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Abstract

We prove an important partial case of the pseudo-Riemannian version of the projective
Lichnerowicz conjecture stating that a complete manifold admitting an essential group of
projective transformations is the round sphere (up to a finite cover).

1 Introduction

1.1 Definitions and result

Let M be a connected manifold of dimension n ≥ 3, let g be a (Riemannian or pseudo-
Riemannian) metric on it. We say that a metric ḡ on the same manifold M is geodesically
equivalent to g, if every g-geodesic is a reparametrized ḡ-geodesic. We say that they are affine
equivalent, if their Levi-Civita connections coincide.

As we recall in Section 2.1, the set of metrics geodesically equivalent to a given one (say, g) is
in one-to-one correspondence with the nondegenerate solutions of the equation (9). Since the
equation (9) is linear, the space of its solutions is a linear vector space. Its dimension is called
the degree of mobility of g. Locally, the degree of mobility of g coincides with the dimension of
the set (equipped with its natural topology) of metrics geodesically equivalent to g.

The degree of mobility is at least one (since const ·g is always geodesically equivalent to g) and is
at most (n + 1)(n + 2)/2, which is the degree of mobility of simply-connected spaces of constant
sectional curvature.
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Our main result is:

Theorem 1. Let g be a complete Riemannian or pseudo-Riemannian metric on a connected Mn

of dimension n ≥ 3. Assume that for every constant c 6= 0 the metric c · g is not the Riemannian
metric of constant curvature +1.

If the degree of mobility of the metric is ≥ 3, then every complete metric ḡ geodesically equivalent
to g is affine equivalent to g.

The assumption that the metrics are complete is important: the examples constructed by
Solodovnikov [70, 71] show the existence of complete metrics with big degree of mobility (all
metrics geodesically equivalent to such metrics are not complete).

Theorem 2. Let g be a complete Riemannian or pseudo-Riemannian metric on a closed (=com-
pact, without boundary) connected manifold Mn of dimension n ≥ 3. Assume that for every
constant c 6= 0 the metric c · g is not the Riemannian metric of constant curvature +1. Then, at
least one the following possibilities holds:

• the degree of mobility of g is at most two, or

• every metric g geodesically equivalent to ḡ is affine equivalent to g.

Remark 1. In the Riemannian case, Theorem 1 was proved in [57, Theorem 16] and in [56]. The
proof uses observations which are wrong in the pseudo-Riemannian situation; we comment on
them in Section 1.2. Our proof for the pseudo-Riemannian case is also not applicable in the
Riemannian case, since it uses lightlike geodesics in an essential way. In Section 2.5, we give a
new, shorter (modulo results of our paper) proof of Theorem 1 for the Riemannian metrics as
well.

Remark 2. In the Riemannian case, Theorem 2 follows from Theorem 1, since every Riemannian
metric on a closed manifold is complete. In the pseudo-Riemannian case, Theorem 2 is a separate
statement.

Remark 3. Moreover, the assumptions that the metric is complete and the dimension is ≥ 3 could
be removed from Theorem 2: by [60, Corollary 5.2] and [61, Corollary 1], if the degree of mobility
of g on closed (n ≥ 2)−dimensional manifold is at least three, then for a certain constant c 6= 0
the metric c · g is the Riemannian metric of curvature 1, or every metric geodesically equivalent
to g is affine equivalent to g.

The proofs in [60] and [61] are nontrivial; the proof of [60, Corollary 5.2] is in particularly based
on the results of Section 2.3.5 of the present paper.

1.2 Motivation I: projective Lichnerowicz conjecture

Recall that a projective transformation of the manifold (M, g) is a diffeomorphism of the manifold
that takes (unparametrized) geodesics to geodesics. The infinitesimal generators of the group of
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projective transformations are complete projective vector fields, i.e., complete vector fields whose
flows take (unparameterized) geodesics to geodesics.

Theorem 1 allows us to prove an important partial case of the following conjecture, which folklore
attributes (see [57] for discussion) to Lichnerowicz and Obata (the latter assumed in addition
that the manifold is closed, see, for example, [26, 63, 77]):

Projective Lichnerowicz Conjecture. Let a connected Lie group G act on a complete con-
nected pseudo-Riemannian manifold (Mn, g) of dimension n ≥ 2 by projective transformations.
Then, it acts by affine transformations, or for a certain c ∈ R \ {0} the metric c · g is the
Riemannian metric of constant positive sectional curvature +1.

We see that Theorem 1 implies

Corollary 1. The projective Lichnerowicz Conjecture is true under the additional assumption
that the dimension n ≥ 3 and that the degree of mobility of the metric g is ≥ 3.

Indeed, the pullback of the (complete) metric g under the projective transformation is a complete
metric geodesically equivalent to g. Then, by Theorem 1, it is affine equivalent to g, i.e., the
projective transformation is actually an affine transformation, as it is stated in Corollary 1.

Corollary 1 is thought to be the most complicated part of the solution of the projective Lichnerow-
icz conjecture for pseudo-Riemannian metrics. We do not know yet whether the Lichnerowicz
conjecture is true (for pseudo-Riemannian metrics), but we expect that its solution (= proof or
counterexample) will require no new additional ideas beyond those from the Riemannian case.

To support this optimistic expectation, let us recall that the projective Lichnerowicz conjecture
was recently proved for Riemannian metrics [51, 57]. The proof contained three parts:

(i) proof for the metrics with the degree of mobility 2 ([57, Theorem 15], [51, Chapter 4]),

(ii) proof under the assumption dim(M) ≥ 3 for the metrics with the degree of mobility ≥ 3
([57, Theorem 16]),

(iii) proof under the assumption dim(M) = 2 for the metrics with the degree of mobility ≥ 3,
[51, Corollary 5 and Theorem 7].

The most complicated (=lengthy; it is spread over [57, §§3.2–3.5, 4.2]) part was the proof under
the additional assumptions (ii).

The proof was based on the Levi-Civita description of geodesically equivalent metrics, on the
calculation of curvature tensor for Levi-Civita metrics with degree of mobility ≥ 3 due to
Solodovnikov [70, 71], and on global ordering of eigenvalues of aj

i := aipg
pj, where aij is a

solution of (9), due to [6, 54, 74]. This proof can not be generalized to the pseudo-Riemannian
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metrics. More precisely, a pseudo-Riemannian analog of the Levi-Civita theorem is much more
complicated, calculations of Solodovnikov essentially use positive-definiteness of the metric, and,
as examples show, the global ordering of eigenvalues of aj

i is simply wrong for pseudo-Riemannian
metrics.

Thus, Theorem 1 and Corollary 1 close the a priori most difficult part of the solution of the
Lichnerowicz conjecture for the pseudo-Riemannian metrics.

Let us now comment on (i), (iii), from the viewpoint of the possible generalization of the Rie-
mannian proof to the pseudo-Riemannian case. We expect that this is possible. More precisely,
the proof of (i) is based on a trick invented by Fubini [18] and Solodovnikov [70], see also
[48, 50, 51]. The trick uses the assumption that the degree of mobility is two to double the num-
ber of PDEs (for a vector field v to be projective for the metric g), and to lower the order of this
equation (the initial equations have order 2, the equations that we get after applying the trick
have order 1). This of courses makes everything much easier; moreover, in the Riemannian case,
one can explicitly solve this system [18, 64, 70]. After doing this, one has to analyze whether the
metrics and the projective field are complete; in the Riemannian case it was possible to do.

The trick survives in the pseudo-Riemannian setting. The obtained system of PDE was solved
for the simplest situations (for small dimensions [11, 58], or under the additional assumption that
the minimal polynomial of ai

j coincides with the characteristic polynomial). We expect that the
other part of the program could be realized for pseudo-Riemannian metrics as well, though of
course it will require a lot of work.

Now let us comment on the proof under the assumptions (iii): dim(M) = 2, degree of mobility is≥
3. The initial proof of [51] uses the description of quadratic integrals of geodesic flows of complete
Riemannian metrics due to [28]. This description has no analog for pseudo-Riemannian metrics.
Fortunately, one actually does not need this description anymore: in [11, 58] a complete list of
2-dimensional pseudo-Riemannian metrics admitting a projective vector field was constructed;
the degree of mobility for all these metrics has been calculated. The metrics that are interesting
for the setting (iii) are the metrics (2a, 2b, 2c) of [11, Theorem 1] and (3d) of [58, Theorem 1],
because all other metrics admitting projective vector fields have constant curvature or degree
of mobility equal to 2. All these metrics are given by relatively simple formulas using only
elementary functions. In order to prove the projective Lichnerowicz conjecture in the setting
(iii), one needs to understand which metrics from this list could be extended to a bigger domain;
it does not seem to be too complicated. For the metrics (2a, 2b,2c) of [11, Theorem 1] it was
already done in [38].

As a concequence of Theorem 1, we obtain the following simpler version of the Lichnerowicz
conjecture.

Corollary 2. Let Projo (respectively, Affo) be the connected component of the Lie group of pro-
jective transformations (respectively, affine transformations) of a complete connected pseudo-
Riemannian manifold (Mn, g) of dimension n ≥ 3. Assume that for no constant c ∈ R \ {0} the
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metric c · g is the Riemannian metric of constant positive curvature +1. Then, the codimension
of Affo in Projo is at most one.

Indeed, it is well known (see, for example [57], or more classical sources acknowelged therein)
that a vector field is projective if the (0, 2)−tensor

a := Lvg − 1
n+1

trace(g−1Lvg) · g (1)

is a solution of (9), where Lv is the Lie derivative with respect to v. Moreover, the projective
vector field is affine, iff the function (10) constructed by aij given by (1) is constant.

Now, let us take two infinitesimal generator of the Lie group Projo, i.e., two complete projective
vector fields v and v̄. In order to show that the the codimension of Affo in Projo is at most one,
it is sufficient to show that a linear combination of these vector fields is an affine vector field. We
consider the solutions a := Lvg− 1

n+1
trace(g−1Lvg) ·g and ā := Lv̄g− 1

n+1
trace(g−1Lv̄g) ·g of (9).

If a, ā, and g are linearly independent, the degree of mobility of the metric is ≥ 3. Then, Corollary
1 implies Projo = Affo.

Thus, a, ā, g are linearly dependent. Since the function λ := 1
2
gpqg

pq, i.e., the function (10)
constructed by a = g, is evidently constant, there exists a nontrivial linear combination â of a, ā
such that the corresponding λ̂ given by (10) is constant. Since the mapping

v 7→ a := Lvg − 1
n+1

trace(g−1Lvg) · g

is linear, the linear combination of v, v̄ with the same coefficients is an affine vector field.

1.3 Motivation II: new methods for investigation of global behavior
of geodesically equivalent metrics

The theory of geodesically equivalent metrics has a long and fascinating history. First non-trivial
examples were discovered by Lagrange [35]. Geodesically equivalent metrics were studied by
Beltrami [5], Levi-Civita [36], Painlevé [65] and other classics. One can find more historical
details in the surveys [3, 62] and in the introduction to the papers [42, 43, 46, 47, 53, 56, 57, 74].

The success of general relativity made necessary to study geodesically equivalent pseudo-Riemannian
metrics. The textbooks [15, 23, 66, 67] on pseudo-Riemannian metrics have chapters on geodesi-
cally equivalent metrics. In the popular paper [76], Weyl stated a few interesting open problems
on geodesic equivalence of pseudo-Riemannian metrics. Recent references (on the connection
between geodesically equivalent metrics and general relativity) include Ehlers et al [16, 17], Hall
and Lonie [20, 24, 25], Hall [21, 22].

In many cases, local statements about Riemannian metrics could be generalised for the pseudo-
Riemannian setting, though sometimes this generalisation is difficult. As a rule, it is very difficult
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to generalize global statements about Riemannian metrics to the pseudo-Riemannian setting.
Theory of geodesically equivalent metrics is not an exception: most local results could be gener-
alized. For example, the most classical results: the Dini/Levi-Civita description of geodesically
equivalent metrics [12, 36] and Fubini Theorem [18] were generalised in [2, 10, 7, 8, 9].

Up to now, no global (if the manifold is closed or complete) methods for investigation of geo-
desically equivalent metrics were generalized for the pseudo-Riemannian setting. More precisely,
virtually every global result on geodesically equivalent Riemannian metrics was obtained by com-
bining the following methods.

• “Bochner technique”. This is a group of methods combining local differential geometry
and Stokes theorem. In the theory of geodesically equivalent metrics, the most standard
(de-facto, the only) way to use Bochner technique was to use tensor calculus to canonically
obtain a nonconstant function f such ∆gf = const · f , where const ≥ 0, which of cause can
not exist on closed Riemannian manifolds.

An example could be derived from our paper: from the equation (55) it follows, that
(∆gλ),k = 2(n + 1)Bλ,k. Thus, for a certain const ∈ R we have (∆g(λ + const)) = 2(n +
1)B(λ + const). If B is positive, g is Riemannian, and M is closed, this implies that the
function λ is constant, which is equivalent to the statement that the metrics are affine
equivalent.

The first application of this technique in the theory of geodesically equivalent metrics
is due to Japan geometry school of Yano, Tanno, and Obata, see for example [27]. Also,
mathematical schools of Odessa and Kazan were extremely strong in this group of methods,
see the review papers [3, 62], and the references inside these papers.

Of cause, since for pseudo-Riemannian metrics the equation ∆gf = const · f could have
solutions for const ≥ 0, this technique completely fails in the pseudo-Riemannian case.

• “Volume and curvature estimations”. For geodesically equivalent metrics g and ḡ, the
repametrisation of geodesics is controlled by a function φ given by (5). This function also
controls the difference between Ricci curvatures of g and ḡ. Playing with this, one can
obtain obstructions for the existence of positively definite geodesically equivalent metrics
with negatively definite Ricci-curvature (assuming the manifold is closed, or complete with
finite volume). Recent references include [29, 68].

This method essentially uses the positive definiteness of the metrics.

• “Global ordering of eigenvalues of ai
j”. The existence of a metric ḡ geodesically equivalent to

g implies the existence of integrals of special form (we recall one of the integrals in Lemma
1) for the geodesic flow of the metric g [39, 42, 43]. In the Riemannian case, analyse of the

integrals implies global ordering of the eigenvalues of the tensor ai
j :=

(
det(ḡ)
det(g)

) 1
n+1

ḡipgpj,

where ḡip is the tensor dual to ḡij, see [6, 54, 74]. Combining it with the Levi-Civita de-
scription of geodesically equivalent metrics, one could describe topology of closed manifolds
admitting geodesically equivalent Riemannian metrics [33, 40, 41, 44, 45, 46, 47, 49, 52].
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Though the integrability survives in the pseudo-Riemannian setting [6, 73], the global
ordering of the eigenvalues is not valid anymore (there exist counterexamples), so this
method also is not applicable to the pseudo-Riemannian metrics.

Our proofs (we explain the scheme of the proofs in the beginning of Section 2) use essentially
new methods. We would like to emphasize here once more that the last step of the proof, which
uses the local results to obtain global statements, is based on the existence of lightlike geodesics,
and, therefore, is essentially pseudo-Reimannian.

A similar idea was used in [30], where it was proved that complete Einstein metrics are geodesi-
cally rigid: every complete metric geodesically equivalent to a complete Einstein metric is affine
equivalent to it.

We expect further application of these new methods in the theory of geodesically equivalent
metrics.

1.4 Additional motivation: superintegrable metrics.

Recall that a metric is called superintegrable, if the number of independent integrals of special
form is greater than the dimension of the manifold. Superintegrable systems are nowadays
a hot topic in mathematical physics, probably because almost all exactly solvable systems are
superintegrable. There are different possibilities for the special form of integrals; de facto the most
standard special form of the integrals is the so-called Benenti integrals, which are essentially the
same as geodesically equivalent metrics, see [4, 6, 34]. Theorem 2 of our paper shows that complete
Benenti-superintegrable metrics of nonconstant curvature cannot exist on closed manifolds, which
was a folklore conjecture.

Acknowledgements. We thank Deutsche Forschungsgemeinschaft (Priority Program 1154 —
Global Differential Geometry and research training group 1523 — Quantum and Gravitational
Fields) and FSU Jena for partial financial support, and Alexei Bolsinov and Mike Eastwood for
useful discussions. We also thank Abdelghani Zeghib for finding a misprint in the main theorem
in the preliminary version of the paper, and Graham Hall for his grammatical and stylistic
suggestions.

2 Proof of Theorems 1, 2

In Section 2.1, we recall standard facts about geodesically equivalent metrics and fix the notation.
In Section 2.2, we will prove Lemma 2, which is a purely linear algebraic statement. Given two
solutions of the equation (11), it gives us the equation (27). The coefficients in the equation
are a priori functions. We will work with this equation for a while: In Section 2.3.1, we prove
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(Lemma 5) that (under the assumptions of Theorem 1) one of the coefficients of (27) is actually
a constant. Later, we will show (Lemma 8) that the metric g determines the constant uniquely.

The equation (27) will be used in Section 2.3.6. The main result of this section is Corollary 8.
This corollary gives us (under assumptions of Theorem 1) an ODE that must be fulfilled along
every lightlike geodesic, and that controls the reparameterization that produces g-geodesics from
ḡ-geodesics. The ODE is relatively simple and could be solved explicitly (Section 2.4). Analyzing
the solutions, we will see that the geodesic is complete with respect to both metrics iff the function
controlling the reparametrization of the geodesics is a constant, which implies that the metrics
are affine equivalent. This proves Theorem 1 provided lightlike geodesics exist. As we mentioned
in the introduction, Theorem 1 was already proved [45, 57] for Riemannian metrics. Nevertheless,
for self-containedness, in Section 2.5 we give a new proof for Riemannian metrics as well, which
is much shorter than the original proof from [45, 57].

The proof of Theorem 2 will be done in Section 2.6. The idea is similar: we analyze a certain
ODE along lightlike geodesics (this ODE will easily follow from the equation (55), which is an
easy corollary of the equation (27)), and show that the assumption that the manifold is closed
implies that the solution of the ODE coming from the metric ḡ is constant, which implies that g
and ḡ are geodesically equivalent.

2.1 Standard formulas we will use

We work in tensor notation with the background metric g. That means, we sum with respect
to repeating indexes, use g for raising and lowering indexes (unless we explicitly say otherwise),
and use the Levi-Civita connection of g for covariant differentiation.

As it was known already to Levi-Civita [36], two connections Γ = Γi
jk and Γ̄ = Γ̄i

jk have the
same unparameterized geodesics, if and only if their difference is a pure trace: there exists a
(0, 1)-tensor φ such that

Γ̄i
jk = Γi

jk + δi
kφj + δi

jφk. (2)

The reparametrizations of the geodesics for Γ and Γ̄ connected by (2) are done according to the
following rule: for a parametrized geodesic γ(τ) of Γ̄, the curve γ(τ(t)) is a parametrized geodesic
of Γ, if and only if the parameter transformation τ(t) satisfies the following ODE:

φpγ̇
p =

1

2

d

dt

(

log

(∣
∣
∣
∣

dτ

dt

∣
∣
∣
∣

))

. (3)

(We denote by γ̇ the velocity vector of γ with respect to the parameter t, and assume summation
with respect to repeating index p.)

If Γ and Γ̄ related by (2) are Levi-Civita connections of metrics g and ḡ, then one can find
explicitly (following Levi-Civita [36]) a function φ on the manifold such that its differential
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φ,i coincides with the covector φi: indeed, contracting (2) with respect to i and j, we obtain
Γ̄p

pi = Γp
pi + (n + 1)φi. On the other hand, for the Levi-Civita connection Γ of a metric g we have

Γp
pk = 1

2
∂ log(|det(g)|)

∂xk
. Thus,

φi =
1

2(n + 1)

∂

∂xi

log

(∣
∣
∣
∣

det(ḡ)

det(g)

∣
∣
∣
∣

)

= φ,i (4)

for the function φ : M → R given by

φ :=
1

2(n + 1)
log

(∣
∣
∣
∣

det(ḡ)

det(g)

∣
∣
∣
∣

)

. (5)

In particular, the derivative of φi is symmetric, i.e., φi,j = φj,i.

The formula (2) implies that two metrics g and ḡ are geodesically equivalent if and only if for a
certain φi (which is, as we explained above, the differential of φ given by (5)) we have

ḡij,k − 2ḡijφk − ḡikφj − ḡjkφi = 0, (6)

where “comma” denotes the covariant derivative with respect to the connection Γ. Indeed, the
left-hand side of this equation is the covariant derivative with respect to Γ̄, and vanishes if and
only if Γ̄ is the Levi-Civita connection for ḡ.

The equations (6) can be linearized by a clever substitution: consider aij and λi given by

aij = e2φḡpqgpigqj, (7)

λi = −e2φφpḡ
pqgqi, (8)

where ḡpq is the tensor dual to ḡpq: ḡpiḡpj = δi
j. It is an easy exercise to show that the following

linear equations for the symmetric (0, 2)-tensor aij and (0, 1)-tensor λi are equivalent to (6).

aij,k = λigjk + λjgik. (9)

Remark 4. For dimension 2, the substitution (7,8) was already known to R. Liouville [37] and
Dini [12], see [11, Section 2.4] for details and a conceptual explanation. For arbitrary dimension,
the substitution (7,8) and the equation (9) are due to Sinjukov [69]. The underlying geometry is
explained in [13, 14].

Note that it is possible to find a function λ whose differential is precisely the (0, 1)-tensor λi:
indeed, multiplying (9) by gij and summing with respect to repeating indexes i, j we obtain
(gijaij),k = 2λk. Thus, λi is the differential of the function

λ := 1
2
gpqapq. (10)

In particular, the covariant derivative of λi is symmetric: λi,j = λj,i.
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We see that the equations (9) are linear. Thus the space of the solutions is a linear vector space.
Its dimension is called the degree of mobility of the metric g.

We will also need integrability conditions for the equation (9) (one obtains them substituting the
derivatives of aij given by (9) in the formula aij,lk − aij,kl = aipR

p
jkl + apjR

p
ikl, which is true for

every (0, 2)−tensor aij)

aipR
p
jkl + apjR

p
ikl = λl,igjk + λl,jgik − λk,igjl − λk,jgil. (11)

The integrability condition in this form was obtained by Sinjukov [69]; in equivalent form, it was
known to Solodovnikov [70].

As a consequence of these integrability conditions, we obtain that every solution aij of (9) must
commute with the Ricci tensor Rij:

ap
i Rpj = ap

jRip. (12)

To show this, we “cycle” the equation (11) with respect to i, k, l, i.e., we sum it with itself after
renaming the indexes according to (i 7→ k 7→ l 7→ i) and with itself after renaming the indexes
according to (i 7→ l 7→ k 7→ i). The first term at the left-hand side of the equation will disappear
because of the Bianchi equality Rp

ikl + Rp
kli + Rp

lik = 0, the right-hand side vanishes completely,
and we obtain

apiR
p
jkl + apkR

p
jli + aplR

p
jik = 0. (13)

Multiplying with gjk, using symmetries of the curvature tensor, and summing over the repeating
indexes we obtain apiR

p
l − aplR

p
i = 0, i.e., (12).

Remark 5. For further use, let us recall that the equations (9) are of finite type (they close after
two differentiations [14, 62, 69]). Since they are linear, and since in view of (10) they could be
viewed as equations on aij only, linear independence of the solutions on the whole connected
manifold implies linear independence of the restriction of the solutions to every neighborhood.
Thus, the assumption that the degree of mobility of g (on a connected M) is ≥ 3 implies that
the degree of mobility of the restriction of g to every neighborhood is also ≥ 3.

We will also need the following statement from [39, 74]. We denote by co(a)i
j the classical comatrix

(adjugate matrix) of the (1, 1)-tensor ai
j viewed as an n×n-matrix. co(a)i

j is also a (1, 1)-tensor.

Lemma 1 ([39, 74]). If the (0, 2)-tensor aij satisfies (9), then the function

I : TM → R, ( x
︸︷︷︸

∈M

, ξ
︸︷︷︸

∈TxM

) 7→ gpq co(a)p
γξ

γξq (14)

is an integral of the geodesic flow of g.
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Recall that a function is an integral of the geodesic flow of g, if it is constant along the orbits of
the geodesic flow of g, i.e., if for every parametrized geodesic γ(t) the function I (γ(t), γ̇(t)) does
not depend on t.

Remark 6. If the tensor aij comes from a geodesically equivalent metric ḡ by formula (7), the
integral (14) is

I(x, ξ) =
∣
∣
∣
det(g)
det(ḡ)

∣
∣
∣

2/(n+1)

ḡ(ξ, ξ).

In this form, Lemma 1 was already known to Painlevé [65].

2.2 An algebraic lemma

Lemma 2. Assume symmetric (0, 2) tensors aij, Aij, λij and Λij satisfy

aipR
p
jkl + apjR

p
ikl = λligjk + λljgik − λkigjl − λkjgil

AipR
p
jkl + ApjR

p
ikl = Λligjk + Λljgik − Λkigjl − Λkjgil,

(15)

where gij is a metric and Ri
jkl is its curvature tensor. Assume aij, Aij, and gij are linearly

independent at the point p. Then, at the point, λij is a linear combination of aij and gij.

Remark 7. We would like to emphasize here that, though the lemma is formulated in the tensor
notation, it is a purely algebraic statement (in the proof we will not use differentiation, and,
as we see, no differential condition on a,A is required). Moreover, we can replace Ri

jkl by any
(1,3)-tensor having the same algebraic symmetries (with respect to g) as the curvature tensor,
so that for example the fact that the first equation of (15) coincides with (11) will not be used
in the proof (but of cause this will be used in the applications of Lemma 2). The underlying
algebraic structure of the lemma is explained in the last section of [9].

Proof. First observe that the equations (15) are unaffected by replacing

aij 7→ aij + a · gij , λij 7→ λij + λ · gij , Aij 7→ Aij + A · gij , Λij 7→ Λij + Λ · gij

for arbitrary a, λ,A, Λ ∈ R. Therefore we may suppose, without loss of generality, that aij, λij, Aij, Λij

are trace-free, i.e.,
aijg

ij = λijg
ij = Aijg

ij = Λijg
ij = 0. (16)

Our assumptions become that aij and Aij are linearly independent and our aim is to show that
λij = const · aij.

We multiply the first equation of (15) by Al
l′ and sum over l. After renaming l′ 7→ l, we obtain

aipR
p
jkqA

q
l + apjR

p
ikqA

q
l = λpiA

p
l gjk + λpjA

p
l gik − λkiAjl − λkjAil. (17)
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We use symmetries of the Riemann tensor to obtain ap
i RpjkqA

q
l = ap

i RqkjpA
q
l = ap

i AqlR
q
kjp. After

substituting this in (17), we get

ap
i AqlR

q
kjp + ap

jAqlR
q
kip = λpiA

p
l gjk + λpjA

p
l gik − λkiAjl − λkjAil. (18)

Let us now symmetrize (18) by l, k

ap
i

(
AqlR

q
kjp + AqkR

q
ljp

)
+ ap

j

(
AqkR

q
lip + AqlR

q
kip

)

= λpiA
p
l gjk + λpjA

p
l gik − λkiAjl − λkjAil + λpiA

p
kgjl + λpjA

p
kgil − λliAjk − λljAik.

(19)

We see that the components in brackets are the left-hand side of the second equation of (15)
with other indexes. Substituting (15) in (19), we obtain

ap
i Λplgjk + ap

i Λpkgjl − Λjlaik − Λjkail + ap
jΛplgik + ap

jΛpkgil − Λilajk − Λikajl

= λpiA
p
l gjk + λpjA

p
l gik − λkiAjl − λkjAil + λpiA

p
kgjl + λpjA

p
kgil − λliAjk − λljAik.

(20)

Collecting the terms by g, we see that (20) is can be written as

(ap
i Λpl − λpiA

p
l ) gjk + (ap

i Λpk − λpiA
p
k) gjl +

(
ap

jΛpl − λpjA
p
l

)
gik +

(
ap

jΛpk − λpjA
p
k

)
gil

= Λjlaik + Λjkail + Λilajk + Λikajl − λkiAjl − λkjAil − λliAjk − λljAik.
(21)

After denoting
τil := ap

i Λpl − Ap
l λpi (22)

the equation (21) can be written as

τilgjk + τikgjl + τjlgik + τjkgil

= Λjlaik + Λjkail + Λilajk + Λikajl − λkiAjl − λkjAil − λliAjk − λljAik.
(23)

Multiplying (23) by gjk, contracting with respect to j, k, and using (16), we obtain

(n + 2)τil +
(
τjkg

jk
)
gil = Λpla

p
i + Λipa

p
l − λpiA

p
l − λlpA

p
i

(22)
= τil + τli.

(24)

We see that the right-hand side is symmetric with respect to i, l. Then, so should be the left-
hand-side implying τil = τli. Then, the equation (24) implies nτil +

(
τjkg

jk
)
gil = 0 implying

τil = 0. Then, the equation (23) reads

0 = Λjlaik + Λjkail + Λilajk + Λikajl − λkiAjl − λkjAil − λliAjk − λljAik. (25)

We alternate (25) with respect to j, k to obtain

0 = Λjlaik + Λikajl − λkiAjl − λljAik − Λklaij − Λijakl + λjiAkl + λlkAij. (26)

12



Let us now rename i↔ k in (26) and add the result with (25). We obtain

Λjlaik + Λikajl − λkiAjl − λljAik = 0.

In other words, Λαaβ + Λβaα = λβAα + λαAβ, where α and β stand for the symmetric indices jl
and ik, respectively.

But it is easy to check that a non-zero simple symmetric tensor Xαβ = PαQβ + PβQα determines
its factors Pα and Qβ up to scale and order (it is sufficient to check, for example, by taking Pα

and Qβ to be basis vectors). Since aij and Aij are supposed to be linearly independent, it follows
that λij = const · aij, as required.

2.3 Local results

Within this section, we assume that (M, g) is a connected Riemannian or pseudo-Riemannian
manifold of dimension n ≥ 3. Recall that the degree of mobility of a metric g is the dimension
of the space of the solutions of (9).

Lemma 3. Suppose that the degree of mobility of g is ≥ 3. Then for every solution aij of (9),
where λi is the differential of the function λ given by (10), there exists an open dense subset N
of M each of whose points admits an open neighborhood U , a constant B, and a function µ on
U , such that the hessian of λ satisfies on U the equation

λ,ij = µgij + Baij. (27)

Proof. If a = const · g, then λ is constant and the lemma holds with N = M , µ ≡ B = 0.
Otherwise there exists a solution A of (9) such that a,A, g are linearly independent. We denote
by Λi the (0, 1)-tensor from equation (8) corresponding to A, i.e., Λi = Λ,i for Λ := 1

2
Apqg

pq.

Then the integrability conditions (11) for the solutions a and A are given by (15) (with λij = λ,ij

and Λij = Λ,ij).

Let N be the set of all x ∈M which admit a neighborhood on which a,A, g are either pointwise
linearly independent or pointwise linearly dependent. Being a union of open sets, N is open. N
is also dense in M : every nonempty open set U ⊂M either consists only of points where a,A, g
are linearly dependent, then U ⊂ N ; or it contains a point where a,A, g are linearly independent
and which is therefore contained in N .

By definition every point in N has an open connected neighborhood U on which one of two
possibilities holds:

(a) a,A, g are pointwise linearly independent. Then, by Lemma 2, λ,ij = µgij + Baij, where
µ and B are functions; they are unique and smooth because of linear independence. Our
goal is to show that B is actually a constant, this will be done in Section 2.3.3.
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(b) a,A, g are pointwise linearly dependent. Then there exist a nonempty open connected

subset U ′ of U and (smooth) functions
1
c,

2
c on U ′ such that on U ′, we have a+

1
c A+

2
c g ≡ 0

or A+
1
c a+

2
c g ≡ 0. (To see that

1
c,

2
c can be chosen to be smooth, distinguish three

cases: the span of a,A, g has on U pointwise dimension 1; or A, g are linearly independent
somewhere; or a, g are linearly independent somewhere.) We will prove in Section 2.3.1

that
1
c,

2
c are actually constants. (Lemma 5 can be applied here because if a or A had the

form const · g on U ′, then also on M , in contradiction to linear independence.) Thus a,A, g
are linearly dependent on U ′ and therefore on M . This contradiction rules out case (b).

2.3.1 Linear dependence of three solutions over functions implies their linear de-
pendence over numbers.

We will use the following statement (essentially due to Weyl [75]); its proof can be found for
example in [74], see also [9, Lemma 1 in Section 2.4].

Lemma 4. Suppose aij and Aij are solutions of (9). Assume a = f · A, where f is a function.
Then f is actually a constant.

Our main goal is the following lemma, which settles the case (b) of the proof of Lemma 3.

Lemma 5. Suppose for certain functions
1
c,

2
c the solutions a,A (of (9) on a connected manifold

(Mn≥3, g)) satisfy

aij =
1
c gij+

2
c Aij. (28)

We assume in addition that A is not const · g. Then the functions
1
c,

2
c are constants.

Remark 8. Though we will use that the dimension of the manifold is at least three, the statement
is true in dimension two as well provided the curvature of g is not constant, see [33].

Proof of Lemma 5. We assume that
1
c,k or

2
c,k is not zero everywhere, and find a contradiction.

Differentiating (28) and substituting (9) and its analog for the solution A, we obtain

λigjk + λjgik =
1
c,k gij+

2
c Λigjk+

2
c Λjgik+

2
c,k Aij, (29)

which is evidently equivalent to

τigjk + τjgik =
1
c,k gij+

2
c,k Aij, (30)

where τi = λi−
2
c Λi. We see that for every fixed k the left-hand side is a symmetric matrix of

the form τivj + τjvi. If
1
c,k is not proportional to

2
c,k at some point x ∈M , this will imply that gij

14



also is of the form τivj + τjvi at x, which contradicts the nondegeneracy of g. Thus there exists
a function f with

1
c,k= f · 2

c,k . (31)

At each point x there exists a nonzero vector ξ = (ξk) ∈ TxM such that ξk 2
c,k= 0. Multiplying

(30) with ξk and summing with respect to k, we see that the right-hand side vanishes, and obtain
the equation τivj + τjvi = 0, where vi := ξkgik. Since vi 6= 0, we obtain τi = 0 at x; hence

the equation (30) reads f · 2
c,k gij = − 2

c,k Aij everywhere on M . Since the covector field
2
c,k

is pointwise nonzero on some nonempty connected open subset U of M , this equation implies
f · gij = −Aij on U . By Lemma 4, f is constant on U . By Remark 4, it is constant globally,
which contradicts the assumptions.

2.3.2 In dimension 3, only metrics of constant curvature can have the degree of
mobility ≥ 3.

Lemma 6. Assume that the conformal Weyl tensor Ch
ijk of the metric g on (a connected) Mn≥3

vanishes. If the curvature of the metric is not constant, the degree of mobility of g is at most
two.

Since the conformal Weyl tensor Ch
ijk of any metric on a 3-dimensional manifold vanishes, a

special case of Lemma 6 is

Corollary 3. The degree of mobility of each metric g of nonconstant curvature on M3 is at most
two.

Proof of Lemma 6. It is well-known that the curvature tensor of spaces with Ch
ijk = 0 has the

form
Rh

ijk = P h
k gij − P h

j gik + δh
kPij − δh

j Pik, (32)

where Pij := 1
n−2

(

Rij − R
2(n−1)

gij

)

(and therefore P h
k = Ppkg

ph). We denote by P the trace of

P h
k ; easy calculations give us P = R

2(n−1)
.

Substituting the equations (32) in the integrability conditions (11), we obtain

apiP
p
l gjk − apiP

p
k gjl + aliPjk − akiPjl + apjP

p
l gik − apjP

p
k gil + aljPik − akjPil

= λl,igjk + λl,jgik − λk,igjl − λk,jgil.
(33)

Multiplying (33) with gjk and summing with respect to repeating indexes, and using the symmetry
of Pij due to (12), we obtain

apiP
p
l = λl,i − P

n
ali + P̂

n
gli + 2λ

n
Pil, (34)
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where P̂ = gqγapqP
p
γ − λp

,p. Substituting (34) in (33), we obtain

0 = 2λ
n

Pilgjk − 2λ
n

Pikgjl + 2λ
n

Pjlgik − 2λ
n

Pjkgil

+ aliPjk − akiPjl + aljPik − akjPil − P
n
ailgjk + P

n
aikgjl − P

n
ajlgik + P

n
ajkgil.

(35)

Alternating the equation (35) with respect to j, k, renaming i ←→ k, and adding the result to
(35), we obtain

2λ
n

Pilgjk − 2λ
n

Pjkgil + aliPjk − akjPil − P
n
ailgjk + P

n
ajkgil = 0, (36)

which is evidently equivalent to

2λ
n

Pilgjk − 2λ
n

Pjkgil + ali

(
Pjk − P

n
gjk

)
− akj

(
Pil − P

n
gil

)
= 0. (37)

Hence (in view of Pjk − P
n
gjk 6= 0 because by assumption the curvature of g is not constant)

there exists a nonempty open set U such that every solution aij of (9) is on U a smooth linear
combination of gij and Pij. Thus every three solutions g, a, â of (9) are on U linearly dependent
over functions. By Lemma 5, they are on U , and therefore everywhere, linearly dependent over
numbers.

2.3.3 Case (a) of Lemma 3: proof that B = const

We consider a neighborhood U ⊆Mn≥3 such that a,A, g are linearly independent at every point
of the neighborhood; by Lemma 5, almost every point has such neighborhood.

Remark 9. Within the whole paper we understand “almost everywhere” and “almost every” in
the topological sense: a condition is fulfilled everywhere (or in almost every point) if and only if
it the set of the points where it is fulfilled is everywhere dense.

In the beginning of the proof of Lemma 3, we explained that at every point of the neighborhood
the equation (27) holds for certain smooth functions µ and B. Our goal is to show that B is
actually a constant (on U).

Because of Corollary 3, we can assume n = dim(M) ≥ 4. Indeed, otherwise by Corollary 3 the
curvature of the metrics is constant, and the metric is Einstein. Then, by [30, Corollary 1], the
equation (27) holds.

Within the proof, we will use the following equations, the first one is (9), the second follows from
Lemma 3. {

aij,k = λigjk + λjgik

λ,ij = µgij + Baij.
(38)
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Our goal will be to show that B is constant. We assume that it is not the case and show that for
a certain covector field ui and functions α, β on the manifold we have aij = αgij + βuiuj. Later
we will show that this gives a contradiction with the assumption that the degree of mobility is
three.

We consider the equation λi,j = µgij + Baij. Taking the covariant derivative ∇k, we obtain

λi,jk = µ,kgij + B,kaij + Baij,k
(9)
= µ,kgij + B,kaij + Bλigjk + Bλjgik. (39)

By definition of the Riemannian curvature, we have λi,jk − λi,kj = λpR
p
ijk. Substituting (39) in

this equation, we obtain

λpR
p
ijk = µ,kgij + B,kaij − µ,jgik −B,jaik + Bλjgik −Bλkgij. (40)

Now, substituting the second equation of (38) in (11), we obtain

apiR
p
jkl + apjR

p
ikl = B (aligjk + aljgik − akigjl − akjgil) . (41)

We multiply this equation by λl and sum over l. Using that apiR
p
jkqλ

q is evidently equal to
ap

i R
q
kjpλq, we obtain

ap
i R

q
kjpλq + ap

jR
q
kipλq = B (aiqλ

qgjk + ajqλ
qgik − akiλj − akjλi) . (42)

Substituting the expressions for Rq
kjpλq and Rq

kipλq, we obtain

1
τ i ajk+

1
τ j aik+

2
τ i gjk+

2
τ j gki −B,ja

p
i apk −B,ia

p
japk = 0, (43)

where
1
τ i:= ap

i B,p − µ,i + 2Bλi and
2
τ i:= ap

i µ,p − 2Bλpa
p
i .

Now let us work with (43): we alternate the equation with respect to i, k to obtain:

1
τ i ajk+

2
τ i gjk −B,ia

p
japk−

1
τ k aji−

2
τ k gji + B,ka

p
japi = 0. (44)

We rename j ↔ k and add the result to (43): we obtain

1
τ i ajk+

2
τ i gjk = B,ia

p
japk. (45)

Remark 10. If B = const on U , then
1
τ i ajk+

2
τ i gjk = 0. Since by Lemma 4 ajk is not proportional

to gjk, we have
1
τ i= 0, which implies that µ,i = 2Bλi.
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The condition (45) implies that under the assumption B 6= const the covectors
1
τ i,

2
τ i and B,i are

collinear: Moreover, for for certain functions
1
c,

2
c

1
c B,i =

1
τ i,

2
c B,i =

2
τ i,

1
c ajk+

2
c gjk = ap

japk. (46)

Taking the ∇k derivative of the last formula of (46), we obtain

λpa
p
jgik + λiajk + λpa

p
i gjk + λjaik =

1
c,k aij+

2
c,k gij+

1
c λigjk+

1
c λjgik.

Alternating the last formula with respect to i and k, we obtain:

3
τ i ajk−

3
τ k aij+

4
τ i gjk−

4
τ k gij = 0, (47)

where
3
τ i= λi+

1
c,i,

4
τ i= λpa

p
i−

1
c λi+

2
c,i. Let us explain that this equation imply either aij =

αgij + βuiuj (which was our goal), or
3
τ=

4
τ= 0.

We fix a point x ∈ U and assume that
3
τ i 6= 0 at the point. Then,

4
τ i 6= 0 as well. For every

vector ξ ∈ TxM we multiply (47) by ξj and sum with respect to j. Denoting A(ξ)k := ajkξ
j and

G(ξ)k := gjkξ
j, we obtain

3
τ i A(ξ)k−

3
τ k A(ξ)i+

4
τ i G(ξ)i−

4
τ k G(ξ)i = 0. (48)

Then, the (at most two-dimensional) subspaces of T ∗
xM generated by { 3

τ i, A(ξ)i} and by { 4
τ i

, G(ξ)i} coincide. Since the metric g is nondegenerate, varying ξ we obtain all possible elements of

T ∗
xM as G(ξ)i, so the subspaces generated by { 4

τ i, G(ξ)i} are all possible at most two-dimensional

subspaces containing
4
τ i, and the subspace generated by { 4

τ i} is the intersection of all such sub-

spaces. Similarly, the subspace generated by { 3
τ i} is the intersection of subspaces generated by

{ 3
τ i, A(ξ)i}. Thus,

3
τ i= −α

4
τ i for a certain constant α, and the equation (47) looks

3
τ i (ajk − αgjk)−

3
τ k (aij − αgjk) = 0. (49)

We take η ∈ TxM such that ηk 3
τ k= 0, multiply (49) by ηk and sum over k. We obtain that

A(η) = αG(η) for all such η. Thus, for a certain const β we have aij = αgij + β
3
τ i

3
τ j as we

claimed.

In the case where
3
τ and

4
τ vanish identically on U ′, using (46), (9) and the definition of

3
τ and

4
τ ,

we obtain λαaα
i = (n+2)

1
c−2λ

n+4
λi, i.e., that λα is an eigenvector of aj

i . Differentiating this equation

and substituting (38), (46), (9), and
3
τ= 0, we obtain

(

µ+
1
c B − (n+2)

1
c−2λ

n+4
B

)

aij =
(

(n+2)
1
c−2λ

n+4
µ− λpλp−

2
c B

)

gij − 2λiλj.

18



Assume that the coefficient of aij vanishes identically on U ′. Since gij has rank ≥ 4 and λiλj has
rank ≤ 1, the coefficient of gij vanishes identically on U ′, and thus the covector field λi vanishes
identically on U ′. Differentiating λi = 0, and using λij = µgij + Baij and Lemma 5, we see that
either a = const · g on U ′ and therefore everywhere, in contradiction to our linear independence
assumption; or B ≡ 0 on U ′, in contradiction to the choice of U ′. This shows that also in the case
3
τ=

4
τ≡ 0 there exist a nonempty open subset U ′′ of U ′ and functions α, β on U ′′ and a covector

field u on U ′′ with aij = αgij + βuiuj.

Let us now explain that if aij is not proportional to g and aij = α(x)gij +β(x)uiuj for every point
x of some neighborhood, then α is a smooth function, and β (resp. ui) can be chosen to be smooth
function (resp. smooth covector field), probably in a smaller neighborhood. Indeed, under these
assumptions α is the eigenvalue of aj

i of (algebraic and geometric) multiplicity precisely n − 1.
Then, it is a smooth function. Then, βuiuj is a smooth (0, 2)-tensor field. Since aij are gij are
not proportionaly, βuiuj is not zero and we can chose β = ±1. Then, we have precisely two
choices for the covector ui(x) at every point x and in a small neighborhood we can choose ui(x)
smoothly.

Thus, under the assumptions of this section, for every solution aij of (9), we have (for certain
functions α1, α2 and a covector field ui)

aij = α1gij + α2uiuj. (50)

For the solution Aij an analog of the equation (50) holds so (in a possible smaller neighborhood)
we also have (for certain functions β1, β2 and a covector field vi)

Aij = β1gij + β2vivj. (51)

Without loss of generality, we can assume that aij + Aij (which is certainly a solution of (9)) is
also not proportional to gij, otherwise we replace Aij by 1

2
Aij. Then,

aij + Aij = γ1gij + γ2wiwj. (52)

Subtracting (52) from the sum of (50) and (51), we obtain

(γ1 − α1 − β1)gij = α2uiuj + β2vivj − γ2wiwj. (53)

Since the tensor gij is nondegenerate, its rank coincides with the dimension of M that is at
least 4. The rank of the tensor α2uiuj + β2vivj − γ2wiwj is at most three. Thus the coefficient
(γ1 − α1 − β1) must vanish, which implies that

α2uiuj + β2vivj = γ2wiwj. (54)

We see that the rank of α2uiuj +β2vivj is at most one, which implies that ui is proportional to vi

(the coefficient of the proportionality is a function). Thus (54) implies that wi is proportional to
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ui as well. Thus aij, Aij, and gij are linearly dependent over functions, which implies by Lemma
5 that they are linearly dependent over numbers. This is a contradiction to the assumptions,
which proves the remaining part of Lemma 3.

2.3.4 The constant B is universal

Let (Mn≥3, g) be a connected pseudo-Riemannian manifold. Assume the degree of mobility of g
is ≥ 3, let (aij, λi) be a solution of the equations (9) such that aij 6= const ·gij for every const ∈ R.
Then, in a neighborhood of almost every point there exist a constant B and a function µ such
that the equations (38) hold. Note that the constant B determines the function µ: indeed,
multiplying (27) by gij and summing with respect to i, j we obtain λi

,i = nµ− 2Bλ.

Our goal is to prove the statement announced in the title of the section: we would like to show
that the constant B is the same in all such neighborhoods (which in particular implies that the
equations (38) hold at all points with one universal constant B and one universal function µ).
We will need the following

Corollary 4. Let aij, λi satisfy the equations (38) in a neighborhood U ⊆ (M, g) with a certain
constant B and a smooth function µ. Then the function λ given by (10) satisfies the equation

λ,ijk −B (2λ,kgij + λ,jgik + λ,igjk) = 0, (55)

Remark 11. This equation is a famous one; it naturally appeared in different parts of differential
geometry. Obata and Tanno used this equation trying to understand the connection between the
eigenvalues of the laplacian ∆g and the geometry and topology of the manifold. They observed
[64, 72] that the eigenfunctions corresponding to the second eigenvalue of the Laplacian of the
metrics of constant positive curvature −B on the sphere satisfy the equation (55).

Tanno [72] and Hiramatu [27] related the equations to projective vector fields. Tanno has shown
that for every solution λ of this equation the vector field λ i

, is a projective vector field (assuming
B 6= 0), Hiramatu proved the reciprocal statement under certain additional assumptions.

As it was shown by Gallot [19], see also [1, 59, 60], decomposability of the holonomy group of
the cone over a manifold implies the existence of a nonconstant solution of the equation (55) on
the manifold.

Proof of Corollary 4. Covariantly differentiating (27) and replacing the covariant derivative
of aij by (9) we obtain (55) from Remark 10 if a 6= const · g. If a = const · g, we have λ,i = 0,
thus (55) holds as well.

Corollary 5. Let the degree of mobility of a metric g on a connected (n > 3)-dimensional M be
≥ 3. Assume (aij, λi) is a solution of (9). Then, if λi 6= 0 at a point, then the set of the points
such that λi 6= 0 is everywhere dense.
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Remark 12. The assumption that the degree of mobility of g is ≥ 3 is important: Levi-Civita’s
description of geodesically equivalent metrics [36] immediately gives counterexamples.

Proof of Corollary 5. Combinig Lemma 3, Remark 10, and Corollary 4, we obtain that in
a neighborhood of almost every point λ given by (8) satisfies (55). By [72, Proposition 2.1],
the vector field λi is a projective vector field (almost everywhere, and, therefore, everywhere) on
(M, g). As it was shown for example in [23, Theorem 21.1(ii)], if it is not zero at a point, then
it is not zero at almost every point.

Corollary 6. Let aij, λi satisfy the equations (38) in a neighborhood U with a certain constant
B and a smooth function µ. Let λ be the function constructed by (10). Then for every geodesic
γ(t) the following equation holds (at every t ∈ γ−1(U)):

d3

dt3
λ(γ(t)) = 4Bg(γ̇(t), γ̇(t)) · d

dt
λ(γ(t)), (56)

where γ̇ denotes the velocity vector of the geodesic γ, and g(γ̇(t), γ̇(t)) := gij γ̇
iγ̇j.

Proof. Multiplying (55) by γ̇iγ̇j γ̇k and summing with respect to i, j, k we obtain (56).

Lemma 7. Let (Mn≥3, g) be a connected manifold and (aij, λi) be a solution of (9). Assume
almost every point has a neighborhood such that in this neighborhood there exists a constant B
and a smooth function µ such that the equation (27) is fulfilled. Then the constant B is the same
in all such neighborhoods.

Proof. It is sufficient to prove this statement locally, in a sufficiently small neighborhood of
arbitrary point. We take a small neighborhood U , two points p0, p1 ∈ U , and two neighborhoods
U(p0) ⊂ U , U(p1) ⊂ U of these points. We assume that our neighborhoods are small enough and
that we can connect every point of U(p0) with every point of U(p1) by a unique geodesic lying
in U . We assume that the equation (27) holds in U(pi) with the constant B := Bi; our goal is to
show that B0 = B1.

Suppose it is not the case. We consider all geodesics γp,p0 lying in U connecting all points
p ∈ U(p1) with p0, see the picture. We will think that γ(0) = p0 and γ(1) ∈ U(p1).

For every such geodesic γp,p0(t) there exists a point qp,p0 := γp,p0(tp,p0) on this geodesic such that
for all t ∈ [0, tp,p0) the following conditions are fulfilled:

1. the equations (38) are fulfilled with B = B0 in a small neighborhood of γ(t), and

2. for no neighborhood of γp,p0(tp,p0) the equations (38) are fulfilled with B = B0.

Then, at every such point γp,p0(tp,p0) we have that aij = 2
n
λgij. Indeed, the trace-free version of

(27) is
λ,ij − 1

n
λ k

,k = B(aij − 2
n
λgij) (57)
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p0

p
1

q

Figure 1: The geodesics γp,p0 , their velocity vectors at p0, and the point qp,p0 = γp,p0(tp,p0) on one
of these geodesics

implying that B is the coefficient of proportionality of two smooth tensors. If aij 6= 2
n
λgij at

γp,p0(tp,p0), we have aij − 2
n
λgij 6= 0, and B can be prolonged to a smooth function in a small

neighborhood of γp,p0(tp,p0). Since it is locally-constant, it is (the same) constant at all points of
the neighborhood of γp,p0(tp,p0) contradicting the conditions 1, 2.

Moreover, at every such point γp,p0(tp,p0) we have λi = 0. Indeed, otherwise we multiply (55) by
gij and sum with respect to i, j. We obtain λi

,ik = 2(n + 1)Bλk. We again have that B is the
coefficient of proportionality of two smooth tensors. Arguing as above we obtain that λi = 0 at
every point γp,p0(tp,p0).

Since at every point γp,p0(tp,p0) we have λi = 0, we have that d
dt

λ(γp,p0(t))|t=tp,p0
= 0. Then, the

set of all such γp,p0(tp,p0) contains a smooth (connected) hypersurface (because the set of zeros of
the derivatives of the solutions of the equation (56) depends smoothly on the initial data and on
g(γ̇, γ̇)). We denote this hypersurface by H.

Since λi = 0 at every point of H, the function λ is constant (we denote it by λ̃ ∈ R) on H.

Now let us return to the geodesics γp,p0 connecting points p ∈ U(p1) with p0. We consider the
integral I given by (14). Direct calculations show that at every point q where aij = c · gij the
integral is given by

I(ξ) = cn−1g(ξ, ξ) (58)

(for every tangent vector ξ ∈ TqM). As we explained above, every such geodesic passing through
a point of H has a point such that aij = c · gij, where c = 2

n
λ̃ is a constant. Since the integral is

constant on the orbits, we have that I (γ̇p,p0(0)) = cn−1 · g (γ̇p,p0(0), γ̇p,p0(0)). Then, the measure
of the subset

{ξ ∈ Tp0M | I(ξ) = cn−1 · g(ξ, ξ)} ⊆ Tp0M

is not zero. Since this set is given by an algebraic equation, it must coincide with the whole Tp0M .
Then, aij = c · gij at the point p0. Since we can replace p0 by every point of its neighborhood
U(p0), we obtain that aij = cn−1 · gij at every point of U(p0). By Remark 5, a = cn−1 · g on the
whole manifold.
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2.3.5 The metric g uniquely determines B.

By Lemma 3, under the assumption that the degree of mobility is ≥ 3, for every solution a of
(9) there exists a constant B such that the equation (27) holds on a suitable open set. In this
chapter we show that the constant B is the same for all (nontrivial) solutions aij, i.e., the metric
determines it uniquely.

Lemma 8. Suppose two nonconstant functions f, F : Mn → R on a connected manifold (Mn, g)
of dimension n > 1 satisfy

f,ijk − b (2f,kgij + f,jgik + f,igjk) = 0,
F,ijk −B (2F,kgij + F,jgik + F,igjk) = 0,

(59)

where b and B are constants. Assume that there exists a point where the derivative of f is nonzero
and a point where the derivative of F is nonzero. Then, b = B.

Proof. By definition of the curvature, for every function f , we have f,ijk − f,ikj = fpR
p
ijk;

replacing f,ijk by the right-hand side of the first equation of (59) we obtain.

f,pR
p
ijk = b (f,kgij − f,jgik) . (60)

The same is true for the second equation of (59):

F,pR
p
ijk = B (F,kgij − F,jgik) . (61)

Multiplying (60) by F k
, , summing with respect to repeating indexes and using (61) we obtain

B
(
F,pf

p
, gij − F,jf,i

)
= b

(
F,pf

p
, gij − F,if,j

)
. (62)

Multiplying by gij and summing with respect to repeating indexes, we obtain B(n− 1)F,pf
p

, =
b(n − 1)F,pf

p
, . If F,pf

p
, 6= 0 we are done: B = b. Assume F,pf

p
, = 0. Then, (62) reads

BF,jf,i = bF,if,j. Since by Corollary 5 there exists a point where F,j and f,i are both nonzero, we
obtain again B = b. Then, f,i is proportional to F,j. Hence, B = b.

2.3.6 An ODE along geodesics

Lemma 9. Let g be a metric on a connected Mn≥3 of degree of mobility ≥ 3. For a metric
ḡ geodesically equivalent to g, let us consider aij, λi, and φ given by (7,8,5). Then, the exist
constants B, B̄ such that the following formula holds:

φi,j − φiφj = −Bgij + B̄ḡij. (63)
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Proof. We covariantly differentiate (8) (the index of differentiation is “j”); then we substitute
the expression (6) for ḡij,k to obtain

λi,j = −2e2φφjφpḡ
pqgqi − e2φφp,j ḡ

pqgqi + e2φφpḡ
psḡsl,j ḡ

lqgqi

= −e2φφp,j ḡ
pqgqi + e2φφpφsḡ

psgij + e2φφjφlḡ
lqgqi

, (64)

where ḡpq is the tensor dual to ḡpq, i.e., ḡpiḡpj = δi
j . We now substitute λi,j from (27), use that

aij is given by (7), and divide by e2φ for cosmetic reasons to obtain

e−2φµgij + Bḡpqgpjgqi = −φp,j ḡ
pqgqi + φpφsḡ

psḡij + φjφlḡ
lqgqi. (65)

Multiplying with giξḡξk, we obtain

φk,j − φkφj = (φpφqḡ
pq − e−2φµ)

︸ ︷︷ ︸

b̄

ḡkj −Bgkj. (66)

The same holds with the roles of g and ḡ exchanged (the function (5) constructed by the inter-
changed pair ḡ, g is evidently equal to −φ). We obtain

−φk;j − φkφj = (φpφqg
pq − e2φµ̄)

︸ ︷︷ ︸

b

gkj − B̄ḡkj, (67)

where φi;j denotes the covariant derivative of φi with respect to the Levi-Civita connection of the
metric ḡ. Since the Levi-Civita connections of g and of ḡ are related by the formula (2), we have

−φk;j − φkφj = −φk,j + 2φkφj
︸ ︷︷ ︸

−φk;j

−φkφj = −(φk,j − φkφj).

We see that the left hand side of (66) is equal to minus the left hand side of (67). Thus,
b · gij − B̄ · ḡij = B · gij − b̄ · ḡij holds on U . Since the metrics g and ḡ are not proportional on U
by assumption, b̄ = B̄, and the formula (66) coincides with (63).

Corollary 7. Let g, ḡ be geodesically equivalent metrics on a connected Mn≥3 such that the
degree of mobility of g is ≥ 3. We consider a (parametrized) geodesic γ(t) of the metric g, and
denote by φ̇, φ̈ and

...
φ the first, second and third derivatives of the function φ given by (5) along

the geodesic. Then, there exists a constant B such that for every geodesic γ the following ordinary
differential equation holds:

...
φ = 4Bg(γ̇, γ̇)φ̇ + 6φ̇φ̈− 4(φ̇)3 , (68)

where g(γ̇, γ̇) := gij γ̇
iγ̇j.

Since lightlike geodesics have g(γ̇, γ̇) = 0 at every point, a partial case of Corollary 7 is
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Corollary 8. Let g, ḡ be geodesically equivalent metrics on a connected Mn≥3 such that the
degree of mobility of g is ≥ 3. Consider a (parametrized) lightlike geodesic γ(t) of the metric g,
and denote by φ̇, φ̈ and

...
φ the first, second and third derivatives of the function φ given by (5)

along the geodesic. Then, along the geodesic, the following ordinary differential equation holds:
...
φ = 6φ̇φ̈− 4(φ̇)3 . (69)

Proof of Corollary 7. If φ ≡ 0 in a neighborhood U , the equation is automatically fulfilled.
Then, it is sufficient to prove Corollary 7 assuming φi is not constant.

The formula (63) is evidently equivalent to

φi,j = B̄ḡij −Bgij + φiφj. (70)

Taking the covariant derivative of (70), we obtain

φi,jk = B̄ḡij,k + φi,kφj + φj,kφi. (71)

Substituting the expression for ḡij,k from (6), and substituting B̄ḡij given by (63), we obtain

φi,jk = B̄(2ḡijφk + ḡikφj + ḡjkφi) + φi,kφj + φj,kφi

= B(2gijφk + gikφj + gjkφi) + 2(φkφi,j + φiφj,k + φjφk,i)− 4φiφjφk
(72)

Contracting with γ̇iγ̇j γ̇k and using that φi is the differential of the function (5) we obtain the
desired ODE (68).

2.4 Proof of Theorem 1 for pseudo-Riemannian metrics

Let g be a metric on a connected Mn≥3. Assume that for no constant c 6= 0 the metric c · g is
Riemannian, which in particular implies the existence of lightlike geodesics.

Let ḡ be geodesically equivalent to g. Assume both metrics are complete. Our goal is to show
that φ given by (5) is constant, because in view of (2) this implies that the metrics are affine
equivalent.

Consider a parameterized lightlike geodesic γ(t) of g. Since the metrics are geodesically equiv-
alent, for a certain function τ : R → R the curve γ(τ) is a geodesic of ḡ. Since the metrics are
complete, the reparameterization τ(t) is a diffeomorphism τ : R→ R. Without loss of generality
we can think that τ̇ := d

dt
τ is positive, otherwise we replace t by −t. Then, the equation (3)

along the geodesic reads
φ(t) = 1

2
log(τ̇(t)) + const0. (73)

Now let us consider the equation (69). Substituting

φ(t) = −1
2
log(p(t)) + const0 (74)
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in it (since τ̇ > 0, the substitution is global), we obtain
...
p = 0. (75)

The solution of (75) is p(t) = C2t
2 + C1t + C0. Combining (74) with (73), we see that τ̇ =

1
C2t2+C1t+C0

. Then

τ(t) =

∫ t

t0

dξ
C2ξ2+C1ξ+C0

+ const. (76)

We see that if the polynomial C2t
2 + C1t + C0 has real roots (which is always the case if C2 = 0,

C1 6= 0), then the integral explodes in finite time. If the polynomial has no real roots, but C2 6= 0,
the function τ is bounded. Thus, the only possibility for τ to be a diffeomorphism is C2 = C1 = 0
implying τ(t) = 1

C0
t + const1 implying τ̇ = 1

C0
implying φ is constant along the geodesic.

Since every two points of a connected pseudo-Riemannian manifold such that for no constant
c the metric c · g is Riemannian can be connected by a sequence of lightlike geodesics, φ is a
constant, so that φi ≡ 0, and the metrics are affine equivalent by (2).

2.5 Proof of Theorem 1 for Riemannian metrics

As we already mentioned in the introduction and at the beginning of Section 2, Theorem 1 was
proved for Riemannian metrics in [45, 57]. We present an alternative proof, which is much shorter
(modulo the results of the previous sections and a nontrivial result of Tanno [72]).

We assume that g is a complete Riemannian metric on a connected manifold such that its degree
of mobility is ≥ 3. Then, by Corollary 4, the function λ is a solution of (55). If the metrics are
not affine equivalent, λ is not identically constant.

Let us first assume that the constant B in the equation (55) is negative. Under this assumption,
the equation (55) was studied by Obata [64], Tanno [72], and Gallot [19]. Tanno [72] and
Gallot [19] proved that a complete Riemannian g such that there exists a nonconstant function
λ satisfying (55) must have a constant positive sectional curvature. Applying this result in our
situation, we obtain the claim.

Now, let us suppose B ≥ 0. Then, one can slightly modify the proof from Section 2.4 to obtain
the claim. More precisely, substituting (74) in (68), we obtain the following analog of the equation
(75): ...

p = 4Bg(γ̇, γ̇)ṗ. (77)

If B = 0, the equation coincides with (75). Arguing as in Section 2.4, we obtain that φ is constant
along the geodesic.

If B > 0, the general solution of the equation (77) is

C + C+e2
√

Bg(γ̇,γ̇)·t + C−e−2
√

Bg(γ̇,γ̇)·t. (78)
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Then, the function τ satisfies the ODE τ̇ = 1

C+C+e2
√

Bg(γ̇,γ̇)·t+C−e−2
√

Bg(γ̇,γ̇)·t
implying

τ(t) =

∫ t

t0

dξ

C+C+e2
√

Bg(γ̇,γ̇)·ξ+C−e−2
√

Bg(γ̇,γ̇)·ξ
+ const. (79)

If one of the constants C+, C− is not zero, the integral (79) is bounded from one side, or explodes
in finite time. In both cases, τ is not a diffeomorphism of R on itself, i.e., one of the metrics is
not complete. The only possibility for τ to be a diffeomorphism of R on itself is C+ = C− = 0.
Finally, φ is a constant along the geodesic γ.

Since every two points of a connected complete Riemannian manifold can be connected by a
geodesic, φ is a constant, so that φi ≡ 0, and the metrics are affine equivalent by (2).

Remark 13. Similar idea (contracting the equation with lightlike geodesic and investigating the
obtained ODE along the geodesic) was recently used in [31, 59]

2.6 Proof of Theorem 2

Let g be a complete pseudo-Riemannian metric on a connected closed manifold Mn such that
for no const 6= 0 the metric const · g is Riemannian (if g is Riemannian, Theorem 2 follows from
Theorem 1). We assume that the degree of mobility of g is ≥ 3. Our goal is to show that every
metric ḡ geodesically equivalent to g is actually affine equivalent to g.

We consider the function λ constructed by (10) for the solution aij of (9) given by (7). We
consider a lightlike geodesic γ(t) of the metric g, and the function λ(γ(t)). By Corollary 6, the
function λ(γ(t)) satisfies the ODE d3

dt3
λ(γ(t)) = 0. Hence λ(γ(t)) = C2t

2 + C1t + C0. If C2 6= 0,
or C1 6= 0, then the function λ is not bounded; that contradicts the compactness of the manifold.
Thus λ(γ(t)) is constant along every lightlike geodesic. Since every two points can be connected
by a sequence of lightlike geodesics, λ is constant. Thus λi = 0 implying in view of (8) that
φi = 0 implying in view of (6) that the metrics are affine equivalent.
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