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Abstract. If a closed manifold M possesses two Riemannian metrics which have the
same unparameterized geodesics and are not strictly proportional at each point, then the
topological entropy of both geodesic flows is zero. This is the main result of the paper and
it has many dynamical and topological corollaries. In particular, such a manifold M should
be finitely covered by the product of a rationally elliptic manifold and a torus.

1. Definition and main results
Definition 1. Two (C∞-smooth) Riemannian metrics g and ḡ on a manifold Mn are said to
be geodesically equivalent if their geodesics coincide as unparameterized curves. They are
strictly non-proportional at x ∈ Mn, if the polynomial det(g|x − t ḡ|x) has only simple
roots.

The question of whether two different metrics can have the same geodesics is natural
and classical. The first examples are due to Beltrami [B]; a local description of geodesically
equivalent metrics was understood by Dini [Di] and Levi-Civita [LC]. We will recall Levi-
Civita’s theorem in §2.1. For more historical details, see the surveys [Mi, Am], and/or the
introductions to the papers [M1, M4].

The main result of our paper is the following theorem (for definition and properties of
htop we refer to [Bo, KH, Ma]).

THEOREM 1. Suppose the Riemannian metrics g and ḡ on a closed connected
manifold Mn are geodesically equivalent and strictly non-proportional at least at one
point. Then the topological entropy htop(g) of the geodesic flow of g vanishes.
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The condition that the metrics are strictly non-proportional is important: for example,
the product metric on a closed product manifold M = M1 × M2 admits a family g1 + tg2

of non-proportional metrics (but not strictly non-proportional if dim M > 2) with the same
geodesics. However, if at least one factor has fundamental group with positive exponential
growth (for instance if M1 is hyperbolic), then by the Dinaburg theorem any geodesic flow
on M has htop(g) > 0.

Vanishing of the topological entropy of a C∞-smooth flow implies a lot of dynamical
restrictions. For example, the ball volume grows subexponentially with its radius
(Manning’s inequality [Mn]), the number of geodesic arcs joining two generic points
grows subexponentially with its maximal length (Mañé’s formula [Ma]) and the volume
of a compact submanifold propagated by the geodesic flow also changes subexponentially
(Yomdin’s theorem [Y]), see also [P2].

Probably even more interesting are topological restrictions implied by htop(g) = 0.
The subexponential growth of π1(M

n) (Dinaburg’s theorem [D]) is not very intriguing
under the assumptions of Theorem 1, since it is known [M3] that in this case the
fundamental group is virtually abelian. However, the restriction coming from the Gromov–
Paternain theorem [G, P1] and from [PP1] are new, non-trivial and interesting: namely in
the simply connected case the manifold Mn is rationally elliptic, i.e. π∗(Mn)⊗Q is finite-
dimensional. This is a very restrictive property as by the results of [FHT, Pa] a rationally
elliptic manifold Mn enjoys the following properties:
(1) dim π∗(Mn) ⊗ Q ≤ n, dim H∗(Mn, Q) ≤ 2n−1, dim Hi(M

n, Q) ≤ 1
2

(
n
i

)
(i =

1, . . . , n − 1);
(2) the Euler characteristic χ(Mn) satisfies 2n − n + 1 ≥ χ(Mn) ≥ 0. Moreover,

χ(Mn) > 0 if and only if Hodd(M
n, Q) = 0.

A manifold M with finite π1(M) is said to be rationally hyperbolic, if its universal cover
is not rationally elliptic. Thus, as a consequence of Theorem 1, we have the following
corollary.

COROLLARY 1. A rationally hyperbolic closed manifold Mn does not admit two
geodesically equivalent Riemannian metrics g and ḡ which are strictly non-proportional
at least at one point.

Rational hyperbolicity means nothing in dimensions less than four, as all closed
4-manifolds with finite fundamental group are rational-elliptic. Note that the topology
of closed 2- and 3-manifolds admitting non-proportional geodesically equivalent metrics
is completely understood: in dimension two, such manifolds are homeomorphic to the
sphere, the projective plane, the torus or the Klein bottle [MT2, BMF]. In dimension
three, such manifolds are homeomorphic to lens spaces or to Seifert manifolds with zero
Euler number [M2].

Starting from dimension four, almost all simply-connected manifolds are rationally
hyperbolic. For example, in dimension four, up to homeomorphism, there exist infinitely
many simply-connected closed manifolds, and only five of them are rationally elliptic:
S4, S2 × S2, CP 2, CP 2#CP 2 and CP 2#CP 2. It is possible to construct geodesically
equivalent metrics on S4 and S2 × S2 that are strictly non-proportional at least at one
point. We conjecture here that these two are the only closed simply-connected 4-manifolds
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admitting strictly non-proportional geodesically equivalent metrics. In dimension five,
a closed rational-elliptic manifold has rational homotopy type of S2 × S3 or S5 (there are
infinitely many homotopy types for simply-connected 5-manifolds). By recent results of
[PP1, Theorem E], a closed manifold admitting a metric with zero topological entropy
is S5, S3 × S2, SU(3)/SO(3) or the non-trivial S3-bundle over S2. We conjecture that
S3 × S2 and S5 are the only closed simply-connected 5-manifolds admitting geodesically
equivalent metrics which are strictly non-proportional at least at one point.

In §5 we announce the restrictions on the topology of non-simply-connected manifolds
(admitting geodesically equivalent metrics which are strictly non-proportional at least at
one point) that follow from Corollary 1.

Now let us comment the proof of Theorem 1. The main ingredients are Theorems 2, 3
and Corollary 2, which imply that the geodesic flow of g is Liouville-integrable.

Precisely the same integrable systems were recently actively studied in mathematical
physics, in the framework of the theory of separation of variables. Depending on the
school, they are called L-systems [Be], Benenti-systems [IMM] and quasi-bi-Hamiltonian
systems [CST].

However, Liouville integrability does not immediately imply a vanishing of the
topological entropy; counterexamples can be found in [BT1, BT2, Bu1, Bu2, K, KT].
If the singularities of the integrable system behave sufficiently well (non-degenerate in the
sense of Williamson–Vey–Eliasson–Ito [E, I], see [P1], or the Taimanov conditions [T]), or
if the system has a lot of symmetries (for example, as in collective integrability [BP, P1]),
then htop(g) = 0. However, for other situations nothing is known, even if the integrals are
real-analytic or polynomial in momenta (if n > 2, but vanishing of htop(g) for n = 2 and
analytically integrable metrics is proved in [P0]; also this follows from a description of
singularities [FM] in the analytic case).

It is worth mentioning that geodesically equivalent metrics are usually not real-analytic:
Levi-Civita’s theorem from §2.1 shows the existence of an infinite-dimensional space of
non-analytic C∞-perturbations in the class of geodesically-equivalent metrics. Also the set
of singular points of the constructed integrals for the corresponding Hamiltonian system
can be quite complicated. For instance, the projection of the singularities in TMn to the
base Mn is surjective for n > 2 and its restriction to a singular Liouville leaf can have
image which is locally the product of the Cantor set and the (n − 1)-dimensional disk
(see Remark 3).

The logic of our proof for Theorem 1 is as follows.

(1) We show that the topological entropy is supported on the singularities, which we
describe.

(2) We show that dynamics on them can be considered as a subsystem of the geodesic
flow:
• on a lower-dimensional closed submanifold;
• admitting geodesically equivalent metrics which are strictly non-proportional

at least at one point.
Therefore we can apply induction in the dimension.
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2. Geometry behind the geodesic equivalence
In the following argument we always assume that the manifold Mn is connected and
that the Riemannian metrics g and ḡ on Mn are geodesically equivalent and strictly non-
proportional at least at one point.

2.1. Integrability and Levi-Civita’s theorem. A Riemannian metric g determines the
map �g : TM → T ∗M with the inverse �g : T ∗M → TM. Consider the (1,1)-tensor
(automorphism field) L : TM → TM given by the formula

L = (det(�ḡ ◦ �g))
−1/(n+1) · (�ḡ ◦ �g). (1)

In local coordinates, L
j

i = (det(ḡ)/ det(g))1/(n+1)giαḡαj . This tensor L determines the
family St ∈ C∞(T ∗M ⊗ TM), t ∈ R, of (1, 1)-tensors

St := det(L − t Id) · (L − t Id)−1. (2)

Remark 1. Although (L − t Id)−1 is not defined for eigenvalues t ∈ Sp(L), the tensor St

is well-defined for every t ∈ R. In fact, it is the adjunct matrix of (L − t Id). Thus, by the
Laplace main minors formula, St is a polynomial in t of degree (n − 1) with coefficients
being (1, 1)-tensors.

The isomorphism �g allows us to identify the tangent and cotangent bundles of Mn.
This identification allows us to transfer the natural Poisson structure and the Hamiltonian
system H(x, p) = 1

2p · �g(p) from T ∗Mn to TMn.

THEOREM 2. [MT1] If g, ḡ are geodesically equivalent, then, for every t1, t2 ∈ R, the
functions

Iti : TMn → R, Iti (v) := g(Sti (v), v) (3)

are commuting integrals for the geodesic flow of g.

As L is self-adjoint with respect to both g and ḡ, the spectrum Sp(L) is real at every
point x ∈ Mn. Denote it by λ1(x) ≤ · · · ≤ λn(x). Every eigenvalue λi(x) is at least a
continuous function on Mn, and is smooth near the points where it is a simple eigenvalue.

THEOREM 3. [M1] Let (Mn, g) be a geodesically complete connected Riemannian
manifold. Let a Riemannian metric ḡ on Mn be geodesically equivalent to g. Then, for
every i ∈ {1, . . . , n − 1} and for all x, y ∈ Mn, the following hold:
(1) λi(x) ≤ λi+1(y);
(2) if λi(x) < λi+1(x), then λi(z) < λi+1(z) for almost every point z ∈ Mn;
(3) if λi(x) = λj (y) for a certain j 
= i, then there exists z ∈ Mn such that

λi(z) = λj (z).

COROLLARY 2. [MT3] Let (Mn, g) be a connected Riemannian manifold. Suppose a
Riemannian metric ḡ on Mn is geodesically equivalent to g and is strictly non-proportional
to g at least at one point. Then, for every mutually-different t1, t2, . . . , tn ∈ R, the
integrals Iti are functionally independent almost everywhere, i.e. the differentials dIti are
linearly independent almost everywhere in TM.
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Let us describe the local form of the integrals It . For every x ∈ Mn consider coordinates
in TxMn such that the metric g is given by the diagonal matrix diag(1, 1, . . . , 1) and the
tensor L is given by the diagonal matrix diag(λ1, λ2, . . . , λn). Then the tensor (2) reads

St = det(L − t Id)(L − t Id)(−1)

= diag(�1(t),�2(t), . . . ,�n(t)),

where the polynomials �i(t) are given by the formula

�i(t)
def=

∏
j 
=i

(λj − t).

Hence, for every ξ = (ξ1, . . . , ξn) ∈ TxM
n, the polynomial It (x, ξ) is given by

It = ξ2
1 �1(t) + ξ2

2 �2(t) + · · · + ξ2
n�n(t). (4)

For further use, let us consider the one-parameter family of functions

I ′
t

def= d

dt

(
It

)
.

For every fixed t ∈ R this function is an integral of the geodesic flow for g.
Let us now formulate (a weaker version of) the classical Levi-Civita’s theorem.

THEOREM 4. (Levi-Civita [LC]) Consider two Riemannian metrics on an open subset
Un ⊂ Mn and the tensor L given by formula (1). Suppose the spectrum Sp(L) is simple
at every point x ∈ Un.

Then the metrics are geodesically equivalent on Un if and only if around each point
x ∈ Un there exist coordinates x1, x2, . . . , xn in which the metrics have the following
model form:

ds2
g = |�1(λ1)| dx2

1 + |�2(λ2)| dx2
2 + · · · + |�n(λn)| dx2

n, (5)

ds2
ḡ = ρ1|�1(λ1)| dx2

1 + ρ2|�2(λ2)| dx2
2 + · · · + ρn|�n(λn)| dx2

n, (6)

where the functions ρi are given by

ρi
def= 1

λ1λ2 · · · λn

1

λi

and λi = λi(xi) are smooth functions of one variable.

Definition 2. The above coordinates will be called Levi-Civita coordinates and the
neighborhoods where the coordinates are defined will be called Levi-Civita charts.

In Levi-Civita coordinates the tensor L is diagonal diag(λ1, . . . , λn), so the notation in
the Levi-Civita theorem is compatible with that at the beginning of the section.

COROLLARY 3. [M1, BM] Suppose the Riemannian metrics g, ḡ are geodesically
equivalent on M . Then, the Nijenhuis torsion of the tensor L given by (1) vanishes:
NL = 0.
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If the metrics are strictly non-proportional at least at one point, Corollary 3 follows
from the above version of Levi-Civita’s theorem. In the general case, Corollary 3
follows from the original version of Levi-Civita’s theorem [LC] and was proven in [M1]
and [BM].

Combining formulae (5) and (4), we see that in the Levi-Civita coordinates the
function It is given by

It =
∑

i

|�i(λi(x))|�i(t)ξ
2
i . (7)

In particular, the function Iλi(x) as the function on the cotangent bundle is equal to
(−1)i−1p2

i .

2.2. Distributions of eigenvectors: submanifolds MA. We begin with investigation of
the set of points from the Levi-Civita charts, the union of which is the open dense set

Reg(M) = {x ∈ M | λi(x) 
= λj (x) for i 
= j }.
This set can be represented as the intersection Reg(M) = ∩A RegA(M) over all (proper)
subsets A ⊂ {1, 2, . . . , n}, where we denote

RegA(M) = {x ∈ M | ∀i ∈ A,∀j 
∈ A, λi(x) 
= λj (x)}.
Notice that if at some point the metrics are strictly non-proportional and n > 3 (or n > 2
and no constant eigenvalues exist), then

⋃
A RegA(M) = M (union by proper subsets).

For every point x ∈ RegA(M) denote by DA(x) the subspace of TxMn spanned
by the eigenspaces with the eigenvalues λi , where i ∈ A. As the eigenvalues λi for
i ∈ A do not bifurcate with the eigenvalues λj for j 
∈ A, DA is a smooth distribution
on RegA(M). By Corollary 3 it is integrable. We will denote by MA(x) its integral
submanifold containing x ∈ RegA(x) ⊂ Mn.

LEMMA 1. For x ∈ RegA(M) the following statements hold.
(1) The restrictions of g and ḡ to MA(x) are geodesically equivalent.
(2) g|MA(x) and ḡ|MA(x) are strictly non-proportional at least at one point.
(3) For i ∈ A the ith eigenspace of the operator L (corresponding to λi ) coincides

with the respective eigenspace of the operator LA : TMA → TMA, constructed via
formula (1) for the restricted to MA(x) metrics g|MA(x) and ḡ|MA(x).

(4) There exists a constant c (which depends on MA(x) only and is explicitly calculated
in the proof) such that the part of c · Sp(L), corresponding to A, coincides with the
spectrum Sp(LA).

(5) In particular, if an eigenvalue λi , i ∈ A, is constant, then the corresponding
eigenvalue of the operator LA, constructed for the restrictions of g and ḡ to MA(x),
is constant on MA(x).

Proof. The distribution DA defines a foliation on RegA(M) and on its open dense subset
Reg(M). Then it is sufficient to prove the first, third and fourth statements of the lemma
at the points of this subset. By Theorems 3 and 4 in a neighborhood of every point
x ∈ Reg(M), there exist Levi-Civita coordinates such that the metrics g, ḡ are given by
formulas (5) and (6). In these coordinates, MA(x) is the coordinate plaque of the coordinate
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collection xα with α ∈ A = {α1, . . . , αm}. Then the restrictions of the metrics to MA(x)

are given by

g|MA = |�α1(λα1)| dx2
α1

+ |�α2(λα2)| dx2
α2

+ · · · + |�αm(λαm)| dx2
αm

,

ḡ|MA = ρα1 |�α1(λα1)| dx2
α1

+ ρα2 |�α2λα2 | dx2
α2

+ · · · + ραm |�αm(λαm)| dx2
αm

.

As λj is constant on MA(x) for every j 
∈ A, every factor of �αi of the form λj − λαi can
be ‘hidden’ in dx2

αi
. We see that then the first metric is already in the Levi-Civita form, and

the second metric becomes in the Levi-Civita form after multiplication by

C
def=

∏
j 
∈A

λj , (8)

which is constant on MA(x). Hence, by Levi-Civita’s theorem, the restrictions of the
metrics to MA are geodesically equivalent.

Direct calculations show that in local coordinates the tensor LA is given by:

C1/(m+1) diag(λα1, . . . , λαm). (9)

The third and fourth statements of the lemma follow.
Now let us prove the second statement. Suppose the restriction of the metrics are not

strictly non-proportional at every point of a certain MA(x). Then, by Theorem 3, there
exist α1, α2 ∈ A such that λα1 ≡ λα2 on MA(x). Consider the set B := {1, . . . , n} \ A.
Take the union of all leaves MB containing at least one point of MA(x). Clearly, this union
contains an open subset of Mn. As the eigenvalues λα1 , λα2 are constant along MB , in
view of formula (9) and Theorem 3, at every point of this open subset we have λα1 = λα2 ,
which contradicts Theorem 3. �

LEMMA 2. Suppose the eigenvalue λi is not a constant. Take a point y ∈ Mn such that

max
x∈M

λi−1(x) < λi(y) < min
x∈M

λi+1(x).

(We assume by definition that minx∈M λn+1(x) = ∞ and maxx∈M λ0(x) = −∞.)
Let C(i) := {1, 2, . . . , n} \ {i}. Then, MC(i)(y) is a closed submanifold.

The conditions that the eigenvalue is not constant and that λi is neither maximum nor
minimum are important: one can construct counterexamples, if either of these conditions
is omitted.

Proof. Since maxx∈M λi−1(x) < λi(y) < minx∈M λi+1(x), there exist csmall, cbig ∈ R

such that:
• csmall < λi(y) < cbig;
• at least one of the numbers csmall, cbig is a regular value of the function λi ;
• the other number is not a critical value of λi (i.e. it is either a regular value or is

equal to λi at no point).
Denote by N the connected component of the set

{x ∈ Mn | csmall ≤ λi(x) ≤ cbig},
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containing the point y. Then N ⊂ RegC(i)(M) is a connected manifold with boundary.
Therefore, DC(i) is a smooth distribution on N . As it is integrable by Corollary 3, it
defines a foliation. By Corollary 3, the function λi is constant on the leaves of the foliation.
Then, every connected component of the boundary of N is a leaf of the foliation.

At every x ∈ Mn, consider the vector vi satisfying{
L(vi) = λi(x)vi,

g(vi , vi) = |�i(λi)|.
(10)

By definition of N , the function |�i(λi)| is non-zero and smooth at every point of N .
Thus vi vanishes nowhere in N . Hence, at least on the double cover of N , it is defined
globally up to a sign and is smooth. The double cover projection maps closed submanifolds
into closed ones. Therefore, without loss of generality, we can assume that the vector field
vi is globally defined already on N .

Consider the flow of the vector field vi . It takes leaves to leaves. Indeed, it is sufficient to
prove this almost everywhere, for instance in Levi-Civita charts. In Levi-Civita coordinates
the leaves of the foliation are the plaques of the coordinates xα, where α ∈ C(i), and the
vector field vi is ±∂/∂xi , so the claim is trivial.

As the leaves are (n − 1)-dimensional and the flow of vi shuffles them, the flow acts
transitively and all leaves are homeomorphic. Every connected component of the boundary
of N is compact and is a leaf, hence all leaves are compact. In particular, MC(i)(y) is
compact. �

2.3. Bifurcation of eigenvalues: submanifolds Singj
i . The spectrum Sp(L) is simple in

Reg(M), i.e. almost everywhere in Mn. However, at certain points the multiplicity of some
λi can become greater than one. Such points will be called the bifurcation points of λi .
By Theorem 3 the following types of bifurcations of the eigenvalue λi are possible.

Case 1. The eigenvalues λi and λi+1 are not constant and there exists x ∈ M such that
λi(x) = λi+1(x). Denote λ̄i = max λi(x) = min λi+1(x). Let us consider the set

Sing1
i

def= {x ∈ Mn | (λi(x) − λ̄i )(λi+1(x) − λ̄i) = 0}.
This set was studied in [M1, Theorem 6]. It was shown that Sing1

i is a connected closed
totally geodesic submanifold of codimension one. The restrictions of the metrics to it are
strictly non-proportional at least at one point. Note that not all points of Sing1

i are points
of bifurcation of the eigenvalues λi, λi+1.

Case 2. There exists x ∈ M and i ∈ {2, . . . , n−1} such that λi−1(x) = λi+1(x). In this
case, the eigenvalue λi is constant. Let us consider the set

Sing2
i

def= {x ∈ Mn | (λi−1(x) − λi)(λi+1(x) − λi) = 0}.
This set was also studied in [M1, Theorem 6]. It was shown that Sing2

i is a connected
closed totally geodesic submanifold of codimension two. The restrictions of the metrics
to it are strictly non-proportional at least at one point. Moreover, the set of the points
x ∈ Sing2

i such that λi−1(x) = λi+1(x) is nowhere dense in Sing2
i .
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Case 3(a). The eigenvalue λi is constant, there exists x ∈ M such that λi = λi+1(x)

and there exists no y such that λi−1(y) = λi .

Case 3(b). The eigenvalue λi is constant, there exists x ∈ M such that λi = λi−1(x)

and there exists no y such that λi+1(y) = λi .

In Cases 3(a) and 3(b), let us consider respectively the sets

Sing3
i = {x ∈ Mn | λi = λi+1(x)} or Sing3

i = {x ∈ Mn | λi = λi−1(x)}.

The next lemma shows that, similar to Cases 1 and 2, Sing3
i is a submanifold of

codimension two and the restrictions of the metrics to Sing3
i are geodesically equivalent

and strictly non-proportional at least at one point. Note that, in contrast to the previous
cases, the set Sing3

i is not necessary connected.

LEMMA 3. Under assumptions of Cases 3(a) or 3(b), the set Sing3
i :

(1) is totally geodesic;
(2) is a closed submanifold of codimension two;
(3) the restrictions of the metrics g and ḡ to it are strictly non-proportional at least at

one point.

Here we will prove that Sing3
i is a closed submanifold of codimension two such that the

restrictions of the metrics to it are strictly non-proportional at least at one point. The first
statement of the lemma, namely that Sing3

i is totally geodesic, will follow immediately
from Theorem 6, see Remark 4. Before Theorem 6, Lemma 3 will be used only once,
namely in the proof of Theorem 5. As the proof of Theorem 6 does not require Theorem 5,
no logical loop appears.

Proof of statements (2) and (3) of Lemma 3. We consider Case 3(a), the other case is
completely analogous. By definition, the set Sing3

i is closed and, therefore, compact.

Let us show that locally Sing3
i is a submanifold of codimension two. Let A = {i, i + 1}.

Take a point x0 such that λi = λi+1(x0). Then x0 ∈ RegA(M) and we can consider the set
MA(x0). By Lemma 1, the restrictions of the metrics to MA(x0) are geodesically equivalent
and strictly non-proportional at least at one point. Since MA(x0) is two-dimensional, the
set of points where these restrictions are proportional is discrete [MT2, BF]. In view
of Lemma 1, the restrictions of the metrics are proportional at x0. Then in a small
neighborhood of x0, there exists no other point x ∈ MA(x0) such that λi = λi+1(x).
Denote by B the set {1, 2, . . . , n} \ A. For every point x of a small neighborhood of
x0 in MA(x0), consider the set MB(x). It is a submanifold of codimension two. As the
eigenvalues λi, λi+1 are constant along MB , in a small neighborhood of x0 the set Sing3

i

coincides with MB(x0). Thus it is a submanifold of codimension two.

By the second statement of Lemma 1, the restrictions of the metrics to Sing3
i are strictly

non-proportional at least at one point. �

Remark 2. We will not prove or use it, but for general understanding let us note that the
sets T Singj

i consist of singular points which are not removable (the definitions are in §3).
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Moreover,

T Sing1
i = {(x, ξ) ∈ TM | Iλ̄i

= 0, dIλ̄i
= 0},

T Sing2
i = {(x, ξ) ∈ TM | Iλi (x, ξ) = 0, dI′λi

= 0},
T Sing3

i = {(x, ξ) ∈ TM | Iλi (x, ξ) = 0, dI′λi
= 0}.

Note that for Case 1 the set of points x with λi(x) = λ̄i 
= λi+1(x) or λi(x) 
= λ̄i =
λi+1(x), which is everywhere dense in Sing1

i , is included in Reg(M). However, these
points do not behave as other regular points and for certain purposes we will need to
exclude them: by definition, let

Reg�(M) = Reg(M)

∖ ⋃
i

Sing1
i .

As we explained above, Mn \ Reg�(Mn) is a finite union of closed totally geodesic
submanifolds.

Let us note that for a fixed i only one of the submanifolds Singj
i , j = 1, 2, 3, can be

non-empty.

3. Description of singular points
Consider some mutually-different numbers t1, . . . , tn ∈ R and the respective integrals
It1, . . . , Itn . Consider the Poisson action of the group (Rn,+) on TMn: an element
(a1, . . . , an) ∈ Rn acts by time-one shift along the Hamiltonian vector field of the function
a1It1 + · · · + anItn . As the functions are commuting integrals, the action is well-defined,
smooth, symplectic, and preserves the integrals It and the Hamiltonian of the geodesic
flow (see [A, §49] for details).

A point (x, ξ) ∈ TM is said to be singular if the differentials dIt1, . . . , dItn are linearly
dependent at (x, ξ). An orbit of the action is said to be singular if it has a singular point.
All points of a singular orbit are singular and have the same coefficients of the linear
dependence.

Although the Poisson action depends on the choice of constants t1, . . . , tn, the property
of (x, ξ) being singular does not depend on the choice of ti as far as these numbers are all
different.

3.1. Singular points in Levi-Civita coordinates. As we have remarked in §2.3, the
submanifolds T Singj

i ⊂ TM consist of singularities.
The next theorem describes singular points that lie over a Levi-Civita chart Un ⊂

Reg(Mn). Fix a point x ∈ Reg(Mn) and denote by λ̄1, . . . , λ̄n the constants
λ1(x), . . . , λn(x), respectively.

THEOREM 5. Let the metrics g and ḡ be given by formulas (5) and (6) in a neighborhood
Un ⊂ Mn. If the point (y, ξ) = (x1, . . . , xm, ξ1, . . . , ξm) ∈ T Reg(Mn) is singular, then
there exists i ∈ {1, . . . , n} such that dIλ̄i

= 0. Then Iλ̄i
(x, ξ) = 0 and at least one of the

following statements holds:
(1) the derivative ∂λi(x)/∂xi vanishes at x;
(2) The function I ′̄

λi
vanishes at (x, ξ).
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Moreover, if MC(i)(y) is compact, the whole geodesic passing through y with the velocity
vector ξ is contained in MC(i)(y), where C(i) is the same as in Lemma 2.

Actually, the assumption that MC(i)(y) is compact is not necessary: Theorem 5 remains
true, if we replace this condition by the condition that y 
∈ Sing1

i . Our stronger assumption
makes the proof shorter.

Proof of Theorem 5. Suppose the point (y, ξ) is singular. Then, there exist constants
(µ1, . . . , µn) 
= (0, . . . , 0) such that at (y, ξ) the following holds:

µ1dIλ̄1
+ · · · + µndIλ̄n

= 0.

We will show that for every i such that µi 
= 0 the differential dIλ̄i
vanishes at (y, ξ).

For every j ∈ {1, . . . , n} consider the function Iλj (x)(x, η) := (It (x, η))|t=λj (x). In a small
neighborhood of y, the function λj is smooth. Hence the function Iλj (x) is smooth as well.
At the point (y, ξ) we have

dIλj (y) = dIλ̄j
+ I ′̄

λj
· dλj .

We will work on the cotangent bundle to Mn. As we explained in §2.1, the function Iλj (x)

is equal to (−1)j−1p2
j and its differential has coordinates

(0, . . . , 0︸ ︷︷ ︸
n+j−1

, 2 · (−1)j−1 · pj , 0, . . . , 0).

As the function λj depends on xj only, its differential is(
0, . . . , 0︸ ︷︷ ︸

j−1

,
∂λj

∂xj

, 0, . . . , 0

)
.

Thus, dIλ̄j
at (y, ξ) is given by(

0, . . . , 0︸ ︷︷ ︸
j−1

, I ′̄
λj

· ∂λj

∂xj

, 0, . . . , 0︸ ︷︷ ︸
n−1

, 2 · (−1)j−1 · pj , 0, . . . , 0

)
.

We see that the differentials dIλ̄j
do not combine: if µi 
= 0, then dIλ̄i

= 0. Therefore,
pi = 0 (i.e. ξi = 0), which is equivalent to Iλ̄i

(x, ξ) = 0, and at least one of the following
holds: ∂λi(x)/∂xi = 0 or I ′̄

λi
(x, ξ) = 0. The first part of the theorem is proven.

Now let us show that the geodesic γ such that (γ (0), γ̇ (0)) = (y, ξ) is contained in
MC(i)(y). As MC(i)(y) is compact, it is sufficient to prove that at almost every point of

the geodesic the velocity vector of the geodesic is contained in DC(i). As Singj
k are totally

geodesic submanifolds, the geodesic γ intersect them transversally, and it is sufficient to
prove that the velocity vector of the geodesic lies in DC(i) in Levi-Civita’s charts.

As Iλ̄i
is an integral and dIλ̄i

= 0 at (y, ξ), we obtain that dIλ̄i
vanishes at every point

(γ (t), γ̇ (t)). Then, as we explained above, in the Levi-Civita chart, the component ξi

equals zero, so that the velocity vector of the geodesic lies in DC(i). Finally, the geodesic
stays in MC(i) forever. �
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Remark 3. Consider a point x from a Levi-Civita chart and a point (x, ξ) ∈ TM over it
with ξi = 0. If n > 2 we have enough freedom (two free coordinates ξj , j 
= i) to
arrange I ′̄

λi
= 0 (the coordinate representation of I ′̄

λi
is obtained from formula (4)), in

which case (x, ξ) is a singularity. Thus the projection of singularities to Mn is dense and
hence coincides with Mn for n > 2.

If (x, ξ) is restricted to lie in a singular Liouville leaf Lc = {Iλ̄j
= constj | 1 ≤ j ≤ n},

we do not have that much freedom to obtain subjectivity of the projection, but still the
projection can be very complicated. For example, consider a Liouville leaf such that
Iλ̄i

(x, ξ) = 0 on it. Consider the function λi on its projection. Let Ki = {xi |
λi(xi) = λ̄i , ∂λi/∂xi = 0}. Consider the (n − 1)-dimensional disk Dn−1 with coordinates
(xj | j 
= i). Then, by Theorem 5, the set Dn−1 × Ki is locally contained in the projection
of the set of singularities (and for certain leaves locally coincides with the projection of
the set of singularities). However, the closed set Ki can be quite complicated, for instance,
a Cantor set.

3.2. Removable singularities. Our next goal is to show that certain singular points are
artificially singular: if we use a finite cover and choose the integrals appropriately, they
become regular.

Suppose the eigenvalue λi is constant. From the proof of Theorem 5 it follows that for
every x ∈ Reg{i}(M) and ξ ∈ DC(i)(x) ⊂ TxM

n the differential dIλi vanishes at (x, ξ).
We will show that this singularity is removable, in the sense that on an appropriate finite
cover we can find a function Ji , that is linear in velocities and such that J 2

i = (−1)i−1Iλi .
This relation immediately implies that Ji commutes with the functions It . Since Iλi is
an integral, Ji is an integral as well. As it is linear in velocities, it corresponds to a
Killing vector field. We will show that this Killing vector field is non-zero at x, which
automatically implies that the differential of this integral does not vanish at (x, ξ).

In the Levi-Civita coordinates, Iλi = (−1)i−1p2
i and we can put Ji = ±pi . Clearly, in

the Levi-Civita coordinate system, Ji(η) := g(vi , η), where vi = ±∂/∂xi .

Note that the vector field ∂/∂xi satisfies conditions (10), and that near every regular
point every vector field satisfying (10) is the vector field ∂/∂xi of a certain Levi-Civita
coordinate system.

Thus, in order to show that (at least on a finite cover) there exists a smooth function Ji

such that it is linear in velocities and such that J 2
i = (−1)i−1Iλi , it is sufficient to prove

the following theorem.

THEOREM 6. Suppose λi is constant. Then at least on a double cover of Mn there exists
a smooth vector field vi satisfying (10) at every point x ∈ Mn.

Remark 4. Conditions (10) imply that the zeros of vi coincide with
⋃

j=2,3 Singj

i . As vi

is a Killing vector field, Sing3
i is a totally-geodesic submanifold.

Proof of Theorem 6. First we show that at least on the double cover there exists a
continuous vector field vi with the required properties. In order to do this, it is sufficient
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to prove the following semi-local statement:

Locally near every point x there exist precisely two continuous

vector fields vi satisfying (10).
(S)

If λi−1(x) 
= λi 
= λi+1(x), then y ∈ Reg{i}(M). Then, �i(λi) 
= 0. Hence, vi 
= 0 in
a small neighborhood of x and the statement (S) is trivial.

Let us consider x ∈ Singj
i , where j = 2 or 3, and prove the statement in a small disk

neighborhood Un � x.
First, if a vector field vi satisfies (10), then the vector field −vi satisfies (10) as well.

As Singi is nowhere dense, the fields do not coincide. Therefore, we obtain at least two
different required vector fields.

Next, there exist no more than two such vector fields. Indeed, such a vector field vi

must vanish along Singj

i , as �i(λi) equals zero there, and it is non-zero in the complement.

This complement is connected, because Singj
i has codimension two (by the proven part of

Lemma 3 and as we explained in §2.3), and the claim follows.
At last, let us prove that such a continuous field vi exists in the small disk neighborhood

Un � x. As Un \Singj

i is connected, we can define vi in one of two possible ways at some

point x0 and extend by continuity along paths in Un \ Singj

i . We need to show that the
result is well-defined.

In order to do this we connect two paths φ0, φ1 from x0 to x1 in Un \ Singj
i by a

homotopy φτ in Un. The paths and the homotopy can be assumed smooth. As Singj

i has

codimension two, we can perturb the homotopy and make it to be transversal to Singj

i .

Thus, the intersection of Imageφτ
with Singj

i is a finite set {(tk, τk)} ∈ [0, 1]× [0, 1] and it

suffices to consider only one point of intersection y0 = φτ0(t0) = φ(t0, τ0) ∈ Singj

i . If we
can find the required field vi on a transversal two-dimensional disk at y0, we are done.

As we explained in §2.3, at almost every point y ∈ Singj
i we have λi−1(y) 
= λi+1(y).

(Actually, for j = 3 this is true at every point.) Thus, without loss of generality, we can
assume that λi−1(y0) 
= λi+1(y0).

Assume λi−1(y0) 
= λi = λi+1(y0). The case λi−1(y0) = λi 
= λi+1(y0) is completely
analogous.

Let A = {i, i + 1}. Then y0 ∈ RegA(M). Consider the leaf MA(y0). This is a two-
dimensional manifold transverse to Singj

i at y0. The homotopy can be perturbed to have
the image locally coinciding with MA(y0). As vi ∈ DA, the problem, thanks to Lemma 1,
is reduced to a local two-dimensional question on MA(y0).

Consider the restriction of the metrics to MA(y0). Denote by LA the tensor (1)

constructed for the restrictions of the metrics. We denote by λA ≤ λ′
A its eigenvalues.

By Lemma 1, λA is constant, λ′
A is not. If there exists a (continuous) vector field vA on MA

such that it vanishes precisely at y0, such that it is eigenvector of LA with eigenvalue λA

and such that its length is (λ′
A − λA)1/2, we are done. Indeed, by Lemma 1 the vector field

vi given by (
C−1/3

∣∣∣∣ ∏
α 
=i,i+1

(λi − λα)

∣∣∣∣
)1/2

vA,
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0
y

FIGURE 1. In dimension two, there exists a vector field orthogonal to all geodesics containing y0.

where C is given by formula (8), satisfies the conditions (10). As(
C−1/3

∣∣∣∣ ∏
α 
=i,i+1

(λi − λα)

∣∣∣∣
)1/2

is a smooth positive function, the existence of vA implies the existence of vi .
Let us prove the existence of such a vector field vA. At every y ∈ MA(y0), y 
= y0,

denote by lA the eigenspace of LA corresponding to λA. Let us show that for every
geodesic γ on MA(y0) passing through y0 the velocity vector γ̇ (t) is orthogonal (in the
restriction of g) to lA at every γ (t) 
= y0. Indeed, let IA

t be the one-parametric family
of the integrals from Theorem 2 constructed for the restrictions of g and ḡ to MA(y0).
Consider the integral IA

λA
. At the tangent plane to every point z consider the coordinates

such that the restriction of g to MA(y0) is given by diag(1, 1) and LA is diag(λA, λ′
A).

In these coordinates, the integral IA
t equals (λ′

A − t)ξ2
1 + (λA − t)ξ2

2 , so that IA
λA

is equal

to (λ′
A − λA)ξ2

1 . We see that the integral vanishes on every geodesic γ passing through y0.
Because λ′

A(z) 
= λA(z) for z 
= y0, we obtain that the component ξ1 of the velocity
vector of γ at z vanishes, which means that the eigenvalue of LA corresponding to λA is
orthogonal to γ .

Clearly, in MA(y0)\y0 there exists a vector field of length one such that it is orthogonal
to the geodesics passing through y0, see Figure 1.

Multiplying this vector field by (λ′
A − λA)1/2, we obtain a required vector field vA on

MA(y0) \ y0. We put vA = 0 at point y0. As (λ′
A − λA)1/2 converges to zero when x

tends to y0, the result is a required continuous vector field vA on MA(y0). Therefore, there
exists a vector field vi along MA(y0) (satisfying (10)). Thus, the vector vi at x1 does not
depend on the choice of path connecting x0 and x1. Finally, vi is well-defined at the whole
Un \ Singj

i , and is at least continuous on it.

At the points of Un ∩ Singj
i let us put vi equal to zero. As �i(λi) tends to zero when x

approaches Singj
i , the vector field is continuous on Un. Statement (S) is proven.

Then, at least on the double cover of Mn, there exists a continuous vector field vi

satisfying (10). Without loss of generality, we can assume that the vector field vi is defined
already on Mn.
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Now let us prove that the vector field vi is actually smooth. Clearly, it is smooth on
the complement to Singj

i , because it coincides with the appropriate field ∂/∂xi there.
Denote by Ft the flow of the vector field vi on Mn \ (Sing2

i ∪ Sing3
i ). This flow

is globally (i.e. for every value of t) defined. Indeed, if x /∈ Sing2
i ∪ Sing3

i , then
λi−1(x) < λi < λi+1(x). As vi is an eigenvector of L with eigenvalue λi and the
Nijenhuis tensor NL vanishes (Corollary 3), for every t we have λi−1(Ft (x)) = λi−1(x),
λi+1(Ft (x)) = λi+1(x). Therefore, the trajectory of the flow passing through x never
approaches the set Sing2

i ∪ Sing3
i .

The function J (η) := g(vi , η) is an integral of the geodesic flow, depending linearly
on the velocity. This implies that Ft acts by isometries on Mn \ (Sing2

i ∪ Sing3
i ).

As Mn \ (Sing2
i ∪ Sing3

i ) is everywhere dense in Mn, the map Ft can be extended by
completeness to act by isometries on the whole Mn. Thus, there exists a Killing vector
field on Mn coinciding with vi almost everywhere. As every Killing vector field is smooth,
the vector field vi is smooth. �

4. Proof of Theorem 1
We use induction by the dimension. If the dimension of the manifold is n < 2, Theorem 1
is trivial. Assume that for every dimension less than n Theorem 1 is true and consider
dim M = n.

Vanishing of the topological entropy for the lift of a dynamical system to a finite cover
(of a closed manifold) implies vanishing of the topological entropy of the original system.
Thus, we assume that already on Mn for every constant eigenvalue λi we can associate
a global vector field vi from Theorem 6. Therefore, for every constant λi , we globally
define the integral Ji such that its differential does not vanish over the points of Reg(Mn),
it commutes with all integrals It and it is functionally dependent with the integral Iλi .

By geodesic flow we will understand the restriction of the Hamiltonian system on TMn

with the Hamiltonian H(ξ) := g(ξ, ξ) to T1M
n = {ξ ∈ TMn | H(ξ) = 1}. The symplectic

form on TMn came from T ∗Mn via standard identification by g.
As T1M

n is compact, the variational principle (see, for example, [KH, Theorem 4.5.3])
holds, and we obtain

htop(g) = sup
µ∈B

hµ(g).

Here B is the set of all invariant ergodic probability measures on T1M
n and hµ is

the entropy of an invariant measure µ. Recall that a measure is said to be ergodic, if
µ(B)(1 − µ(B)) = 0 for all µ-measurable invariant Borel sets B.

Therefore, in order to prove Theorem 1, it is sufficient to prove that hµ(g) = 0 for all
µ ∈ B. Fix one such measure and let Supp(µ) be its support (the set of x ∈ Mn such that
every neighborhood Uε(x) has positive measure).

As the measure is ergodic, its support lies on a level surface of every invariant
continuous function. Then, Supp(µ) is included into a Liouville leaf ϒ . (Recall that
a Liouville leaf is a connected component of the set {It1 = c1, . . . , Itn = cn}, where
c1, . . . , cn are constants.)

Suppose a point ξ ∈ Supp(µ) is non-singular or is a removable singular point
(in the sense that every Iλi such that dIλi = 0 can be replaced by a linear integral Ji
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such that dJi 
= 0). Then, a small neighborhood U(ξ) of ξ in Supp(µ):
• has positive measure in µ;
• contains only points that are non-singular or removable-singular.
We will show that these two conditions imply that the entropy of µ is zero.

By the Implicit Function Theorem, ϒ is n-dimensional near ξ . Denote by O(ξ) the
orbit of the Poisson action of (Rn,+) containing ξ . As it is also n-dimensional, in a small
neighborhood of ξ it coincides with ϒ . Thus, U(ξ) ⊂ O(ξ).

The orbits of the Poisson action and the dynamic on them are well-studied (see, for
example, [A, §49]). There exists a diffeomorphism to

T k × Rn−k = S1 × · · · × S1︸ ︷︷ ︸
k

× R × · · · × R︸ ︷︷ ︸
n−k

with the standard coordinates φ1, . . . , φk ∈ (R mod 2π), tk+1, . . . , tn ∈ R such that in
these coordinates (the push-forward of) every trajectory of the geodesic flow is given by
the formula

(φ1(τ ), . . . , φk(τ ), tk+1(τ ), . . . , tn(τ ))

= (φ1(0) + ω1τ, . . . , φk(0) + ωkτ, tk+1(0) + ωk+1τ, . . . , tn(0) + ωnτ),

where the constants ω1, . . . , ωn are universal on T k × Rn−k .
We see that if at least one of the constants ωk+1, . . . , ωn is not zero, every point of

U(ξ) is wandering in Supp(µ) (see [KH, §3, Ch. 3] for a definition), which contradicts the
invariance of the measure. Then, the entropy of µ is zero.

If all constants ωk+1, . . . , ωn are zero, the coordinates tk+1, . . . , tn are constants on
the trajectories of the geodesic flow. As µ is ergodic, they are constant on the points of
Supp(µ). Then, Supp(µ) is (diffeomorphic to) the torus T k̄ of dimension k̄ ≤ k, and the
dynamics on Supp(µ) is (conjugate to) the linear flow on T k̄ . Then, the entropy of µ is
zero (see, for example, [KH, Proposition 3.2.1]).

Now suppose that Supp(µ) contains only singular points which are not removable.
If all of them belong to

⋃
i,j T Singj

i , then (because the measure is ergodic) Supp(µ) is

a subset of a certain T Singj
i . As Singj

i is totally geodesic, and by induction hypothesis the

topological entropy on Singj
i is zero, the entropy of µ is also zero.

The last case is when Supp(µ) contains a singular point which is not removable and
which does not belong to

⋃
i,j T Singj

i . Then, as all Singj
i are totally geodesic, and there

are finitely many of them, Supp(µ) contains a singular point ξ which is not removable
and such that its projection does not belong to

⋃
i,j Singj

i . Then, the projection of a small

neighborhood U(ξ) ⊂ Supp(µ) of ξ does not contain points of
⋃

i,j Singj

i .

From Theorems 5 and 6 it follows that for certain λ̄i such that λi is not constant the
differentials of Iλ̄i

vanish at ξ . As the number of such λ̄i is finite, and the measure is
ergodic, we obtain that there exists i such that:
• dIλ̄i

= 0 at every point of Supp(µ);
• the eigenvalue λi satisfies the assumptions of Lemma 2 (otherwise the singularity is

removable or ξ lies in
⋃

i,j T Singj

i ).
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Hence, by Lemma 2, for every point y of the projection of U(ξ) we have that MC(i)(y)

is compact. Then, by Theorem 5, for every η ∈ U(ξ), the projection of the trajectory
of the geodesic flow passing through η stays on the corresponding MC(i). As all MC(i)

passing through the projection of U(ξ) are compact and do not intersect one another, a
trajectory staying in one T1MC(i) never approaches another T1MC(i). Thus, as µ is ergodic,
all points of Supp(µ) belong to a certain T1MC(i)(y). Then, the dynamics on Supp(µ) is a
subsystem of the geodesic flow for the restriction of g to MC(i)(y). (Indeed, if a geodesic
of a metric lies on a submanifold, then it is a geodesic in the restriction of the metric to the
submanifold.) Finally, by induction assumptions, the entropy of µ is zero.

Thus, for every ergodic probabilistic invariant measure µ its entropy is zero. Finally,
the topological entropy is zero. �

Note added in proof: we received from B. Hasselblatt the following alternative argument
of the end of the proof. He confirmed our suggestion that the support of an invariant
ergodic Borel probability measure is the closure of some orbit. Here are the arguments.
Every non-empty (relatively) open subset of the support has positive measure (by definition
of support) and therefore almost every orbit visits it infinitely often (by the Birkhoff ergodic
theorem). A compact manifold is second countable, so the intersection of the sets of full
measure, obtained from the elements of a countable base, consists of orbits that are dense
in the support, and this set has full measure, hence is non-empty. Thus we can consider one
orbit, classify it according to singularity and then study the closure by already established
properties.

5. Topological restrictions for manifolds with infinite fundamental group: announcement

THEOREM 7. Suppose the Riemannian metrics g and ḡ on a closed connected
manifold Mn are geodesically equivalent and strictly non-proportional at least at one
point. Then some finite cover of Mn is diffeomorphic to the product Qk × T n−k of a
rational-elliptic manifold and the torus.

The proof of this theorem is lengthy and will appear elsewhere. Here we sketch the
proof only. It uses Corollary 1, methods developed in [M1, M4] and classical results of
[CG].

In [M1], it was shown that if a manifold with non-proportional geodesically equivalent
metrics has an infinite fundamental group, it admits a local product structure (equal to
a new Riemannian metric and two orthogonal foliations of complementary dimensions
Bk and Bn−k such that in a small neighborhood of almost every point all three objects
look as if they come from the Riemannian product of two Riemannian manifolds).
In [M4, Lemma 2], it was shown that (assuming that the initial metrics g and ḡ are strictly
non-proportional at least at one point), the restriction of the local-product metric to the
leaves of the foliations admits a metric that is geodesically equivalent to it and strictly
non-proportional to it at almost every point. By applying the same construction to the
leaves, we obtain that Mn admits a Riemannian metric h and m orthogonal foliations
Bk1 , Bk2 , . . . , Bkm of complementary dimension k1 + k2 + · · · + km = n such that:
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• the restriction of the metric h to Bk1 is flat;
• the leaves of Bk2 , Bk3 , . . . , Bkm are compact and have finite fundamental group

(this is actually the lengthy part of the proof; its proof it similar to the proof of [M1,
Theorem 2], but one can not apply [M1, Theorem 2] directly and should essentially
repeat all steps of its proof in a slightly different setting);

• the restriction of h to each of Bk2 , Bk3 , . . . , Bkm admits a metric that is geodesically
equivalent to it and is strictly non-proportional to it at least at one point;

• locally, in a neighborhood of every point, the metric h and the foliations Bki look as
if they (simultaneously) came from the direct product of m Riemannian manifolds.

Then, by Corollary 1, the universal cover of Bk2 × Bk3 × · · · × Bkm is rational elliptic, and
Theorem 7 follows from [CG, Theorem 9.2].

Theorem 7 allows us to generalize homotopic and homologic properties listed before
Corollary 1. Let rank π1(M) be the minimal number of generators of the fundamental
group, which span a subgroup of finite index, and π∗+1(M) = ⊕

i>1 πi(M) be the
sum of abelian higher homotopy groups. Denote dimQ π∗(M) = rank π1(M) +
dim π∗+1(M) ⊗ Q.

COROLLARY 4. Suppose the Riemannian metrics g and ḡ on a closed connected manifold
Mn are geodesically equivalent and strictly non-proportional at least at one point. Then,

dimQ π∗(Mn) ≤ n, dim H∗(Mn; Q) ≤ 2n and χ(Mn) ≥ 0.

For small dimensions, in view of Theorem 1, Corollary 4 follows from [PP2].
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