ≥ 3
and the manifold cannot be covered by (CP (n), c · gFS, J) for some c > 0, every metric
ḡ that is h-projectively equivalent to g is actually affinely equivalent to g. By [22], the
connected component of the neutral element of the group of affine transformations on a
closed manifold consists of isometries. Finally, we obtain HProj0 = Iso0.

If the degree of mobility is equal to one, every metric ḡ that is h-projectively equivalent
to g is proportional to g. Then, the group HProj0(g, J) acts by homotheties. Since the
manifold is closed, it acts by isometries. Again, we obtain HProj0 = Iso0.

Thus, in the proof of Theorem 1, we may (and will) assume that the degree of mobility
of the metric g is equal to two.

The proof will be organized as follows. Sections 3 and 4 are technical. They are based on
different groups of methods and different ideas. In Section 3, we use the familiy of integrals
for the geodesic flow of the metric g found by Topalov [51]. With the help of these integrals,
we prove that the eigenvalues of A behave quite regular, in particular we show that they
are globally ordered and that the multiplicity of every nonconstant eigenvalue is equal to
two. The assumptions of this section are global (in the sense that the metric is assumed to
be complete; actually, we only need that every two points can be connected by a geodesic).
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In Section 4, we work locally with equation (3). We show that Λ and Λ̄ from this
equation are commuting holomorphic vector fields that are nonzero at almost every point.
We also deduce from (3) certain equations on the eigenvectors and eigenvalues of A: in
particular we show that the gradient of every eigenvalue is an eigenvector corresponding
to this eigenvalue.

Beginning with Section 5, we require the assumption that the degree of mobility is equal
to two. Moreover, we assume the existence of an h-projective vector field which is not
already an affine vector field. The main goal of Section 5 is to show that for every solution
A of equation (3) with the corresponding vector field Λ, in a neighborhood of almost every
point there exists a function µ and a constant B < 0 (that can depend on the neighborhood)
such that for all points x in this neighborhood and all X,Y ∈ TxM we have

(∇XA)Y = g(Y,X)Λ + g(Y,Λ)X + g(Y, JX)Λ̄ + g(Y, Λ̄)JX

∇XΛ = µX +BA(X)

∇Xµ = 2Bg(X,Λ)

(7)

(one should view (7) as a PDE-system on (A,Λ, µ)).
This is the longest and the most complicated part of the proof. First, in Section 5.1, we

combine Lemma 2 with the assumption that the degree of mobility is two to obtain the
formulas (15,20) that describe the evolution of A along the flow of the h-projective vector
field. With the help of the results of Section 4, we deduce (in the proof of Lemma 8) an
ODE for the eigenvalues of A along the trajectories of the h-projective vector field. This
ODE can be solved; combining the solutions with the global ordering of the eigenvalues
from Section 3, we obtain that A has at most three eigenvalues at every point; moreover,
precisely one eigenvalue of A considered as a function on the manifold is not constant
(unless the h-projective vector field is an affine vector field). As a consequence, in view of
the results of Section 4, the vectors Λ and Λ̄ are eigenvectors of A.

The equation (20) depends on two parameters. We prove that under the assumption
that the manifold is closed, the parameters are subject of a certain algebraic equation so
that in fact the equation (20) depends on one parameter only. In order to do it, we work
with the distribution span{Λ, Λ̄} and show that its integral manifolds are totally geodesic.
The equations (6,20) contain enough information to calculate the restriction of the metric
to this distribution; the metric depends on the same parameters as the equation (20). We
calculate the sectional curvature of this metric and see that it is unbounded (which can not
happen on a closed manifold), unless the parameters satisfy a certain algebraic equation.

In Section 5.3, we show that the algebraic conditions mentioned above imply the local
existence of B and µ such that (7) is fulfilled. This proves that the system (7) is satisfied
in a neighborhood of almost every point of M , for certain B, µ that can a priori depend
on the neighborhood.

We complete the proof of Theorem 1 in Section 6. First we recall certain results of [7]
to show that the constant B is the same in all neighborhoods implying that the system (7)
is fulfilled on the whole manifold.
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Once we have shown that the system (7) holds globally, Theorem 1 is an immediate
consequence of [48, Theorem 10.1].

2.3. Relation with projective equivalence and further directions of investigation.
Two metrics g and ḡ on the same manifold are projectively equivalent, if every geodesic of
g, after an appropriate reparametrization, is a geodesic of ḡ. As we already mentioned
above, the notion “h-projective equivalence” appeared as an attempt to adapt the notion
“projective equivalence” to Kähler metrics. It is therefore not a surprise that certain meth-
ods from the theory of projectively equivalent metrics could be adapted to the h-projective
situation. For example, the above mentioned papers [15, 55, 1] are actually h-projective
analogs of the papers [52, 14] (dealing with projective transformations), see also [11, 46].
Moreover, [56, 49] are h-projective analogs of [18, 47], and many results listed in the survey
[37] are h-projective analogs of those listed in [36].

The Yano-Obata conjecture is also an h-projective analog of the so-called projective
Lichnerowicz-Obata conjecture mentioned above and recently proved in [34, 30], see also [27,
28]. The general scheme of our proof of the Yano-Obata conjecture is similar to the scheme
of the proof of the projective Lichnerowicz-Obata conjecture in [34]. More precisely, as in
the projective case, the cases degree of mobility equal to two and degree of mobility ≥ 3
were done using completely different groups of methods. As we mentioned above, the
proof of the Yano-Obata conjecture for the metrics with degree of mobility ≥ 3 was done
in [7]. This proof is based on other ideas than the corresponding part of the proofs of the
projective Lichnerowicz-Obata conjecture in [34, 32].

Concerning the proof under the assumption that the degree of mobility is two, the first
part of the proof (Sections 3, 5.1) is based on the same ideas as in the projective case.
More precisely, the way to use integrals for the geodesic flow to show the regular behavior
of the eigenvalues of A and their global ordering is very close to that of [4, 26, 31, 50].
The way to obtain equation (20) that describes the evolution of A along the orbits of the
h-projective vector field is close to that in [5] and is motivated by [27, 28, 30, 34].

The second part of the proof (Sections 4, 5.2) requires essentially new methods. The
reason is that the proof of the corresponding parts of the projective Lichnerowicz-Obata
conjecture is based on the local description of projectively equivalent metrics due to Dini
[6] and Levi-Civita [21]. This local description for h-projectively equivalent metrics is not
known yet; recent results of Kiyohara [19] suggest that it is expected to be much more
complicated than in the projective case.

Concerning further perspective directions of investigation, one can try to obtain topo-
logical obstructions that prevent a closed manifold to posses two h-projectively equivalent
metrics that are not affinely equivalent. In the projective case, the proof of certain topo-
logical restrictions is based on the integrals for the geodesic flow, see [24, 25, 26, 29]; we
expect that these methods can be generalized for the h-projective case.

3. Quadratic integrals and the global ordering of the eigenvalues of
solutions of equation (3)
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3.1. Quadratic integrals for the geodesic flow of g. Let A be a self-adjoint, complex
solution of equation (3). By [51], for every t ∈ R, the function

Ft : TM → R , Ft(ζ) :=
√

det (A− tId) g((A− tId)−1ζ, ζ)(8)

is an integral for the geodesic flow of g.

Remark 8. It is easy to prove (see formula (10) below) that the integrals are defined for all
t ∈ R (i.e., even if A− tId is degenerate). Actually, the family Ft is a polynomial of degree
n−1 in t whose coefficients are certain functions on TM ; these functions are automatically
integrals.

Remark 9. The integrals are visually close to the integrals for the geodesic flows of projec-
tively equivalent metrics constructed in [23].

Later it will be useful to consider derivatives of the integrals defined above:

Lemma 3. Let {Ft} be the family of integrals given in equation (8). Then, for each integer
m ≥ 0 and for each number t0 ∈ R,

(9)
(

dm

dtm
Ft

)

|t=t0

is also an integral for the geodesic flow of g.

Proof. As we already mentioned above in Remark 8,

Ft(ζ) = sn−1(ζ)t
n−1 + ...+ s1(ζ)t+ s0(ζ)

for certain integrals s0, ..., sn−1 : TM → R. Then, the t-derivatives (9) are also polynomials
in t whose coefficients are integrals, i.e., the t-derivatives (9) are also integrals for every
fixed t0. �

3.2. Global ordering of the eigenvalues of solutions of equation (3). During the
whole subsection let A be an element of Sol(g); that is, A is a complex, self-adjoint (1, 1)-
tensor such that it is a solution of equation (3). Since it is self-adjoint with respect to (a
positively-definite metric) g, the eigenvalues of A|x := A|TxM are real.

Definition 5. We denote by m(y) the number of different eigenvalues of A at the point y.
Since A ◦ J = J ◦ A, each eigenvalue has even multiplicity ≥ 2. Hence, m(y) ≤ n for all
y ∈M . We say that x ∈M is a typical point for A if m(x) = maxy∈M{m(y)}. The set of
all typical points of A will be denoted by M0 ⊆M .

Let us denote by µ1(x) ≤ ... ≤ µn(x) the eigenvalues of A counted with half of their
multiplicities. The functions µ1, ..., µn are real since A is self-adjoint and they are at least
continuous. It follows that M0 ⊆ M is an open subset. The next theorem shows that
M0 is dense in M (we prove this theorem under the assumption that M is complete and
connected; actually, we only need that every two points can be connected by a geodesic).

Theorem 3. Let (M, g, J) be a complete, connected Riemannian Kähler manifold of real
dimension 2n. Then, for every A ∈ Sol(g) and every i = 1, ..., n − 1, the following state-
ments hold:
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(1) µi(x) ≤ µi+1(y) for all x, y ∈M .

(2) If µi(x) < µi+1(x) at least at one point, then the set of all points y such that
µi(y) < µi+1(y) is everywhere dense in M .

Proof. (1): Let x ∈ M be an arbitrary point. At TxM , we choose an orthonormal frame
{Ui, JUi}i=1,...,n of eigenvectors (we assume AUi = µiUi and g(Ui, Ui) = 1 for all i = 1, ..., n).
For ζ ∈ TxM , we denote its components in the frame {Ui, JUi}i=1,...,n by ζj := g(ζ, Uj) and
ζ̄j := g(ζ, JUj). By direct calculations, we see that Ft(ζ) given by (8) reads

(10)
Ft(ζ) =

n∑

i=1

[

(ζ2
i + ζ̄2

i )
n∏

j=1;j 6=i

(µj − µi)
]

= (µ2 − t) · ... · (µn − t)(ζ2
1 + ζ̄2

1 ) + ...+ (µ1 − t) · ... · (µn−1 − t)(ζ2
n + ζ̄2

n).

Obviously, Ft(ζ) is a polynomial in t of degree n−1 whose leading coefficient is (−1)n−1g(ζ, ζ).
For every point x ∈M and every ζ ∈ TxM such that ζ 6= 0, let us consider the roots

t1(x, ζ), ..., tn−1(x, ζ) : TxM → R

of the polynomial counted with their multiplicities. From the arguments below it will be
clear that they are real. We assume that at every (x, ζ) we have t1(x, ζ) ≤ ... ≤ tn−1(x, ζ).
Since for every fixed t the polynomial Ft is an integral, the roots ti are also integrals.

Let us show that for every i = 1, ..., n− 1 the inequality

(11) µi(x) ≤ ti(x, ζ) ≤ µi+1(x)

holds.
We consider first the case when all eigenvalues are different from each other i.e., µ1(x) <

... < µn(x), and all components ζi are different from zero. Substituting t = µi and t = µi+1

in equation (10), we obtain

Fµi
(ζ) = (µ1 − µi) · ... · (µi−1 − µi) · (µi+1 − µi) · ... · (µn − µi)(ζ

2
i + ζ̄2

i ),

Fµi+1
(ζ) = (µ1 − µi+1) · ... · (µi − µi+1) · (µi+2 − µi+1) · ... · (µn − µi+1)(ζ

2
i+1 + ζ̄2

i+1).

We see that Fµi
(ζ) and Fµi+1

(ζ) have different signs, see figure 1. Then, every open interval
(µi, µi+1) contains a root of the polynomial Ft(ζ). Thus, all n− 1 roots of the polynomial
are real, and the inequality (11) holds as we claimed.

In the general case, since Ft(ζ) depends continuously on the vector ζ and on the eigen-
values µ1(x) ≤ ... ≤ µn(x) of A|x, its zeros also depend continuously on ζ and µi. It follows
that for every x and for all ζ ∈ TxM we have that all zeros are real and that (11) holds.

Let us now show that for any two points x, y we have µi(x) ≤ µi+1(y).
We consider a geodesic γ : [0, 1] →M such that γ(0) = x and γ(1) = y. Such a geodesic

exists since the manifold is complete. Since Ft are integrals, we have Ft(γ̇(0)) = Ft(γ̇(1))
implying

(12) ti(γ(0), γ̇(0)) = ti(γ(1), γ̇(1)).
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µi−1

µi

µi+1

Ft(ζ, ζ)

tti−1 ti

Figure 1. If µ1 < µ2 < ... < µn and all ζi 6= 0, the values of Ft(ζ) have
different signs at t = µi and t = µi+1 implying the existence of a root ti such
that µi < ti < µi+1.

y

U

µi = µi+1

x

µi(x) < µi+1(x)

ζ

γζ(t)

Figure 2. The initial velocity vectors ζ at x of the geodesics connecting
the point x with points from U form a subset of nonzero measure and are
contained in Uµ.

Combining (11) and (12), we obtain

µi(x)
(11)

≤ ti(x, γ̇(0))
(12)
= ti(y, γ̇(1))

(11)

≤ µi+1(y)

which proves the first part of Theorem 3.
(2): Assume µi(y) = µi+1(y) for all points y in some nonempty open subset U ⊆M . We

need to prove that for every x ∈M we have µi(x) = µi+1(x).
First let us show that µ := µi = µi+1 is a constant on U . Indeed, suppose that µi(y1) ≤

µi(y2) for some points y1, y2 ∈ U . From the first part of Theorem 3 and from the assumption
µi = µi+1 we obtain

µi(y1) ≤ µi(y2) ≤ µi+1(y1) = µi(y1)

implying µi(y1) = µi(y2) for all y1, y2 ∈ U as we claimed.
Now take an arbitrary point x ∈ M and consider the set of all initial velocities of

geodesics connecting x with points of U (we assume γ(0) = x and γ(1) ∈ U), see figure 2.
For every such geodesic γ we have

µ = µi(γ(1)) ≤ ti(γ(1), γ̇(1)) ≤ µi+1(γ(1)) = µ.

Thus, ti(γ(1), γ̇(1)) = µ. Since the value ti(γ(t), γ̇(t)) is the same for all points of the
geodesic, we obtain that ti(γ(0), γ̇(0)) = µ. Then, the set

Uµ := {ζ ∈ TxM : ti(x, ζ) = µ}
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has nonzero measure. Since Uµ is contained in the set

{ζ ∈ TxM : Fµ(ζ) = 0}
which is a quadric in TxM , the latter must coincide with the whole TxM . In view of
formula (10), this implies that at least two eigenvalues of A at x should be equal to µ.
Suppose the multiplicity of the eigenvalue µ is equal to 2k. This implies that µr+1(x) =
... = µr+k(x) = µ, µr(x) 6= µ and µr+k+1(x) 6= µ. If i ∈ {r + 1, ..., r + k − 1}, we are done.
We assume that i 6∈ {r + 1, ..., r + k − 1} and find a contradiction.

In order to do it, we consider the function

F̃ : R × TM → R , F̃t(ζ) := Ft(ζ)/(t− µ)k−1.

At the point x, each term of the sum (10) contains (t − µ)k−1 implying that F̃t(ζ) is a
polynomial in t (and is a quadratic function in ζ). Since for every fixed t0 the function Ft0

is an integral, the function F̃t0 is also an integral. Let us show that for every geodesic γ

with γ(0) = x and γ(1) ∈ U we have that
(

F̃t(γ̇(0))
)

|t=µ
= 0. Indeed, we already have

shown that ti(x, γ̇(0)) = µ. By similar arguments, in view of inequality (11), we obtain
tr+1(x, γ̇(0)) = ... = tr+k−1(x, γ̇(0)) = µ. Then, t = µ is a root of multiplicity k of Ft(γ̇(0))
and, therefore, a root of multiplicity k − (k − 1) = 1 of F̃t(γ̇(0)) = Ft(γ̇(0))/(t − µ)k−1.
Finally, F̃µ(γ̇(0)) = 0.

Now, in view of the formula (10), the set {ζ ∈ TxM : F̃µ(ζ) = 0} is a nontrivial (since
µr 6= µ 6= µr+k+1) quadric in TxM , which contradicts the assumption that it contains
a subset Uµ of nonzero measure. Finally, we have i, i + 1 ∈ {r + 1, ..., r + k} implying
µi(x) = µi+1(x) = µ. �

From Theorem 3, we immediately obtain the following two corollaries:

Corollary 1. Let (M, g, J) be a complete, connected Riemannian Kähler manifold. Then,
for every A ∈ Sol(g), the set M0 of typical points of A is open and dense in M .

Corollary 2. Let (M, g, J) be a complete, connected Riemannian Kähler manifold and as-
sume A ∈ Sol(g). Then, at almost every point the multiplicity of a non-constant eigenvalue
ρ of A is equal to two.

4. Basic properties of solutions A of equation (3)

4.1. The vector fields Λ and Λ̄ are holomorphic.

Lemma 4 (Corollary 3 from [7]). Let (M, g, J) be a Kähler manifold of real dimension
2n ≥ 4 and let be A ∈ Sol(g). Let Λ be the corresponding vector field defined by equation
(3). Then Λ̄ is a Killing vector field for the Kähler metric g i.e.,

g(∇XΛ̄, Y ) + g(X,∇Y Λ̄) = 0

for all X,Y ∈ TM .
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It is a well-known fact that if a Killing vector field K vanishes on some open nonempty
subset U of the connected manifold M , then K vanishes on the whole M . From this, we
conclude

Corollary 3. Let (M, g, J) be a connected Kähler manifold of real dimension 2n ≥ 4 and
let v be an h-projective vector field.

(1) If v restricted to some open nonempty subset U ⊆M is a Killing vector field, then
v is a Killing vector field on the whole M .

(2) If v is not identically zero, the set of points Mv 6=0 := {x ∈ M : v(x) 6= 0} is open
and dense in M .

Proof. (1) Suppose the restriction of v to an open subset U is a Killing vector field. Then,
ḡt = (Φv

t )
∗g restricted to U ′ ⊂ U is equal to g|U ′ for sufficiently small t. Hence, At|U ′ =

A(g, ḡt)|U ′ = Id. The corresponding vector field Λt = 1
4
grad traceAt vanishes (on U ′)

implying Λ̄t vanishes (on U ′) as well. Since Λ̄t is a Killing vector field, Λ̄t vanishes on the
whole manifold implying Λt is equal to zero on the whole M . Then, by (3), the (1, 1)-tensor
At−Id is covariantly constant on the whole M . Since this tensor vanishes on U ′, it vanishes
on the whole manifold. Finally, At = Id on M , implying that v is a Killing vector field on
M . This proves part (1) of Corollary 3.

(2) Suppose v vanishes on some open subset U ⊆ M . To prove (2), we have to show
that v = 0 everywhere on M . From part (1) we can conclude that v is a Killing vector
field on M . Since v vanishes on (open, nonempty) U , it vanishes on the whole M . �

The next lemma combined with Lemma 4 shows that Λ̄ is a holomorphic vector field.

Lemma 5. Let (M, g, J) be a Kähler manifold. Let K be a vector field of the form K =
Jgrad f for some function f . Then K is a Killing vector field for g, if and only if K is
holomorphic.

Proof. The statement of the lemma follows from the straight-forward calculation below,
where we use that ∇J = 0 and that ∇grad f is a self-adjoint (1, 1)-tensor. We obtain

g(Y, (LKJ)X) = g(Y, J∇XK) − g(Y,∇JXK) = −g(Y,∇Xgrad f) − g(Y,∇JXK)

= −g(X,∇Y grad f) − g(Y,∇JXK) = −g(JX,∇YK) − g(∇JXK,Y )

for arbitrary vectors X and Y . It follows that LKJ = 0, if and only if K satisfies the
Killing equation as we claimed. �

Corollary 4. Let (M, g, J) be a Kähler manifold of real dimension 2n ≥ 4. Then, for
every A ∈ Sol(g) the vector fields Λ and Λ̄ from (3) are holomorphic and commuting, i.e.,

LΛJ = LΛ̄J = 0 and [Λ, Λ̄] = 0.

Proof. By Remark 3, Λ is the gradient of a function. Since Λ̄ = JΛ is a Killing vector field,
by Lemma 5 we have that Λ̄ is holomorphic. Since the multiplication with the complex
structure sends holomorphic vector fields to holomorphic vector fields, Λ is holomorphic as
well. By direct calculations, [Λ, Λ̄] = (LΛJ)Λ + J [Λ,Λ] = 0. �
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4.2. Covariant derivatives of the eigenvectors of A. Let A be a complex, self-adjoint
solution of equation (3). On M0, the eigenspace distributions EA(µi) are well-defined
and differentiable. In general, they are not integrable (except for the trivial case when
the metrics are affinely equivalent). The next proposition explains the behavior of these
distributions.

Proposition 1. Let (M, g, J) be a Riemannian Kähler manifold and assume A ∈ Sol(g).
Let U be a smooth field of eigenvectors of A defined on some open subset of M0. Let ρ be
the corresponding eigenvalue. Then, for an arbitrary vector X ∈ TM , we have

(A− ρId)∇XU = X(ρ)U − g(U,X)Λ − g(U,Λ)X − g(U, JX)Λ̄ − g(U, Λ̄)JX.(13)

Moreover, if V is an eigenvector of A corresponding to an eigenvalue τ 6= ρ, then V (ρ) = 0
and grad ρ ∈ EA(ρ).

Proof. Using equation (3), we obtain

(∇XA)U = g(U,X)Λ + g(U,Λ)X + g(U, JX)Λ̄ + g(U, Λ̄)JX

for arbitrary X ∈ TM . On the other hand, since U ∈ EA(ρ), we calculate

∇X(AU) = ∇X(ρU) = X(ρ)U + ρ∇XU.

Inserting the last two equations in ∇X(AU) = (∇XA)U + A(∇XU), we obtain (13).
Now let τ be another eigenvalue of A, such that ρ 6= τ , and let V ∈ EA(τ). Replacing V
with X in equation (13) and using that EA(ρ) ⊥ EA(τ), we obtain

(A− ρId)∇VU = V (ρ)U − g(U,Λ)V − g(U, Λ̄)JV.

Since the left-hand side of the equation above is orthogonal to EA(ρ), we immediately ob-
tain 0 = V (ρ) = g(V, grad ρ). Thus, grad ρ is orthogonal to all eigenvectors corresponding
to eigenvalues different from ρ implying it lies in EA(ρ) as we claimed. �

5. Kähler manifolds of degree of mobility D(g) = 2 admitting essential
h-projective vector fields

For closed manifolds, the condition HProj0 6= Iso0 is equivalent to the existence of an
essential (i.e., not affine) h-projective vector field. The goal of this section is to prove the
following

Theorem 4. Let (M, g, J) be a closed, connected Riemannian Kähler manifold of real
dimension 2n ≥ 4 and of degree of mobility D(g) = 2 admitting an essential h-projective
vector field. Let A ∈ Sol(g) with the corresponding vector field Λ.

Then, almost every point y ∈M has a neighborhood U(y) such that there exists a constant
B < 0 and a smooth function µ : U(y) → R such that the system

(∇XA)Y = g(Y,X)Λ + g(Y,Λ)X + g(Y, JX)Λ̄ + g(Y, Λ̄)JX

∇XΛ = µX +BA(X)

∇Xµ = 2Bg(X,Λ)

(14)

is satisfied for all x in U(y) and all X,Y ∈ TxU .
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One should understand (14) as the system of PDEs on the components of (A,Λ, µ).
Actually, in the system (14), the first equation is the equation (3) and is fulfilled by the
definition of Sol(g), so our goal is to prove the local existence of B and µ such that the
second and the third equation of (14) are fulfilled.

Remark 10. If D(g) ≥ 3, the conclusion of this theorem is still true if we allow all, i.e.,
not necessary negative, values of B. In this case we even do not need the ‘closedness’
assumptions (i.e., the statement is local) and the existence of an h-projective vector field,
see [7]. Theorem 4 essentially needs the existence of an h-projective vector field and is not
true locally.

5.1. The tensor A has at most two constant and precisely one non-constant
eigenvalue. First let us prove

Lemma 6. Let (M, g, J) be a Kähler manifold of real dimension 2n ≥ 4 and of degree of
mobility D(g) = 2. Suppose f : M →M is an h-projective transformation for g and let A
be an element of Sol(g). Then f maps the set M0 of typical points of A onto M0.

Proof. Let x be a point of M0. Since the characteristic polynomial of (f ∗A)|x is the same
as for A|f(x), we have to show that the number of different eigenvalues of (f ∗A)|x and A|x
coincide. If A is proportional to the identity on TM , the assertion follows immediately.
Let us therefore assume that {A, Id} is a basis for Sol(g). We can find neighborhoods Ux

and f(Ux) of x and f(x) respectively, such that A is non-degenerate in these neighborhoods

(otherwise we add t · Id to A with a sufficiently large t ∈ R+). By (5), ḡ = (det A)−
1
2 g ◦

A−1, g, f ∗g and f ∗ḡ are h-projectively equivalent to each other in Ux. By direct calculation,
we see that f ∗A = f ∗A(g, ḡ) = A(f ∗g, f ∗ḡ). Hence, f ∗A is contained in Sol(f ∗g). First
suppose that A(g, f ∗g) is proportional to the identity. We obtain that

f ∗A = αA+ βId

for some constants α, β. Since α 6= 0 (if A is non-proportional to Id, the same holds for
f ∗A), the number of different eigenvalues of (f ∗A)|x is the same as for A|x. It follows that
f(x) ∈ M0. Now suppose that A(g, f ∗g) is non-proportional to Id. Then, the numbers
of different eigenvalues for A|x and A(g, f ∗g)|x coincide. By Lemma 1, D(f ∗g) = 2 and
{A(g, f ∗g)−1, Id} is a basis for Sol(f ∗g). We obtain that

f ∗A = γA(g, f ∗g)−1 + δId

for some constants γ 6= 0 and δ. It follows that the numbers of different eigenvalues of
(f ∗A)|x and A(g, f ∗g)−1

|x coincide. Thus, the number of different eigenvalues of (f ∗A)|x is

equal to the number of different eigenvalues of A|x. Again we have that f(x) ∈ M0 as we
claimed. �

Convention. In what follows, (M, g, J) is a closed, connected Riemannian Kähler man-
ifold of real dimension 2n ≥ 4 and of degree of mobility D(g) = 2. We assume that v is
an h-projective vector field which is not affine. We chose a real number t0 such that the
pullback ḡ := (Φv

t0
)∗g is not affinely equivalent to g. Let A = A(g, ḡ) be the corresponding

element in Sol(g) constructed by formula (2).
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Lemma 7. The tensor A and the h-projective vector field v satisfy

LvA = c2A
2 + c1A+ c0Id(15)

for some constants c2 6= 0, c1, c0.

Proof. Note that the vector field v is also h-projective with respect to the metric ḡ and
the degrees of mobility of the metrics g and ḡ are both equal to two (see Lemma 1). Since
A = A(g, ḡ) is not proportional to the identity and A(ḡ, g) = A(g, ḡ)−1 ∈ Sol(ḡ), we obtain
that {A, Id} and {A−1, Id} form bases for Sol(g) and Sol(ḡ) respectively. It follows from
Lemma 2 that

g−1 ◦ Lvg − trace(g−1◦Lvg)
2(n+1)

Id = β1A+ β2Id,

ḡ−1 ◦ Lvḡ − trace(ḡ−1◦Lv ḡ)
2(n+1)

Id = β3A
−1 + β4Id

(16)

for some constants β1, β2, β3 and β4. Taking the trace on both sides of the above equations,
we see that they are equivalent to

g−1 ◦ Lvg = β1A+
(

1
2
β1 traceA+ (n+ 1)β2

)
Id,

ḡ−1 ◦ Lvḡ = β3A
−1 +

(
1
2
β3 traceA−1 + (n+ 1)β4

)
Id.

(17)

By (5), ḡ can be written as ḡ = (det A)−
1
2 g ◦ A−1. Then,

ḡ−1 ◦ Lvḡ
(5)
= (det A)

1
2A ◦ g−1 ◦ Lv((det A)−

1
2 g ◦ A−1)

= −1

2
(det A)−1(Lv det A)Id + A ◦ (g−1 ◦ Lvg) ◦ A−1 − (LvA) ◦ A−1.

We insert the second equation of (17) in the left-hand side, the first equation of (17) in
the right-hand side and multiply with A from the right to obtain

β3Id +
(

1
2
β3 traceA−1 + (n+ 1)β4

)
A

= −1
2
(det A)−1(Lv det A)A+ β1A

2 +
(

1
2
β1 traceA+ (n+ 1)β2

)
A− LvA.

Rearranging the terms in the last equation, we obtain

LvA = c2A
2 + c1A+ c0Id(18)

for constants c2 = β1, c0 = −β3, and a certain function c1.

Remark 11. Our way to obtain the equation (18) is based on an idea of Fubini from [9]
used in the theory of projective vector fields.

Our next goal is to show that c2 = β1 6= 0. If β1 = 0, the first equation of (17) reads

Lvg = (n+ 1)βg

hence, v is an infinitesimal homothety for g. This contradicts the assumption that v is
essential and we obtain that c2 = β1 6= 0.
Now let us show that the function c1 is a constant. Since A is nondegenerate, c1 is a smooth
function, so it is sufficient to show that its differential vanishes at every point of M0. We
will work in a neighborhood of a point of M0. Let U ∈ EA(ρ) be an eigenvector of A with
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corresponding eigenvalue ρ. Using the Leibniz rule for the Lie derivative and the condition
that U ∈ EA(ρ), we obtain the equations

Lv(AU) = Lv(ρU) = v(ρ)U + ρ[v, U ] and Lv(AU) = (LvA)U + A([v, U ]).

Combining both equations and inserting LvA from (18), we obtain

(v(ρ) − c2ρ
2 − c1ρ− c0)U = (A− ρId)[v, U ].

In a basis of eigenvectors {Ui, JUi} of A from the proof of Theorem 3, we see that the
right-hand side does not contain any component from EA(ρ) (i.e., the right-hand side is a
linear combination of eigenvectors corresponding to other eigenvalues). Then,

c1 = v(ln(ρ)) − c2ρ−
c0
ρ

and (A− ρId)[v, U ] = 0.(19)

These equations are true for all eigenvalues ρ of A and corresponding eigenvectors U .
Note that ρ 6= 0 since A is non-degenerate. By construction, the metric ḡ (such that
A = A(g, ḡ)) is not affinely equivalent to g, in particular, A has more than one eigenvalue.
Let be W ∈ EA(µ) and ρ 6= µ. Applying W to the first equation in (19) and using
Proposition 1, we obtain

W (c1) = [W, v](ln(ρ)).

The second equation of (19) shows that [v,W ] = 0 modulo EA(µ). Hence,

W (c1) = 0.

We obtain that U(c1) = 0 for all eigenvectors U of A. Then, dc1 ≡ 0 on M0. Since M0

is dense in M , we obtain that dc1 ≡ 0 on the whole M implying c1 is a constant. This
completes the proof of Lemma 7. �

Convention. Since c2 6= 0, we can replace v by the h-projective vector field 1
c2
v. For

simplicity, we denote the new vector field again by v; this implies that equation (15) is now
satisfied for c2 = 1: instead of (15) we have

LvA = A2 + c1A+ c0Id(20)

for some constants c1, c0.

Remark 12. Note that the constant β1 in the proof of Lemma 7 is equal to c2. With the
convention above, the first equation in (16) now reads

Av = g−1 ◦ Lvg −
trace(g−1 ◦ Lvg)

2(n+ 1)
Id = A+ βId(21)

for some β ∈ R.

Lemma 8. The tensor A has precisely one non-constant eigenvalue ρ of multiplicity 2
and at least one and at most two constant eigenvalues (we denote the constant eigenvalues
by ρ1 < ρ2 and their multiplicities by 2k1 and 2k2 = 2n − 2k1 − 2 respectively; we allow
k1 to be equal to 0 and n − 1; if k1 = 0, A has only one constant eigenvalue ρ2 and if
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ρ(t)

ρ2 = −
c1
2

+
√

α

ρ1 = −
c1
2
−

√

α

t

Figure 3. The behavior of the restriction of the eigenvalues to the integral
curve of v: at most two eigenvalues, ρ1 and ρ2, are constant; they are roots
of the quadratic polynomial X2 + c1X + c0. Precisely one eigenvalue, ρ, is
not constant along the integral curve and is given by (23).

k1 = n−1, than A has only one constant eigenvalue ρ1). Moreover, the eigenvalues satisfy
the equations

0 = ρ2
1 + c1ρ1 + c0 = ρ2

2 + c1ρ2 + c0

v(ρ) = ρ2 + c1ρ+ c0
(22)

for the constants c1, c0 from (20). For every point x ∈M0 such that dρ|x 6= 0 and v(x) 6= 0,
the evolution of the non-constant eigenvalue ρ along the flow line Φv

t (x) is given by

ρ(t) = −c1
2
−
√
α tanh(

√
α(t+ d)),(23)

where α = 1
4
c21 − c0 is necessarily a positive real number.

Proof. We proceed as in the proof of Lemma 7. Applying equation (20) to an eigenvector
U of A, corresponding to the eigenvalue ρ yields

(ρ2 + c1ρ+ c0 − v(ρ))U = −(A− ρId)[v, U ].

Since the right-hand side does not contain any components lying in EA(ρ), we obtain that

(A− ρId)[v, U ] = 0 and v(ρ) = ρ2 + c1ρ+ c0(24)

for all eigenvalues ρ of A and all eigenvectors U ∈ EA(ρ).
In particular, each constant eigenvalue is a solution of the equation ρ2 + c1ρ + c0 = 0.

This implies that there are at most two different constant eigenvalues ρ1 and ρ2 for A as
we claimed.

On the other hand, let ρ be a non-constant eigenvalue of A (there is always a non-constant
eigenvalue since otherwise, the vector field Λ vanishes identically on M and therefore, the
metrics g and ḡ (such that A = A(g, ḡ)) are already affinely equivalent, see Remark 4)
and let x ∈ M0 be a point such that dρ|x 6= 0 and v(x) 6= 0. The second equation in (24)
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shows that the restriction of ρ to the flow line Φv
t (x) of v (i.e., ρ(t) := ρ(Φv

t (x)) satisfies
the ordinary differential equation

ρ̇ = ρ2 + c1ρ+ c0, where ρ̇ stays for d
dt
ρ.(25)

This ODE can be solved explicitly; the solution (depending on the parameters c1, c0) is

given by the following list. We put α =
c21
4
− c0.

• For α < 0, the non-constant solutions of equation (25) are of the form

−c1
2
−

√
−α tan(

√
−α(−t+ d)).

• For α > 0, the non-constant solutions of equation (25) take the form

−c1
2
−

√
α tanh(

√
α(t+ d)) or − c1

2
−
√
α coth(

√
α(t+ d)).

• For α = 0, the non-constant solutions of equation (25) are given by

−c1
2
− 1

t+ d
.

Since the degree of mobility is equal to 2, we can apply Lemma 6 to obtain that the flow
Φv

t maps M0 onto M0. It follows that ρ(t) satisfies equation (25) for all t ∈ R. However,
the only solution of (25) which does not reach infinity in finite time is

−c1
2
−
√
α tanh(

√
α(t+ d)),

where α =
c21
4
− c0 is necessarily a positive real number.

We obtain that the non-constant eigenvalues of A satisfy equation (23), in particular, their
images contain the open interval (− c1

2
−√

α,− c1
2
+
√
α). Suppose that there are two different

non-constant eigenvalues ρ = − c1
2
−√

α tanh(
√
α(t+d)) and ρ̃ = − c1

2
−√

α tanh(
√
α(t+ d̃))

of A. Then we can find points x0, x1, x2 ∈ M such that ρ(x0) < ρ̃(x1) < ρ(x2). This
contradicts the global ordering of the eigenvalues of A, see Theorem 3(1). It follows that
A has precisely one non-constant eigenvalue ρ. This eigenvalue restricted to flow lines of
v satisfies equation (23). By Corollary 2, the multiplicity of ρ is equal to two. We obtain
that there must be at least one constant eigenvalue of A. Finally, Lemma 8 is proven. �

Corollary 5. In the notation above, all eigenvalues ρ1, ρ, ρ2 are smooth functions on the
manifold.

Proof. The eigenvalues ρ1, ρ2 are constant and are therefore smooth. The non-constant
eigenvalue ρ is equal to 1

2
traceA− k1ρ1 − (n− 1− k1)ρ2 and is therefore also smooth. �

Lemma 9. Let A have only one non-constant eigenvalue denoted by ρ. On Mdρ6=0 :=
{x ∈ M : dρ|x 6= 0}, the vector fields Λ and Λ̄ are eigenvectors of A corresponding to the
eigenvalue ρ, i.e., EA(ρ) = span{Λ, Λ̄}.
Moreover, Mdρ6=0 is open and dense in M and Λ(ρ) 6= 0 on Mdρ6=0.
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Remark 13. Note that the second part of the assertion above is still true even locally and
even if there are more than just one non-constant eigenvalue. The proof is based on the
same idea but is technically more complicated and will be published elsewhere.

Proof. First of all, since ρ is the only non-constant eigenvalue of A and ρ has multiplicity
equal to 2 (see Corollary 2), we obtain Λ = 1

4
grad traceA = 1

2
grad ρ.

By Proposition 1, Λ is an eigenvector of A corresponding to the eigenvalue ρ. Since the
eigenspaces of A are invariant with respect to the complex structure J , we immediately
obtain EA(ρ) = span{Λ, Λ̄}. Moreover, since grad ρ is proportional to Λ, we have Λ̄(ρ) = 0
and Λ(ρ) 6= 0 on Mdρ6=0.

Obviously, Mdρ6=0 is an open subset of M . As we explained above, dρ|x = 0, if and only
if Λ(x) = Λ̄(x) = 0. Then, M \Mdρ6=0 coincides with the set of zeros of the non-trivial
Killing vector field Λ̄. We obtain that Mdρ6=0 is dense in M . �

Let us now consider the critical points of the non-constant eigenvalue ρ:

Lemma 10. At every x such that dρ|x = 0, ρ takes its maximum or minimum values

ρ = − c1
2
± √

α, where α =
c21
4
− c0 and c1, c0 are the constants from the equation (20).

Moreover, v 6= 0 on Mdρ6=0.

Proof. Since the subsets Mv 6=0 and Mdρ6=0 are both open and dense in M (see Corollary
3 and Lemma 9), we obtain that M1 = Mv 6=0 ∩Mdρ6=0 is open and dense in M as well.
Equation (23) shows that − c1

2
−√

α < ρ(x) < − c1
2

+
√
α for all x ∈M1. Since M1 is dense,

we obtain

−c1
2
−
√
α ≤ ρ(x) ≤ −c1

2
+
√
α

for all x ∈ M . Now suppose that dρ|x = 0 for some x ∈ M . It follows from equation (22)
that ρ(x) satisfies 0 = dρ|x(v) = ρ(x)2 + c1ρ(x) + c0, hence, ρ(x) is equal to the maximum
or minimum value of ρ. Now suppose v(x) = 0. By (22), ρ takes its maximum or minimum
value at x. It follows that dρ|x = 0. �

5.2. Metric components on integral manifolds of span{Λ, Λ̄}. By Lemma 8, A has
precisely one non-constant eigenvalue ρ and at most two constant eigenvalues ρ1 and ρ2.
The goal of this section is to calculate the components of the restriction of the metric g to
the integral manifolds of the eigenspace distribution EA(ρ) = span{Λ, Λ̄}. In order to do
it, we split the tangent bundle on Mdρ6=0 into the direct product of two distributions:

D1 := span{Λ} and D2 := D⊥
1 = span{Λ̄} ⊕ EA(ρ1) ⊕ EA(ρ2)

First let us show

Lemma 11. The distributions D1, D2 and EA(ρ) are integrable on Mdρ6=0. Moreover,
integral manifolds of D1 and EA(ρ) are totally geodesic.

Proof. Since Λ is a gradient, the distributionD2 is integrable. On the other hand, Corollary
4 immediately implies that EA(ρ) is integrable. The distribution D1 is one-dimensional
and is therefore integrable. In order to show that the integral manifolds of D1 and EA(ρ)
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are totally geodesic, we consider the (quadratic in velocities) integrals I0, I1, I2 : TM → R

given by

I0(ζ) = g(Λ̄, ζ)2, I1(ζ) =
(

dk1−1

dtk1−1Ft(ζ)
)

|t=ρ1 and I2(ζ) =
(

dk2−1

dtk2−1Ft(ζ)
)

|t=ρ2 ,(26)

where 2k1, 2k2 are the multiplicities of the constant eigenvalues ρ1, ρ2 of A.
If s : TM → R is a quadratic polynomial in the velocities, we define the nullity of s by

null s := {ζ ∈ TM : s(ζ) = 0}.
In the orthonormal frame of eigenvectors of A from the proof of Theorem 3, the integrals
Ft are given by (10), and it is easy to see that

nullI1 = EA(ρ)⊕EA(ρ2), nullI2 = EA(ρ)⊕EA(ρ1) and nullI0 = span{Λ}⊕EA(ρ1)⊕EA(ρ2).

It follows that D1 = nullI0 ∩ nullI1 ∩ nullI2 and EA(ρ) = nullI1 ∩ nullI2. Since the
functions are integrals, if γ̇(0) ∈ nullIi , then γ̇(t) ∈ nullIi for all t. Then, every geodesic
γ such that γ̇(0) ∈ D1 (resp. EA(ρ)) remains tangent to D1 (resp. EA(ρ)). Thus, the
integral manifolds of D1 and EA(ρ) are totally geodesic. �

Let us introduce local coordinates x1, x2, ..., x2n in a neighborhood of a point of Mdρ6=0

such that (for all constants C1, ..., C2n) the equation x1 = C1 defines an integral manifold
of D2 and the system {xi = Ci}i=2,...,2n defines an integral manifold of D1. In these
coordinates, the metric g has the block-diagonal form

g = g11dx
1 ⊗ dx1 +

2n∑

i,j=2

g̃ijdx
i ⊗ dxj.

In what follows we call such coordinates adapted to the decomposition TM|Mdρ6=0
= D1⊕D2.

Let us show that the h-projective vector field v splits into two independent components
with respect to this decomposition:

Lemma 12. In the coordinates x1, x2, ..., x2n adapted to the decomposition TM|Mdρ6=0
=

D1 ⊕D2, the h-projective vector field v is given by

(27) v = v1(x1)∂1
︸ ︷︷ ︸

=:v1∈D1

+ v2(x2, ..., x2n)∂2 + ...+ v2n(x2, ..., x2n)∂2n
︸ ︷︷ ︸

=:v2∈D2

Proof. Since Λ̄ is an eigenvector of A corresponding to the non-constant eigenvalue ρ, the
first equation in (24) implies that

[v, Λ̄] = f Λ̄ + hΛ

for some functions f, h. If we apply dρ to both sides of the equation above, we obtain
Λ̄(v(ρ)) = Λ̄(ρ2 + c1ρ + c0) = 0 on the left-hand side and hΛ(ρ) on the right-hand side.
Since Λ(ρ) 6= 0 on Mdρ6=0, we necessarily have h = 0. By definition v is holomorphic and
since Λ̄ = JΛ, we see that the equations

[v, Λ̄] = f Λ̄ and [v,Λ] = fΛ(28)
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are satisfied.
For an eigenvector U of A, corresponding to some constant eigenvalue µ, the first equation
in (24) shows that

[v, U ] ∈ EA(µ).(29)

For each index i ≥ 2, ∂i is contained in D2. On the other hand, ∂1 is always proportional
to Λ. We obtain

∂i ∼ Λ̄ mod EA(ρ1) ⊕ EA(ρ2) and ∂1 ∼ Λ.

Using equation (28) and equation (29), we see that

[v, ∂i] ∈ D2 for all i ≥ 2 and [v, ∂1] ∈ D1.

This means that ∂iv
1 = 0 and ∂1v

i = 0 for all i ≥ 2. Hence,

v = (v1(x1), v2(x2, ..., x2n), ..., v2n(x2, ..., x2n))

as we claimed. �

Let us write v = v1 + v2 with respect to the decomposition TM|Mdρ6=0
= D1 ⊕D2 (as in

(27)). The vector fields v1 and v2 are well-defined and smooth on Mdρ6=0. By Lemma 12,
we have [v1, v2] = 0.

Lemma 13. The non-constant eigenvalue ρ satisfies the equation v1(ρ) = ρ2 + c1ρ + c0
and the evolution of ρ along the flow-lines of v1 is given by equation (23). Moreover, v1 is
a non-vanishing complete vector field on Mdρ6=0.

Proof. Since by Proposition 1 and Lemma 9 we have dρ(V ) = 0 for all V ∈ D2, we have
v2(ρ) = 0 and, hence, v1(ρ) = v(ρ) = ρ2 + c1ρ + c0. Using Lemma 12, we obtain that the
restriction of ρ on the flow line Φv1

t (x) coincides with the restriction of ρ on Φv
t (x) for all

x ∈ Mdρ6=0. Therefore the evolution of ρ along flow lines of v1 is again given by equation
(23).
Let us assume that v1(x) = 0 for some point x ∈ Mdρ6=0. We obtain that 0 = ρ(x)2 +
c1ρ(x)+ c0, which implies that ρ(x) is a maximum or minimum value of ρ (see Lemma 10).
It follows that dρ|x = 0, contracting our assumptions.
Finally, let us show that v1 is complete. Take a maximal integral curve σ : (a, b) →Mdρ6=0

of v1 and assume b < ∞. Since M is closed, there exists a sequence {bn} ⊂ (a, b),
converging to b such that limn → ∞σ(bn) = y for some y ∈ M . Then, y ∈ M \Mdρ6=0 since
otherwise the maximal interval (a, b) of σ can be extended beyond b. Then, dρ|y = 0, and
Lemma 10 implies that ρ(y) is equal to the minimum value − c1

2
− √

α. We obtain that
limn → ∞ρ(σ(bn)) = − c1

2
− √

α. On the other hand, formula (23) shows that this value
cannot be obtained in finite time b < ∞. This gives us a contradiction implying v1 is a
complete vector field on Mdρ6=0. �

Let us now calculate the restriction of the metric g to the integral manifolds of the
distribution EA(ρ) = span{v1, Λ̄}.
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Lemma 14. In a neighborhood of each point of Mdρ6=0, it is possible to choose the coordi-
nates t = x1, x2, ..., x2n adapted to the decomposition TM|Mdρ6=0

= D1 ⊕D2 in such a way,

that v1 = ∂1, Λ̄ = ∂2 and

g =









h 0 0 . . . 0
0 g(Λ,Λ) ∗ . . . ∗
0 ∗ ∗ . . . ∗
...

...
...

...
0 ∗ ∗ . . . ∗









.(30)

The functions h = g(v1, v1), g(Λ,Λ) and ρ depend on the first coordinate t only and are
given explicitly by the formulas

h(t) = D e(C−c1)t

cosh2(
√

α(t+d))
,

g(Λ,Λ) = ρ̇2

4h
(where ρ̇ = dρ

dt
) and

ρ(t) = − c1
2
−√

α tanh(
√
α(t+ d)).

(31)

The constants α > 0 and C in equation (31) are defined as α =
c21
4
− c0 and C = −n−1

2
c1 −

(2k1 + 1− n)
√
α+ (n+ 1)β, where D > 0, d, β, c1, c0 ∈ R and 2k1 is the multiplicity of the

constant eigenvalue ρ1. The constants c1, c0 are the same as in equation (20). Moreover,
c1, c0 and β are global constants i.e., they are the same for each coordinate system of the
above type.

Proof. In a neighborhood of an arbitrary point ofMdρ6=0, let us introduce a chart x1, x2, ..., x2n,
adapted to the decomposition TM|Mdρ6=0

= D1⊕D2. By Lemma 12 and Lemma 13, we can
choose these coordinates such that the flow line parameter t of v1 coincides with x1 (i.e.,
such that the first component of v in the coordinate system equals ∂

∂x1 ). By (28), we have
[v, Λ̄] ∈ D2. Moreover, [v2, Λ̄] ∈ D2 since D2 is integrable. It follows that [v1, Λ̄] ∈ D2.
On the other hand, since v1 = fΛ for some function f and [Λ, Λ̄] = 0, we obtain that
[v1, Λ̄] = −Λ̄(f)Λ ∈ D1, implying

[v1, Λ̄] = 0.

It follows, that we can choose the second coordinate x2 in such a way that Λ̄ = ∂2.
Next let us show that h = g11 depends on the first coordinate of the adapted chart only.
For this, let I be an integral of second order for the geodesic flow of g such that I is block-
diagonal with respect to the adapted coordinates t, x2, ..., x2n. For the moment we adopt
the convention that latin indices run from 2 to 2n such that I, considered as a polynomial
on T ∗M , can be written as I = I11p2

1+I ijpipj. We calculate the poisson bracket 0 = {H, I}
to obtain the equations

0 = I ik∂kg
11 − gik∂kI

11 for all i = 2, ..., 2n.(32)

Inserting integrals I of special type, we can impose restrictions on the metric. Obviously
the integrals I0, I1, I2 defined in equation (26) are block-diagonal. On the other hand, in
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the proof of Lemma 11 it was shown that they satisfy nullI1 = EA(ρ) ⊕ EA(ρ2), nullI2 =
EA(ρ) ⊕ EA(ρ1) and nullI0 = span{Λ} ⊕ EA(ρ1) ⊕ EA(ρ2). It follows that the integral
F = I0+I1+I2 is block-diagonal and that its nullity is equal to D1. Then F can be written
as F ijpipj and the matrix (F ij)i,j≥2 is invertible at each point where the coordinates are
defined. Replacing the integral I in equation (32) with F yields

∂ig
11 = 0

for all 2 ≤ i ≤ 2n hence, the metric component g11 = (g11)−1 depends on t only.
Now let us show the explicit dependence of the functions h, ρ and g(Λ,Λ) on the parameter
t. We already know that h = g11 and ρ depend on t only (for ρ this follows from Proposition
1 and Lemma 9) and by Lemma 13, the dependence of ρ on the first coordinate t is given
by equation (23).
Recall that λ = 1

4
traceA = 1

2
ρ+ const. It follows that dλ = 1

2
ρ̇ dt and hence, Λ = gradλ =

ρ̇

2h
∂1. We obtain

g(Λ,Λ) =
ρ̇2

4h
.

What is left is to clarify the dependence of the function h on the parameter t. Note that in
the coordinates t, x2, ..., x2n, the h-projective vector field v is given by v = ∂1 + v2. Let us
denote by ḣ and ρ̇ the derivatives of h and ρ with respect to the coordinate t and denote
the restriction of g to the distribution D2 by g̃. Then we calculate

Lvg = Lv1g + Lv2g = ḣ dt⊗ dt+ Lv1 g̃ + Lv2 g̃,(33)

where we used that v2(h) = 0 and Lv2dt = 0 which follows from [v1, v2] = 0 and [v2, ∂i] ∈ D2

for all i ≥ 2. Note that Lv1 g̃ and Lv2 g̃ do not contain any expressions involving dt ⊗ dxi,
dxi ⊗ dt or dt ⊗ dt. On the other hand, we already know that Av given in formula (6)
satisfies equation (21). After multiplication with g from the left, (21) can be written as

Lvg −
trace(g−1 ◦ Lvg)

2(n+ 1)
g = a+ βg

for a = g ◦ A and some constant β. Calculating the trace on both sides yields

Lvg = a+ (β +
1

2
trace(A+ βId))g = a+ ((n+ 1)β + ρ+ k1ρ1 + k2ρ2)g.

Now we can insert equation (33) on the left-hand side to obtain

ḣ dt⊗ dt+ Lv1 g̃ + Lv2 g̃ = a+ ((n+ 1)β + ρ+ k1ρ1 + k2ρ2)g.(34)

Since equation (34) is in block-diagonal form, it splits up into two separate equations. The
first equation which belongs to the matrix entry on the upper left reads

ḣ = (2ρ+ C)h, where we defined C = k1ρ1 + k2ρ2 + (n+ 1)β.

Integration of this differential equation yields

h(t) = DeCt+2
R

ρdt = De(C−c1)t−2 ln(cosh(
√

α(t+d)))
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for α =
c21
4
−c0 > 0 and some constants d andD > 0. If we insert the formulas ρ1 = − c1

2
−√

α
and ρ2 = − c1

2
+

√
α for the constant eigenvalues in the definition of the constant C, we

obtain

C = −n− 1

2
c1 − (2k1 + 1 − n)

√
α+ (n+ 1)β.

Finally, Lemma 14 is proven. �

The formulas (31) in Lemma 14 show that the restriction

g|EA(ρ) =

(
h 0
0 g(Λ,Λ)

)

(35)

of the metric to the integral manifolds of the distribution EA(ρ) = span{v1, Λ̄} (the co-
ordinates are as in Lemma 14 i.e., ∂1 = v1 and ∂2 = Λ̄) depends on the global constants
c1, c0, k1 and β. The constants D and d are not interesting; they can depend a priori on
the particular choice of the coordinate neighborhood. Note that c1 and c0 are subject to
the condition α = c21/4 − c0 > 0. Now our goal is to show that we can impose further
constraints on the constants such that the only metric which is left is the metric of positive
constant holomorphic sectional curvature. So far, we did not really use that the manifold
is closed, indeed, most of the statements listed above still would be true if this condition
is omitted. However, as the next lemma shows, the condition that M is closed imposes
strong restrictions on the constants from Lemma 14:

Lemma 15. The constants from the formulas (31) of Lemma 14 satisfy C = c1. In
particular, the function h = g(v1, v1) has the form

h(t) =
D

cosh2(
√
α(t+ d))

.(36)

Proof. First we will show that certain integral curves of v1 always have finite length. Let
xmax and xmin be points where ρ takes its maximum and minimum values respectively. We
consider a geodesic γ : [0, 1] → M joining the points γ(0) = xmax and γ(1) = xmin. We
again consider the integrals I0, I1, I2 : TM → R given by (26). Since the Killing vector field
Λ̄ vanishes at xmax, we obtain that 0 = I0(γ̇(0)) = I0(γ̇(t)) for all t ∈ [0, 1]. By Lemma 13,
ρ(xmax) is equal to the constant eigenvalue ρ2 = − c1

2
+

√
α. It follows that I2(ζ) = 0 for

all ζ ∈ TxmaxM , in particular, I2(γ̇(0)) = 0. This implies that I2(γ̇(t)) = 0 for all t ∈ [0, 1].
Similarly, considering the point xmin, we obtain I1(γ̇(t)) = 0 for all t ∈ [0, 1]. In the proof
of Lemma 11, we already remarked that the distribution D1 is equal to the intersection of
the nullities of I0, I1 and I2. It follows that γ̇(t) is contained in D1 for all 0 < t < 1. This
implies that γ|(0,1) is a reparametrized integral curve σ : R → M of the complete vector
field v1. In particular, the length

lg(σ) =

∫ +∞

−∞

√

g(σ̇(t), σ̇(t))dt =

∫ +∞

−∞

√

g(v1, v1)(σ(t))dt =

∫ +∞

−∞

√

h(t)dt(37)

of the curve σ is equal to the length lg(γ|[0,1]) of the geodesic γ. We obtain that lg(σ) is

finite. By equation (37), a necessary condition for lg(σ) to be finite is that
√

h(t) → 0
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when t→ ∞. Note that h(t) is given by the first equation in (31) (for some constants D, d
that can depend on the particular integral curve σ). From formula (31), we obtain that
√

h(t) for t→ ∞ is asymptotically equal to

√

h(t) ∼ e

�
C−c1
2
√

α
−1

�
t
.

The finiteness of lg(σ) now implies the condition

−C − c1
2
√
α

+ 1 > 0(38)

on the global constants given in equation (31). Let us find further conditions on the
constants. Since M is assumed to be closed, the holomorphic sectional curvature

KEA(ρ) =
g(v1, R(v1, Λ̄)Λ̄)

g(v1, v1)g(Λ,Λ)
=

R1212

h g(Λ,Λ)

of EA(ρ) has to be bounded on M . Since the integral manifolds of EA(ρ) are totally
geodesic (by Lemma 11), the sectional curvature KEA(ρ) is equal to the curvature of the
two dimensional metric (35). After a straight-forward calculation using the formulas (31)
for h and g(Λ,Λ), we obtain

KEA(ρ)(t) =
1

4D

[

(−4c0 − C2 + 2Cc1)
︸ ︷︷ ︸

=:γ1

e−(C−c1)t −(C − c1)
2

︸ ︷︷ ︸

=:γ2

cosh(2
√
α(t+ d))e−(C−c1)t

−2(C − c1)
√
α

︸ ︷︷ ︸

=:γ3

sinh(2
√
α(t+ d))e−(C−c1)t

]

(39)

=:
1

4D
(γ1f1(t) + γ2f2(t) + γ3f3(t)).

Similar to the first part of the proof, we can consider the asymptotic behavior t → ∞ of
the functions f2(t), f3(t) appearing as coefficients of the constants γ2, γ3 in formula (39).
We substitute s = 2

√
α(t+ d) and obtain

f2(s) ∼ cosh(s)e
−C−c1

2
√

α
s ∼

t≫0
e

�
−C−c1

2
√

α
+1

�
t (38)−→

t→∞
∞,

f3(s) ∼ sinh(s)e
−C−c1

2
√

α
s ∼

t≫0
e

�
−C−c1

2
√

α
+1

�
t (38)−→

t→∞
∞.

As we already have mentioned, the sectional curvatures of a closed manifold are bounded
and hence, KEA(ρ)(t) must be finite when t approaches the limit t → ∞. Using the
formulas for the asymptotic behavior of f2(t) and f3(t) given above, this condition imposes
the restriction γ2 = −γ3 on the constants in equation (39). Similarly, considering the
asymptotic behaviour for t → −∞, we obtain γ2 = γ3. Note that the dominating part in
sinh(2

√
α(t+ d)) now comes with the minus sign. It follows that γ2 = γ3 = 0, hence,

C − c1 = 0(40)
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as we claimed. Inserting equation (40) in the first formula of (31), the metric component
g11 = h takes the form (36). Lemma 15 is proven. �

Remark 14. If we insert γ2 = γ3 = 0 and C = c1 in the formula (39) for the sectional
curvature of EA(ρ), we obtain that KEA(ρ) = α

D
is constant and positive as we claimed.

5.3. Proof of Theorem 4. Our goal is to prove Theorem 4: we need to show the local
existence of a function µ and a constant B such that the system (14) is satisfied.

Lemma 16. At every point x ∈ M , the tensor A and the covariant differential ∇Λ are
simultaneously diagonalizable in an orthogonal basis. More precisely, let U ∈ EA(ρ1) and
W ∈ EA(ρ2) be eigenvectors of A corresponding to the constant eigenvalues. Then we
obtain

∇ΛΛ = (φ̇+ φψ)Λ,

∇Λ̄Λ = (φ̇+ φψ)Λ̄,

∇UΛ = g(Λ,Λ)
ρ−ρ1

U,

∇W Λ = g(Λ,Λ)
ρ−ρ2

W.

(41)

The functions φ and ψ are given by the formulas

φ =
1

2

ρ̇

h
and ψ =

1

2

ḣ

h
.(42)

Proof. Since the distribution D1 has totally geodesic integral manifolds (see Lemma 11),
∇v1v1 is proportional to v1. Let us define two functions φ and ψ by setting

Λ =: φv1 and ∇v1v1 =: ψv1.(43)

It follows immediately that g(Λ,Λ) = φ2h. On the other hand, ḣ = 2g(∇v1v1, v1) = 2ψh.
Using the equations (31) in Lemma 14, we obtain

φ =
1

2

ρ̇

h
and ψ =

1

2

ḣ

h
.(44)

Note that the function φ has to be negative since ρ decreases along the flow-lines of v1

while it increases along the flow-lines of Λ = 1
2
grad ρ. By direct calculation, we obtain

∇ΛΛ = φ∇v1(φv1) = φφ̇v1 + φ2∇v1v1 = (φφ̇+ φ2ψ)v1 = (φ̇+ φψ)Λ.

From the equation above, the relation Λ̄ = JΛ and the fact that Λ is a holomorphic vector
field, we immediately obtain

∇Λ̄Λ = J∇ΛΛ = (φ̇+ φψ)Λ̄

and hence, the first two equations in (41) are proven.
Now let U ∈ EA(ρ1) be an eigenvector of A corresponding to the constant eigenvalue ρ1.
Using Proposition 1, we obtain

∇U Λ̄ = −g(Λ,Λ)

ρ1 − ρ
JU + f Λ̄ + f̃Λ and ∇Λ̄U = 0 mod EA(ρ1)(45)
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for some functions f and f̃ . The lie bracket of U and Λ̄ is given by

[U, Λ̄] = f Λ̄ + f̃Λ mod EA(ρ1).

Applying dρ to both sides of the equation above yields f̃Λ(ρ) = 0. Since Λ(ρ) 6= 0 on

Mdρ6=0, it follows that f̃ = 0. On the other hand, the first equation in (45) shows that

1

2
U(g(Λ,Λ)) = g(∇U Λ̄, Λ̄) = fg(Λ,Λ).

Since dg(Λ,Λ) is zero when restricted to the distribution D2 (as can be seen by using the
coordinates given in Lemma 14), the left-hand side of the equation above vanishes and

hence, f = 0. Inserting f = f̃ = 0 in the first equation of (45), we obtain the third
equation in (41). If we replace ρ1 and U by ρ2 and W ∈ EA(ρ2), the same arguments can
be applied to obtain the last equation in (41). Lemma 16 is proven. �

Let (M, g, J) be a closed, connected Riemannian Kähler manifold of real dimension
2n ≥ 4 and of degree of mobility D(g) = 2. Let v be an essential h-projective vector field
and t0 a real number, such that ḡ = (Φv

t0
)∗g is not already affinely equivalent to g. Let us

denote by A = A(g, ḡ) the corresponding solution of equation (3).
We want to show that any point of Mdρ6=0 has a small neighborhood such that in this
neighborhood there exist a function µ and a constant B < 0 such that the covariant
differential ∇Λ satisfies the second equation

∇Λ = µId +BA(46)

in (14). By Lemma 16, at every point of Mdρ6=0, each eigenvector of A is an eigenvector
of ∇Λ. Since A has (at most) three different eigenvalues, equation (46) is equivalent to
an inhomogeneous linear system of three equations on the two unknown real numbers µ
and B. Using formulas (41) from Lemma 16, we see that for x ∈ Mdρ6=0, ∇Λ satisfies
equation (46) for some numbers µ and B, if and only if the inhomogeneous linear system
of equations

µ+ ρB = φ̇+ φψ,

µ+ ρ1B = g(Λ,Λ)
ρ−ρ1

,

µ+ ρ2B = g(Λ,Λ)
ρ−ρ2

.

(47)

is satisfied. Now, according to Lemma 14 and Lemma 15, in a neighborhood of a point of
Mdρ6=0, the functions ρ, g(Λ,Λ), h, φ and ψ are given explicitly by (31), (36) and (42). Let
us insert these functions and the formulas − c1

2
±√

α for the constant eigenvalues ρ1 < ρ2

(see Lemma 8) in (47). After a straight-forward calculation, we obtain that (47) is satisfied
for

µ = −α( c1
2
−√

α tanh(
√
α(t+ d)))

4D
= B(c1 + ρ) and B = − α

4D
.(48)

We see also that the constant B is negative (as we claimed in Section 2.2).
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Using the equation λ = 1
4
traceA = 1

2
ρ + const, we obtain that µ given by (48) satisfies

dµ = Bdρ = 2Bdλ. Since Λ is the gradient of λ, this is easily seen to be equivalent to the
third equation in the system (14).

We have shown that in a neighborhood of almost every point of M , there exists a
smooth function µ and a constant B < 0, such that the system (14) is satisfied for the
triple (A,Λ, µ).

If Ã is another element in Sol(g) with the corresponding vector field Λ̃, then Ã = aA+bId
for some a, b ∈ R implying Λ̃ = aΛ. By direct calculations we see that for an appropriate
local function µ̃ the triple (Ã, Λ̃, µ̃) satisfies the system (14) for the same constant B̃ = B.
Finally, Theorem 4 is proven.

6. Final step in the proof of Theorem 1

As we explained in Section 2.2, it is sufficient to prove Theorem 1 under the additional
assumption that the degree of mobility is equal to two. By Theorem 4, for every A ∈ Sol(g)
with corresponding vector field Λ = 1

4
grad traceA, in a neighborhood U(x) of almost every

point x ∈ M , there exists a local function µ : U(x) → R and a negative constant B such
that the triple (A,Λ, µ) satisfies the system (14).

Now, in [7, §2.5] it was shown that under these assumptions the constant B is the same
for all such neighborhoods, implying that the system (14) is satisfied on the whole M (for
a certain smooth function µ : M → R). Note that in view of the third equation of (14), µ
is not a constant (if A is chosen to be non-proportional to the identity on TM).

By direct calculation (differentiating µ and replacing the derivatives using the system
(14)), we obtain

(∇∇µ)(Y, Z) = ∇Y (∇Zµ) −∇∇Y Zµ
eq. 3 of (14)

= 2Bg(Z,∇Y Λ)

eq. 2 of (14)
= 2B(µg(Y, Z) +Bg(AY,Z)).

Then,

(∇∇∇µ)(X,Y, Z) = 2B((∇Xµ)g(Y, Z) +Bg((∇XA)Y, Z))

eq. 1 of (14)
= B(2(∇Xµ)g(Y, Z) + 2Bg(Z,Λ)g(X,Y ) + 2Bg(Y,Λ)g(X,Z)

+2Bg(Z, Λ̄)g(JX, Y ) + 2Bg(Y, Λ̄)g(JX,Z)).

Inserting the third equation of (14), we obtain that µ satisfies the equation

(∇∇∇µ)(X,Y, Z) = B[2(∇Xµ)g(Y, Z) + (∇Zµ)g(X,Y ) + (∇Y µ)g(X,Z)

−(∇JZµ)g(JX, Y ) − (∇JY µ)g(JX,Z)]
(49)

for all X,Y, Z ∈ TM .
Now by [48, Theorem 10.1], the existence of a non-constant solution of equation (49) with
B < 0 on a closed, connected Riemannian Kähler manifold implies that the manifold has
positive constant holomorphic sectional curvature equal to −4B. Then, (M,−4Bg, J) can
be covered by (CP (n), gFS, J). Theorem 1 is proven.
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