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Abstract

Two metrics g and ḡ are geodesically equivalent, if they share the same (unpa-
rameterized) geodesics. We introduce two constructions that allow one to reduce
many natural problems related to geodesically equivalent metrics, such as the
classification of local normal forms and the Lie problem (the description of pro-
jective vector fields), to the case when the (1, 1)−tensor Gi

j := gikḡkj has one real
eigenvalue, or two complex conjugate eigenvalues, and give first applications. As
a part of the proof of the main result, we generalize Topalov-Sinjukov (hierarchy)
Theorem for pseudo-Riemannian metrics

1 Introduction

Definition 1. Let g and ḡ be Riemannian or pseudo-Riemannian metrics on the same
manifold Mn. We say that they are geodesically equivalent (notation: g ∼ ḡ), if they
have the same geodesics considered as unparametized curves.

Given two metrics, we consider the (1, 1)−tensor L = L(g, ḡ) defined by

Li
j :=

(
det(ḡ)

det(g)

) 1

n+1

ḡikgkj. (1)
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(Replacing g by −g if necessary, we can always assume that (1) is well-defined.)

The goal of this paper is to give two constructions: gluing and splitting.

• The simplified version of the gluing construction does the following. Consider
two manifolds M1 and M2 with pairs of geodesically equivalent metrics h1 ∼ h̄1

on M1 and h2 ∼ h̄2 on M2. Assume that the corresponding (1, 1)-tensor fields
L1 = L(h1, h̄1) and L2 = L(h2, h̄2) have no common eigenvalues in the sense that
for any two points x1 ∈ M1, x2 ∈ M2 we have

Spectrum L1(x1) ∩ Spectrum L2(x2) = ∅.

Then one can naturally construct a pair of geodesically equivalent metrics g ∼ ḡ

on the direct product M = M1 × M2. These new metrics g and ḡ differ from the
direct product metrics h1 +h2 and h̄1 + h̄2 on M1×M2, but can be obtained from
them by explicit formulas involving L1 and L2 (see (8), (9) below). We denote
this by

(M, g, ḡ) = (M1, h1, h̄1) ×(L1,L2) (M2, h2, h̄2).

The corresposponding (1, 1)−tensor L = L(g, ḡ) is, however, the direct sum of L1

and L2 in the natural sense: for every

ξ = ( ξ1︸︷︷︸
∈Tx1

M1

, ξ2︸︷︷︸
∈Tx2

M2

)∈ T(x1,x2)(M1 × M2) we have L(ξ) = (L1(ξ1), L2(ξ2)) .

• The splitting construction is the inverse operation. Its local version can be de-
scribed as follows.

Consider a manifold M with two geodesically equivalent metrics g ∼ ḡ. Assume
that at a point p ∈ M the corresponding (1, 1)−tensor L = L(g, ḡ) has at least two
distinct eigenvalues that are not conjugates of each other. Then choose a partition
of the spectrum of L into two disjoint nonempty subsets S1 ⊔ S2 such that each
pair of complex-conjugate eigenvalues lies in the same subset. Equivalently, one
can say that the characteristic polynomial χ(t) of L is factorised into two real
polynomials χ1(t) · χ2(t) with no common roots and Si is just the set of roots of
χi(t).
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Then there is a neighborhood U = U(p) ⊂ M such that in the above notation
the triple (U, g, ḡ) can be presented as

(U, g, ḡ) = (U1, h1, h̄1) ×(L1,L2) (U2, h2, h̄2),

with dim U1 = deg χ1, dim U2 = deg χ2. The splitting construction gives an
explicit formula for the pair of geodesically equivalent metrics hi ∼ h̄i on Ui in
terms of g, ḡ, L and the chosen factorisation χ(t) = χ1(t) · χ2(t) (see (5), (6)
below).

The splitting construction is, of course, more important: it allows one to “decompose”
(M, g, ḡ) at least locally into simpler pieces (Ui, hi, h̄i) of the same kind. From the
topological viewpoint this decomposition (i.e., the existence of two transversal foliations
of complementary dimensions on M) is, in fact, very natural and is induced by the (1, 1)-
tensor field L itself. We show that the Nijenhuis torsion of L vanishes (Theorem 1)
and, as result, the partition S1 ⊔ S2 of the spectrum of L leads immediately to two
natural integrable distributions that define on M the desired foliations (Theorem 2).
The geometric part of the construction is much deeper. We show in particular that M

carries two hidden locally product pseudo-Riemannian metrics h and h̄ which can be
canonically reconstructed from g, ḡ by means of some non-trivial (and, in our opinion,
beautiful) formulas (Theorem 3) involving the information about the partition of the
spectrum. Notice that we formulate all of our results in invariant terms which makes
it possible to apply them to study global properties of manifolds with geodesically
equivalent metrics.

In the Riemannian case, these constructions were obtained in [Ma1, Ma5], and played
an important role in recent developments in the theory of geodesically equivalent Rie-
mannian metrics. Roughly speaking, these constructions allow one to reduce many
natural questions about geodesically equivalent metrics to the case when the (1, 1)−
tensor L(g, ḡ) has one real eigenvalue, or two complex-conjugate eigenvalues.

We expect similar applications in the theory of pseudo-Riemannian metrics. The main
idea is still the same: by iterating the splitting construction, each pair of geodesically
equivalent metrics (g, ḡ) can be canonically “decomposed” into natural “components”
(hi, h̄i), i = 1, . . . , s, of smaller dimensions with the same property hi ∼ h̄i, but with a
much simpler structure of the tensor Li = L(hi, h̄i). Moreover, some other important
geometrical objects appearing in this context inherit this decomposition. Thus, we
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are able to work with individual “components” and, as a result, to reduce essentially
technical difficulties. We give more details and comments in Sections 2.1, 2.2.

It is worth noticing that compared to Riemannian geometry, the gluing/splitting con-
struction in the pseudo-Riemannian case seems to be even more important because it
replaces to some extent the classical Levi-Civita theorem providing a canonical form
for a pair of geodesically equivalent Riemannian metrics. The absence of a reasonable
analogue of the Levi-Civita theorem in the pseudo-Riemannian case is, in fact, the main
reason why the “Riemannian” proof of the gluing/splitting theorems cannot be gener-
alised to the case of pseudo-Riemannian metrics, where one has to develop essentially
different techniques (see Remark 6).

A part of our proof of Theorems 3 and 4 could be consider as a separate result. It is a
generalisation of a construction by Sinjukov [Si1] and Topalov [To, MT2] which makes
it possible to build, starting from a given pair of geodesically equivalent metrics g ∼ ḡ,
a whole family of geodesically equivalent pairs gf ∼ ḡf . We give an invariant explana-
tion of this construction which works both in the Riemannian and pseudo-Riemannian
context and show that such a family is, in fact, very large: as its parameter, f , one
can take an arbitrary real-analytic function satisfying certain natural assumptions, see
Section 1.3 for more details.

1.1 Splitting Lemma

Definition 2. A local-product structure on Mn is a triple (h,B1, B2), where h is a
pseudo-Riemannian metric, and B1, B2 are foliations of dimensions r and n−r (1 ≤ r <

n) such that in a neighborhood of each point p ∈ Mn one can choose local coordinates

(x, y) =
(
(x1, x2, ..., xr), (yr+1, yr+2, ..., yn)

)
,

satisfying the following conditions:

1) the leaves of B1 are given by y = const ∈ R
n−r;

2) the leaves of B2 are given by x = const ∈ R
r;

4



3) the metric h takes the form

ds2
h =

r∑

i,j=1

hij(x) dxidxj +
n∑

α,β=r+1

hαβ(y) dyαdyβ;

in other words, the matrix of h is block-diagonal and its first r × r block depends on
the x-coordinates and the second (n− r)× (n− r) block depends on the y-coordinates:

h =

(
h1(x) 0

0 h2(y)

)
.

Example 1. A model example of manifolds with local-product structure is obviously
the direct product of two pseudo-Riemannian manifolds (M r

1 , h1) and (Mn−r
2 , h2). In

this case, the leaves of the foliations B1 and B2 are respectivly M r
1 × {y}, y ∈ Mn−r

2

and Mn−r
2 × {x}, x ∈ M r

1 . The metric h is the usual product metric h1 + h2. Locally,
every local-product structure is as in this model example.

Geometrically, the existence of a local-product structure for a given metric h is equiv-
alent to the following condition: TpM splits into the direct sum of two nontrivial or-
thogonal subspaces U, V ⊂TpM invariant with respect to the holonomy group. Indeed,
if (h,B1, B2) is a local-product structure, then U = TpB1 and V = TpB2 are such sub-
spaces. If the orthogonal subspaces U, V ⊂TpM (such that U ⊕V = TpM) are invariant
with respect to the holonomy group, then, as it was shown by De Rham [DR] and Wu
[Wu], the parallel translation of these subspaces does not depend on the curve, and
generates integrable distributions, whose integral manifolds form the foliations B1 and
B2 satisfying Definition 2.

For two metrics g and ḡ, we consider the (1, 1)−tensor L = L(g, ḡ) given by (1). Its
characteristic polynomial will be denoted by

χ : M × R → R, χ(t) := det(t · Id − L). (2)

It is a polynomial of degree n whose coefficients are smooth functions on the manifold.
Note that by our definition the polynomial is monic, i.e., its leading coefficient is 1.

We say that a factorisation of χ(t) into two monic real polynomials

χ(t) = χ1(t) · χ2(t), deg χi ≥ 1, χi : M × R → R

is admissible if χ1(t) and χ2(t) are coprime (i.e., have no common roots) at every point
x ∈ M .
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Example 2. Let λ1, . . . , λn be (possibly, complex) eingenvalues of L at a point p ∈ M

counted with their algebraic multiplicities. Divide them into two nonempty groups
(without loss of generality we think that λ1, . . . , λr lie in the first group and λr+1, . . . , λn

in the second group) in such a way that λi 6= λα for i = 1, . . . , r, α = r + 1, . . . , n, and
pairs of complex-conjugate eigenvalues lie in the same group. Then, the polynomials

χ1(t) := (t − λ1) . . . (t − λr), χ2(t) := (t − λr+1) . . . (t − λn)

are real and give an admissible factorisation of χ(t) at p ∈ M . By using the implicit
function theorem, it is easy to see that this factorisation can always be extended onto
some neighborhood U(p) ∈ M .

Locally every admissible factorisation is as in this example. However, the existence of
a local admissible factorisation at every point does not imply its global existence.

Given an admissible factorisation χ = χ1 ·χ2, we consider the following two distributions
D1, D2 on M :

Di = ker χi(L) , i = 1, 2, (3)

where ker denotes the kernel. Here (and in all other places of the paper where we
consider polynomials in L with coefficients being smooth functions on M) we treat the
(1, 1)−tensor L as a linear operator acting on each tangent space, and a polynomial f(L)
in L is the (1, 1)-tensor of the form f(L) = a0(x) ·Id+a1(x)L+a2(x)L2+ · · ·+am(x)Lm.

It is easy to see that D1 and D2 are transversal distributions of complementary dimen-
sions. Moreover, the distributions are invariant with respect to L, and are mutually
orthogonal with respect to the both metrics g and ḡ.

Theorem 1. Let g and ḡ be geodesically equivalent pseudo-Riemannian metrics on M ,
L = L(g, ḡ) be the (1, 1)-tensor associated with them, and χ = χ1 · χ2 be an admissible
factorisation of its characteristic polynomial. Then, the distributions (3) are integrable.

By Theorem 1, the admissible factorisation implies the (local) existence of a coordinate
system (x1, ..., xr, yr+1, ..., yn) such that the distribution D1 is generated by the coordi-
nate vector fields ∂xi , i = 1, . . . , r, and similarly D2 is generated by ∂yj , j = r+1, · · · , n.
Since the distributions are invariant with respect to L, in this coordinate system the
matrix of L is block-diagonal:

L(x, y) =

(
L1(x, y) 0

0 L2(x, y)

)
,
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where L1 and L2 are r × r− and (n − r) × (n − r)− matrices respectively.

Theorem 2. Under the assumptions of Theorem 1 and in notation above, the entries
of L1 depend on the x−variables only, and the entries of L2 depend on the y−variables
only, so

L(x, y) =

(
L1(x) 0

0 L2(y)

)
. (4)

By Theorem 1, the distributions D1 and D2 generate two foliations on the manifold.
We denote them by B1 and B2, respectively.

Theorem 3 (Splitting Lemma). Let g and ḡ be geodesically equivalent pseudo-Riemannian
metrics on M , and B1, B2 be the foliations generated by the distributions (3) related to
an admissible factorisation χ = χ1 · χ2 of the characteristic polynomial of L = L(g, ḡ).
Then, the following two (0, 2)−tensors

hij = gik

(
(χ2(L) + χ1(L))−1

)k
j

(5)

h̄ij = ḡik

((
1

χ2(0)
χ2(L) +

1

χ1(0)
χ1(L)

)−1
)k

j

(6)

are pseudo-Riemannian metrics (i.e., symmetric and nondegenerate), and the triples
(h,B1, B2) and (h̄, B1, B2) are local-product structures on M . Moreover, for every leaf
Mi of the foliation Bi, the restrictions hi = h|Mi

and h̄i|Mi
of the metrics h and h̄

to this leaf are geodesically equivalent, and the tensor Li = L(hi, h̄i) defined on Mi by
(1) coincides with the restriction L|Mi

of L to Mi, i = 1, 2. Moreover, χ1 = χL1
and

χ2 = χL2
.

In formula (6), the expression χi(0), i = 1, 2, denotes the smooth function on M

obtained by substituting t = 0 into χi(t), namely, χ1(0) = (−1)r det L1, and χ2(0) =
(−1)n−r det L2.

Remark 1. It might be convenient to understand the formulas (5, 6) in matrix notation:
let us consider the coordinate system (x1, ..., xr, yr+1, ..., yn) such that the distribution
D1 is generated by the vectors ∂xi , and the distribution D2 is generated by the vectors
∂yj . Then, in this coordianate system all matrices we use to construct h and h̄ are
block-diagonal with one r × r− and one (n − r) × (n − r)−block:
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g =

(
g1 0
0 g2

)
, ḡ =

(
ḡ1 0
0 ḡ2

)
, L =

(
L1 0
0 L2

)
.

Hence, the matrices of h and h̄ must be block-diagonal as well, and direct calculations
give us the formula

h =

(
g1χ2(L1)

−1 0
0 g2χ1(L2)

−1

)
, h̄ =

(
χ2(0)ḡ1χ2(L1)

−1 0
0 χ1(0)ḡ2χ1(L2)

−1

)
. (7)

Remark 2. Although the geodesic equivalence relation is obviously symmetric, the ten-
sor L is not invariant with respect to the permutation of g and ḡ. More precisely, the
tensor (1) constructed for ḡ, g is the inverse of (1) constructed for g, ḡ. Moreover, two
local product structures constructed from the pair of geodesically equivalent metrics
g, ḡ does not coincide with the local product structure constructed from the pair ḡ, g,
though of course they are closely related, in particular (after the proper choice of ad-
missible factorisations) all these four local-product structures share the same foliations
B1 and B2.

1.2 Gluing Lemma

Let B1 and B2 be two transversal foliations of complementary dimensions, and h, h̄ be
two metrics such that the triples (h,B1, B2) and (h̄, B1, B2) are local-product structures.

The tangent spaces to the leaves of the foliations will be denoted by TB1, TB2, and for
every p ∈ M we have TpM = TpB1 ⊕ TpB2.

We denote by hi, h̄i the restrictions of the metrics h, h̄ to the leaves of Bi, i = 1, 2.
The corresponding tensor (1) will be denoted by Li := L(hi, h̄i), and its characteristic
polynomial by χi, i = 1, 2. Assume in addition that the polynomials χ1 and χ2 are
coprime for all points of M .

Now, consider the following two symmetric bilinear forms g, ḡ on M : for two tangent
vectors

u = ( u1︸︷︷︸
∈TB1

, u2︸︷︷︸
∈TB2

) , v = ( v1︸︷︷︸
∈TB1

, v2︸︷︷︸
∈TB2

) ∈ TM
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we put

g(u, v) = h1 (χ2(L1)(u1), v1) + h2 (χ1(L2)(u2), v2) , (8)

ḡ(u, v) =
1

χ2(0)
h̄1 (χ2(L1)(u1), v1) +

1

χ1(0)
h̄2 (χ1(L2)(u2), v2) . (9)

Theorem 4 (Gluing Lemma). If h1 is geodesically equivalent to h̄1, and h2 is geodes-
ically equivalent to h̄2, then the metrics g, ḡ given by (8, 9) are geodesically equivalent
too.

Remark 3. It is an easy linear algebra to see that the tensor (1) constructed for the
metrics (8, 9) is the direct sum of the tensors L1 and L2: for every u = (u1, u2) ∈
TpB1 ⊕ TpB2 = TpM we have

L(u) = (L1(u1), L2(u2)). (10)

Remark 4. It might again be convenient to understand the formulas (8, 9) in matrix no-
tation: we consider the coordinate system (x1, ..., xr, yr+1, ..., yn) such that y−coordinates
are constant on the leaves of B1 and x−coordinates are constant on the leaves of B2.
Then, in this coordianate system, the matrices of g and ḡ are given by

g =

(
h1χ2(L1) 0

0 h2χ1(L2)

)
, ḡ =

(
1

χ2(0)
h̄1χ2(L1) 0

0 1
χ1(0)

h̄2χ1(L2)

)
. (11)

Remark 5. Comparing formulas (7) and (11), we see that the gluing construction is
inverse to the splitting.

Remark 6. If the case of Riemannian metrics, Theorems 3,4 were proven in [Ma1, Ma5].
The proof is based on the Levi-Civita description of geodesically equivalent metrics,
which is not complete in the pseudo-Riemannian case, see the discussion in Section 2.1.
Below, we will show that the Levi-Civita description is an easy corollary of Theorems
3,4, see example in Section 2.1.

1.3 Functions of (1, 1)−tensors and Topalov-Sinjukov

Theorem for pseudo-Riemannian metrics

Suppose a compact set K ⊆ C, a function f : K → C, and a (1, 1)−tensor L (on M)
satisfy the following assumptions:
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(i) C \ K is connected (we do not require that K is connected).

(ii) f : K → C is a continuous function, and the restriction f |Int K is holomorphic.

(iii) K is symmetric with respect to the x−axes: for every z ∈ K its conjugate z̄ also
lies in K.

(iv) for every z ∈ K, f(z) = f̄(z̄), where the bar “¯” denotes the complex conjugation.

(v) Spectrum L(x) ⊂ Int K for every x ∈ M .

Under the above assumptions (i–v), one can naturally define a (1, 1)−tensor f(L):
by Mergelyan’s theorem [Ca], the function f can be uniformly approximated by real
polynomials pi. We define f(L) = limi→∞ pi(L). It is an easy exercise (see for example
[Hi, §1.2.2 – 1.2.4]) to show that the limit exists, is independent on the choice of the
sequence pi, smoothly depends on x ∈ Mm (actually, the function f(L) is analytic in
the entries of L), and behaves as a (1, 1)−tensor when we change the variables.

Example 3. Polynomials p(z) with real coefficients, the functions ez, cos(z), sin(z)
satisfy the above assumptions for every L, and we can naturally consider the standard
operator functions p(L), eL, sin(L), cos(L) as smooth (1, 1)-tensor fields on M .

Example 4. Let χ = χ1 · χ2 be an admissible factorization of the characteristic poly-
nomial of L in a sufficiently small neighborhood U(x0) ⊂ M and D1, D2 be the corre-
sponding distributions. Then, the natural projectors Pi : TU → Di are functions of L in
the above sense. Indeed, consider the corresponding partition S1⊔S2 of Spectrum L(x0)
into two disjoint subsets and let K1 and K2 be ε-neighborhoods of S1 and S2 respectively
(ε is small enough so that K1 and K2 do not intersect). Then, the function

f1 : K → C, f1(z) :=

{
1 for z ∈ K1

0 for z ∈ K2

satisfies the above assumptions, and we can define the function f1(L) which obviously
coincides with the projector P1. Similarly, one can define f2(L) = P2.

Notice that for every x ∈ M we have: Spectrumf(L(x)) = f(SpectrumL(x)). In
particular, if for every x ∈ M we have 0 6∈ f(SpectrumL(x)), then the tensor f(L) is
nondegenerate. If in addition L is g−self-adjoint, then f(L) is also g−self-adjoint, so
gf :=

(
giαf(L)α

j

)
is a metric.
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Theorem 5. Let g and ḡ be geodesically equivalent metrics and L be the (1, 1)−tensor
given by (1). Suppose K ⊂ C is a compact set, and f : K → C is a function such that
K, f , and L satisfy the assumptions (i – v) above. Assume in addition that for every
x ∈ M we have 0 6∈ f(Spectrum L(x)).

Then, the metrics gf :=
(
giαf(L)α

j

)
and ḡf :=

(
ḡiαf(L)α

j

)
are also geodesically equiva-

lent.

Remark 7. Partial cases of this theorem were proved by Sinjukov [Si1] and Topalov
[To, MT2]. More precisely, Sinjukov proved this theorem assuming that the function
f(z) = z. Topalov proved the theorem assuming the metric g is Riemannian (in this
case the eigenvalues of L are real, and is sufficient to require that the function f is
real-analytic).

2 History, motivation and possible applications

The theory of geodesically equivalent metrics has a long and fascinating history. First
non-trivial examples were discovered by Lagrange [La]. Geodesically equivalent metrics
were studied by Beltrami [Be], Levi-Civita [LC], Painlevé [Pa] and other classics. One
can find more historical details in the surveys [Am2, Mi2] and in the introductions to
the papers [Ma1, Ma2, Ma4, Ma5].

The success of general relativity made necessary to study geodesically equivalent pseudo-
Riemannian metrics. The textbooks [Ei, Pe1, Pe2, Hal3] on pseudo-Riemannian metrics
have chapters on geodesically equivalent metrics. In the popular paper [We2], Weyl
stated few interesting open problems on geodesic equivalence of pseudo-Riemannian
metrics. Recent references (on the connection between geodesically equivalent metrics
and general relativity) include Hall et al [HL1, HL2, HL3], Hall [Hal1, Hal2], Kiosak et
al [KM1], Gibbons et al [GWW].

In the recent time, a huge progress was made in the theory of geodesically equivalent
Riemannian metrics. The splitting/gluing constructions played a crucial role in this
progress (as we mentioned in Remark 6, in the Riemannian case, Theorems 3, 4 were
known). We expect similar applications in the pseudo-Riemannian situation as well.
The list of problems where the splitting/gluing constructions were used in the Rie-
mannian case, and are expected to be used in the pseudo-Riemannian case is below; we
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discuss it in detail in Sections 2.1, 2.2.

Beltrami Problem1. Describe all pairs of geodesically equivalent metrics.

Lie Problem2. Find all metrics g admitting infinitesimal projective transformations.

Lichnerowicz Conjecture3 Let a connected Lie group G act on a complete connected
manifold (Mn, g) of dimension n ≥ 2 by projective transformations. Then, it acts by
affine transformations, or for some c ∈ R\{0} the metric c ·g is the Riemannian metric
of constant positive sectional curvature +1.

Recall that a projective transformation of a Riemannian manifold is a diffeomorphism
of the manifold that takes unparameterized geodesics to geodesics. Local projective
transformations obviously form a Lie pseudo-group, its generators, i.e., vector fields
whose local flow takes unparameterized geodesics to geodesics are called by Lie infini-
tesimal projective transformations. In the modern terminlogy, they are called projective
vector fields ; we will use this terminology in the paper.

2.1 Motivation I. Normal form of geodesically equivalent met-

rics: Beltrami problem

If the eigenvalues of L do not bifurcate at a point (this condition is fulfilled almost
everywhere), the answer to Beltrami’s question was given by Levi-Civita [LC] under
the assumption that the metrics are Riemannian.

A local description of geodesically equivalent pseudo-Riemannain metrics, which might
be treated as a pseudo-Riemannian analog of the Levi-Civita theorem, is considered to
be done by Aminova [Am1]. Unfortunaltely, the authors of the present paper do not

1Italian original from [Be]: La seconda . . . generalizzazione . . . del nostro problema, vale a dire:

riportare i punti di una superficie sopra un’altra superficie in modo che alle linee geodetiche della prima

corrispondano linee geodetiche della seconda
2German original from [Lie], Abschn. I, Nr. 4,

Man soll die Form des Bogenelementes einer jeden Fläche bestimmen, deren geodätische Kurven eine

infinitesimale Transformation gestatten
3the attribution to Lichnerowicz is folkloric; we did not find a paper of Lichnerowicz where he states

this conjecture. Certain papers refer to this statement as to a classical conjecture, see the discussion
in [Ma5].
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understand her result (we do not doubt that the result is correct). Moreover, we have
checked that in all 6 papers which refer to [Am1] according to MathSciNet, the authors
cited Aminova’s theorem to give an overview of the subject only, but did not really use
it.

The statement of the main theorem of [Am1] is on two pages, and one more page is
devoted to explanation of the formulas in the theorem. This is probably the reason
why this result is hardly applicable and was, to the best of our knowledge, never used.

The splitting and gluing constructions suppose to make the description of geodesically
equivalent pseudo-Riemannian metrics much simpler. Indeed, at almost every point
p ∈ M the eigenvalues of L do not bifurcate, i.e., the algebraic multiplicity of each
eigenvalue λi is locally constant and is equal to ki. In a small neighborhood of such a
point, the eigenvalues (both real and complex) can be treated as smooth functions of x,
and we can factorise the characteristic polynomial of L into a product χ = χ1 · . . . ·χm of
polynomials χi : R×M → R of two kinds: either χi(t) = (t−λi)

ki for a real eigenvalue
λi, or χi(t) = (t − λi)

ki(t − λ̄i)
ki for a pair of complex conjugate eigenvalues λi, λ̄i.

Repeatedly applying the splitting lemma m − 1 times in a small neighborhood U(p),
we can construct local coordinates x1, . . . , xm, where xi = (x1

i , . . . , x
li
i ) ∈ R

li (li = ki if
λi is real, and li = 2ki for a couple of complex conjugate eigenvalues λi, λ̄i), and pairs
of geodesically equivalent metrics hi(xi) ∼ h̄i(xi) such that

1) each eigenvalue λi of L depends on xi only: λi = λi(xi),

2) the characteristic polynomial of (1, 1)-tensor Li = L(hi, h̄i) associated with hi and
h̄i by means of (1) is exactly χi(t),

3) in this coordinate system, g and ḡ simultaneously take the following block diagonal
form

g =




h1χ̂1(L1)
. . .

hmχ̂m(Lm)


 , ḡ =




1
χ̂1(0)

h̄1χ̂1(L1)
. . .

1
χ̂m(0)

h̄mχ̂m(Lm)


 , (12)

where χ̂i(t) =
∏

j 6=i χj(t).

Thus we have
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Proposition 1. In a neighborhood of a regular point p ∈ M , the geodesically equivalent
metrics g and ḡ can be simultneously reduced by an appropriate choice of local coordi-
nates x1, . . . , xm, xi ∈ R

li, to the form (12), where hi and h̄i are geodesically equivalent
metrics depending on xi-coordinates only and such that the corresponding (1, 1)-tensor
Li = L(hi, h̄i) has either one single real eigenvalue λi(xi), or a single pair of complex
conjugate eigenvalues λi(xi), λ̄i(xi).

Thus, in order to describe geodesically equivalent metrics near a generic point it is
sufficient to do this under the assumption that L has one real eigenvalue, or two
complex-conjugate eigenvalues. In the Riemannian case, we will illustrate this idea
by the following

Example: Levi-Civita Theorem follows from the splitting lemma. Let the
geodesically equivalent metrics g ∼ ḡ be Riemannian. Then all eigenvalues of L are
real and positive, and L is semi-simple. Hence, the tensor L(hi, h̄i) for geodesically
equivalent metrics hi ∼ h̄i discussed above is λi · Id. If the multiplicity ki of λi is ≥ 2,
then by the classical result of Weyl [We1] the metrics hi and h̄i are proportional, i.e.,
h̄i := 1

λ
ki+1

i

hi, where the eigenvalue λi is a constant.

If the multiplicity ki of λi is 1, then hi is one-dimensional and we can obviously choose
xi in such a way that hi = dx2

i and h̄i = 1
λi(xi)2

dx2
i .

Without loss of generality we can assume that the first r eigenvalues λ1, ..., λr have
multiplicity 1, and the last m − r eingenvalues have multiplicity ≥ 2. Then, in the
chosen coordinate system, the direct product metrics h = h1 + h2 + · · · + hm and
h̄ = h̄1 + h̄2 + · · · + h̄m are given by

ds2
h =

∑r

i=1 dxi
2 +

∑m

i=r+1

[∑ki

αi,βi=1(hi(xi))αiβi
dxαi

i dx
βi

i

]
,

ds2
h̄

=
∑r

i=1
1

λi(xi)2
dxi

2 +
∑m

i=r+1

[
1

λk+1

i

∑ki

αi,βi=1(hi(xi))αiβi
dxαi

i dx
βi

i

]
.

Here the functions λi are constant for i > r and depend only on the corresponding
variable xi for i ≤ r. The metrics hi, i = r + 1, ...,m can be arbitrary, but their entries
(hi)αiβi

must depend on the coordinates xi = (x1
i , ..., x

ki

i ) only.

Applying Proposition 1 and formula (12), we obtain for g and ḡ the following form:

14



ds2
g =

∑r

i=1 Pidxi
2 +

∑m

i=r+1

[
Pi

∑ki

αi,βi=1(hi(xi))αiβi
dxαi

i dx
βi

i

]
,

ds2
ḡ =

∑r

i=1 Piρidxi
2 +

∑m

i=r+1

[
Piρi

∑ki

αi,βi=1(hi(xi))αiβi
dxαi

i dx
βi

i

]
,

where

Pi := ±
∏

j 6=i

(λi − λj), ρi := ±
1

λi

∏
α λα

. (13)

(the signs ± should be chosen so that all Pi and ρi are positive). This is precisely the
Levi-Civita normal form from [LC] for geodesically equivalent Riemannian metrics!

As we mentioned above, the results by Levi-Civita and Aminova hold in a neighborhood
of almost every point. More precisely, such a point p ∈ M , which we call regular, is
characterised by the property that the structure of the Jordan normal form of L (the
number of Jordan blocks and their dimensions) is the same for all points in some
neighborhood U(p). Regular points form an open everywhere dense subset of M . The
other points will be called singular.

For global questions (in particular, for the description of the topology of closed mani-
folds admitting geodesically equivalent metrics), it is also necessary to solve Beltrami
problem near singular points. For the Riemannian case, it was done in [Ma1, Ma5, Ma6].
The result essentially used the splitting construction: arguing as above, the problem
was reduced to a few cases of simple bifurcations, which were considered separately.
We expect the same application of the splitting construction in the pseudo-Riemannian
case.

2.2 Motivation II. Projective transformations: Lie problem

and Lichnerowicz conjecture

For Riemannian manifolds, splitting construction found an important application in
the theory of projective transformations. Projective transformations is a very classical
object of study. The first examples are due to Beltrami [Be]; as we mentioned at the
beginning of Section 2, the problem of local description of projective transformations
was explicitely stated by Lie [Lie]. In the global setting, namely under the assumption
that (M, g) is complete, a hypothetical solution of this problem is the Lichnerowicz
conjecture mentioned above.
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In this section we assume that dim M ≥ 3. The reason for this is that in dimension
2 the Lie problem was solved in [BMM, Ma7], where a complete list of local metrics
admitting projective vector fields was constructed. The list is pretty simple (explicit
formulas involving only elementary functions) and it should not be very complicated to
understand which metrics from this list can be prolonged up to a complete metric.

As it was observed by Fubini and Solodovnikov, in dimension ≥ 3, the degree of mobility
plays a crutial role in the description of projective transformations of a given manifold.
Recall that the degree of mobility of a metric g is the dimension of the space of the
solutions of the equation (21) considered as an equation on L. The degree of mobility
has a clear geometrical meaning: locally, it coincides with the dimension of the set of
metrics geodesically equivalent to g equipped with the natural topology.

In particular, the condition “degree of mobility = 1” means that g does not admit
any geodesically equivalent “partner” except for ḡ = const · g. In this case projective
transformations are just homotheties of g.

Riemannian metrics (on Mn≥3) with degree of mobility greater or equal to three, and
their projective vector fields were locally described by Solodovnikov [So]; his result was
improved by Shandra [Sh], who obtained a much shorter description based on a certain
trick. The results of [KM2] show that

• the metrics with degree of mobility ≥ 3 always admit projective vector fields,

• the trick used in [Sh] survives for pseudo-Riemannian metrics as well, and gives a
description of all metrics with degree of mobility ≥ 3, and their projective vector
fields.

Thus, in order to get the complete solution of the Lie Problem in dimension ≥ 3, it is
sufficient to consider metrics with degree of mobility 2. It turns out that under this
assumption, the problem can be reduced to the analysis of a certain 1st order system of
PDEs. This system is universal in the sense that it does not depend on the metric and
remains the same if we pass from the whole manifold M to the components of smaller
dimensions obtained by means of the splitting lemma. We describe this idea in brief
below.

First of all we notice that in all our considerations a pair g ∼ ḡ of geodesically equivalent
metrics can be replaced by the pair (g, L) where L is the (1,1)-tensor defined by (1).
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Indeed, ḡ can be uniquely reconstructed from g and L as ḡ = 1
det(L)

gL−1. We shall

say that L and g are compatible, if g and ḡ = 1
det(L)

gL−1 are geodesically equivalent.

The (1, 1)-tensors L compatible with g form a finite-dimensional vector space whose
dimension is exactly the degree of mobility of g.

Now let v be a projective vector field for the metric g (we work in a small connected
neighborhood U of a point p ∈ M). Consider the tensor

L̃ := g−1Lvg − 1
n+1

tr (g−1Lvg) · Id, (14)

where Lv denotes the Lie derivative with respect to v.

Lemma 1 ([Ma5]). The tensor L̃ given by (14) is compatible with g.

Lemma 1 is an easy corollary of the compatibility condition (21) below, its proof can
be found for example in [Ma5, Section 2.1], see Theorem 3 there. In an equivalent form
the statement appeared already in Fubini [Fu] (for dimension 3) and Solodovnikov [So]
(under additional assumptions).

Now assume that the degree of mobility of g is 2, so that the vector space of admissible
(1, 1)-tensors is two-dimensional. Clearly, the identity tensor Id is admissible and we
can take it as the first basis vector. We choose the second one, denoted by L, in such
a way that detL 6= 0 in some neighborhood of p ∈ M .

Lemma 2. Under the above assumptions, the tensor L and the projective vector field
v satisfy the following equation

LvL = α · L2 + β · L + γ · Id, (15)

where β is a function given by β := −Lv(log | det L|) · L + α · tr (L) + γ · tr (L−1) + ν,
and α, β, ν are some constants.

Proof. Consider the metric ḡ = 1
det(L)

gL−1. This metric is geodesically equivalent to
g and therefore v is a projective vector field also for ḡ. Clearly, the degree of mobility
of ḡ coincides with that of g. Hence, the space of ḡ-compatible (1, 1)-tensors is two-
dimensional and is generated by Id and L−1.
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Thus, applying Lemma 1 to g and ḡ, we have:

g−1Lvg − 1
n+1

tr (g−1Lvg) = a · L + b · Id,

ḡ−1Lvḡ − 1
n+1

tr (ḡ−1Lvḡ) = c · L−1 + d · Id,

where a, b, c, d ∈ R are some constants. It is easy to see that these equations can be
rewritten in the following equivalent form:

g−1Lvg = a · L +
(
a · tr (L) + (n + 1)b

)
· Id, (16)

ḡ−1Lvḡ = c · L−1 +
(
c · tr (L−1) + (n + 1)d

)
· Id. (17)

On the other hand, we have

ḡ−1Lvḡ = det L · Lg−1Lv

(
1

det L
gL−1

)
=

= −Lv(log | det L|) · Id + Lg−1Lvg L−1 − Lv(L) · L−1.

Substituting (17) to the left hand side and (16) to the right hand side (into the middle
term) of this relation, we get

−Lv(log(| det(L)|)) · Id + a · L + (a · tr (L) + (n + 1)b) · Id − Lv(L) · L−1 =

= cL−1 + (c · tr (L−1) + (n + 1)d) · Id.

After multiplication by L, this relation can be rewritten as

Lv(L) = a · L2 +
(
−Lv(log | det L|) + a tr L − c tr L−1 + (n + 1)(b − d)

)
· L − c · Id,

which is equivalent to (15).

Lemma 3. Let χ = χ1 · χ2 be an admissible factorisation of the characteristic poly-
nomial of L and (x1, ..., xr, yr+1, ..., yn) be the local coordinate system induced by this
factorisation (see Theorems 1, 2). Then the projective vector field v splits in this coor-
dinate system in the sense that

v =
r∑

i=1

vi(x)
∂

∂xi
+

n∑

j=r+1

vj(y)
∂

∂yj
,

i.e., the first r entries of v do not depend on the y−coordinates, and the last n−r entries
of v do not depend on the x−coordinates. Moreover, the function β from Lemma 2 is
constant.
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Proof. By Theorems 1, 2, in the coordinate system (x̄, ȳ) the matrix of L has the
block-diagonal form (4). Then, the matrices of L2 and of Lv(log | det L|) · L are block-
diagonal as well with the same dimensions of blocks implying that Lv(L) is also block-
diagonal. Then, the first r components of v depend on x−coordinates only, and the
last (n − r)−components of v depend on y−coordinates only: v = (v1(x), v2(y)) where
v1 ∈ TB1 and v2 ∈ TB2. Multiplying the equation (18) by L−1 and rewriting it in the
form

(LvL) · L−1 − α · L − γ · L−1 = β · Id,

we see that the first block of the left-hand side is independent of y and the second block
of the left-hand side is independent of x implying β = const.

Thus, under the additional assumption that an admissible factorisation exists, the ten-
sor L and the vector field v satisfy the following equation

Lv(L) = α · L2 + β · L + γ · Id, (18)

where α, γ and β are certain constants. Moreover, in the notation of Theorem 2, the
r × r− resp. (n − r) × (n − r)− matrices L1 and L2 viewed as (1, 1)−tensors satisfy
the equations

Lv1
(L1) = α · L2

1 + β · L1 + γ · Id, (19)

Lv2
(L2) = α · L2

2 + β · L2 + γ · Id, (20)

where the components of the vector v1 are the first r entries of v, and components of
the vector v2 are the last n − r entries of v. In other words, equation (18) splits into
two independent equations (19,20).

We can go further: if χ is a product of several mutually prime monic polynomials
χ1, . . . , χm, we can split the equation (20) into m equations of the similar form by
repeating the above construction. After finitely many steps, we land at an independent
system of PDE of the form

Lvi
(Li) = α · L2

i + β · Li + γ · Id, i = 1, ...,m,

where each Li and vi depend on the corresponding coordinates only. Moreover, in a
neighborhood of a regular point we may assume that Li has one real eigenvalue, or two
complex-conjugate eigenvalues.
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Thus, it is sufficient to solve equation (18) under the assumption that L has one real
eigenvalue, or two complex-conjugate eigenvalues.

In the Riemannian case, equation (18) was obtained by other methods and played an
important role in the proof of the projective Lichnerowicz conjecture [Ma5], and in
the local description of projective vector fields [Fu, So, BMM, Ma7]. This equation is
relatively simple and can be solve in the Riemannian case explicitly. Analysis of its
solutions was, in fact, one of the most principal steps in the solution of the Lie problem
and of the Lichnerowicz conjecture (under the additional assumption that the degree
of mobility is at most two).

We expect similar applications in the pseudo-Riemannian case. If L is semi-simple
and has real eigenvalues, then at least locally there is no essential difference from
the Riemannian case. The possible difficulties might appear if L has Jordan blocks
or complex-conjugated eigenvalues. They appear already in dimension 2 (though in
dimension 2 the difficulties have been overcome): two dimensional metrics admitting
projective vector fields in the case when L is a Jordan block are given by much more
complicated formulas than those which appear for L semi-simple, see [Ma7, Theorem 1].

2.3 Motivation III. Topological geodesic rigidity problem

A local version of the splitting/gluing constructions is sufficient for local problems
such as finding normal forms for a pair of geodesically equivalent metrics and the Lie
problem. For global problems (when the underlying manifold is assumed to be closed
or/and complete) such as the Lichnerowicz conjecture discussed above, a general version
of the splitting/gluing constructions was useful in the Riemannian case, and is expected
to be useful in the pseudo-Riemannian one. Another example of global problems is

Topological geodesic rigidity problem. On what manifolds, the unparametrized
geodesics of any metric g detemine this metric uniquely (up to multiplication by a
constant)?

In other words, we want to know whether or not a given manifold M admits at least one
pair g ∼ ḡ of non-proportional geodesically equivalent (pseudo)-Riemannian metrics.

All results in this area are, in fact, very recent: the first obstructions that prevent a
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manifold to possess such metrics were found in [MT1] (it was proved that geodesically
equivalent metrics on a closed surface of genus ≥ 2 are always proportional). Moreover,
it was generally believed and explicitly stated in the survey [Mi2] that it is hard to
obtain such obstructions. Main research was concentrated in the following direction:
find out what metrics are geodesically rigid, in the sense they do not possess nontrivial
geodesically equivalent “partners”. One of the first results in this direction is [Si2]:
every metric geodesically equivalent to an irreducible symmetric metric of nonconstant
curvature is proportional to it. Local geodesic rigidity problem was very popular in
60th–80th; there are more than 100 papers devoted to it, see surveys [Mi2, Am2].

Later, one started to investigate the global geodesic rigidity problem (assuming that M

is closed or g is complete). A typical result is as follows: if g is a Riemannian Einstein
irreducible metric of nonconstant curvature on a closed manifold, then it is geodesically
rigid [Mi1, Mi2] (though locally there exist Einstein Riemannian metrics of nonconstant
curvature that are not geodesically rigid). The most standard (de-facto, the only) way
to prove such results was to use tensor calculus to canonically obtain a nonconstant
function f such that ∆gf = const · f with const ≥ 0, which of course cannot exist on a
closed Riemannian manifold.

Here is one of examples that shows how the splitting/gluing construction works in
global setting without any specific assumptions about the metric (we simply combine
Theorem 3 with the results by Wu [Wu] and De Rham [DR]).

Proposition 2. Let M admit a pair of geodesically equivalent (pseudo)-Riemannian
metrics g and ḡ, one of which is complete. Assume that the characteristic polynomial
χ of L = L(g, ḡ) possesses an admissible global factorisation χ = χ1 · χ2 on M . Then
M admits a (pseudo)-Riemannian metric h with a reducible holonomy group and its

universal cover (M̃, π∗h) (where π : M̃ → M is the natural projection) is the direct
product of two (pseudo)-Riemannian manifolds (M1, h1) and (M2, h2) such that the
fundamental group π1(M) acts on M1 × M2 by fiberwise isometries.

Obviously, the above property is a very strong topological restriction on M . For ex-
ample, in dimension 2, there are only five connected manifolds of this kind: R

2, torus,
Klein bottle, Möbius strip and cylinder R

1 × S1.

The additional assumption in Proposition 2 about the existence of a global admissi-
ble factorisation is, of course, very essential. There are many examples of geodesically
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equivalent metrics where this condition fails. It appears, however, that in the Rie-
mannian case the nonexistence of such a factorization implies that the fundamental
group of M is finite (assuming that M is closed and admits two non-proportional geo-
desically equivalent metrics) [Ma1].

Combining these two observations, it was possible to describe all geodesically rigid
3-manifolds [Ma2], and to prove that topologically-hyperbolic manifolds are geodesi-
cally rigid, in the sense that two geodesically equivalent metrics on such manifolds are
proportional [Ma1].

At the present point, it is not clear whether the second observation could be generalized
to the pseudo-Riemannian case, i.e., whether the nonexistence of an admissible factori-
sation implies that the fundamental group is finite. However, the known examples allow
us to suggest that compared to the classical Riemannian situation, the topological ob-
structions to the existence of geodesically equivalent metrics are perhaps even stronger
in the pseudo-Riemannian case. We conclude this section by the following

Conjecture. Let g ∼ ḡ be geodesically equivalent non-proportional metrics on a closed
3-dimensional manifold M3. If at least one of the metrics is complete, and at least one
of the metrics has signature (−, +, +), then M is a Seifert manifold with zero Euler
class.

3 Proofs

3.1 Vanishing of Nijenhuis torsion and proof of Theorems 1,

2

Throughout the paper we shall use the following analytic condition for two metrics g

and ḡ to be geodesically equivalent.

Proposition 3. Let g, ḡ be Riemannian or pseudo-Riemannian metrics on the same
manifold Mn. Let L = L(g, ḡ) be given by (1).

Then, g and ḡ are geodesically equivalent, if and only if

∇uL =
1

2

(
u ⊗ l + (u ⊗ l)∗

)
for any tangent vector u, (21)
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or, in coordinates,

∇rL
p
q =

1

2
(δp

r lq + gpslsgrq),

where ∇ is the Levi-Civita connection associated with g, l = d tr L and C∗ denotes the
operator g-adjoint to C, i.e., g(Cu, v) = g(u,C∗v).

The above proposition and equation (21) are due to Sinjukov [Si1], the self-contained
proof can also be found in [BM, EM].

Since ḡ can be uniquely reconstructed from g and L as ḡ = 1
det L

gL−1, we may replace
the pair of metrics (g, ḡ) by the pair (g, L). For convenience, we shall say that a metric g

and a g-self-adjoint nondegenerate (1, 1)−tensor L are compatible if they satisfy (21), so
that the compatibility of g and L is just rephrasing the fact that g and ḡ are geodesically
equivalent.

First of all we recall that the compatibility of g and L implies that the Nijenhuis torsion
of L vanishes identically, see [BM]. To make our paper self-contained, we recall some
basic facts about the Nijenhuis torsion and prove that NL ≡ 0 for any (1, 1)-tensor L

satisfying (21).

The Nijenhuis torsion of L is the (1, 2)-tensor field defined by

NL(u, v) = L2[u, v] − L[Lu, v] − L[u, Lv] + [Lu,Lv],

where u and v are vector fields on M [Haa]. This definition immediately implies

Lemma 4. The condition NL = 0 admits the following equivalent forms:

1. LLuL − LLuL = 0 for any vector field u, where Lu is the Lie derivative along u;

2. (∇LuL − L∇uL)v is symmetric with respect to u and v for any vector fields u

and v, where ∇ is the Levi-Civita connection of an arbitrary metric g (or more
generally, any symmetric connection).

Lemma 5 ([BM]). If L satisfies (21), then NL = 0.

23



Proof. By Lemma 4, we just need to verify that (∇LuL − L∇uL)v is symmetric with
respect to u and v. We simply use the compatibility condition (21):

(∇LuL − L∇uL)v = 1
2

(
(Lu ⊗ l)v + (Lu ⊗ l)∗v − L(u ⊗ l)v − L(u ⊗ l)∗v

)
=

1
2

(
l(v) · Lu + g(Lu, v) · g−1(l) − l(v) · Lu − g(u, v) · L(g−1(l))

)
=

1
2

(
g(Lu, v) · g−1(l) − g(u, v) · L(g−1(l))

)
.

Here g−1 is viewed as the identification map between T ∗
xM and TxM , in particular,

g−1(l) = grad trL. The symmetry of the last expression with respect to u and v is now
evident.

The next two statements are well known in folklore, however, we could not find any
reference with a short proof.

Lemma 6. If NL = 0, then Np(L) = 0 for any polynomial p : R → R (with constant
real coefficients) and, therefore, Nf(L) = 0 for any function f : K → C satisfying the
assumptions (i–v) of Section 1.3.

Proof. The latter statement about f(L) follows immediately from the definition of
f(L). The proof for a polynomial p(L) is as follows. We use the condition NL = 0 in
the form LLuL = LLuL (see Lemma 4). This identity implies

LLnuL = LL(Ln−1u)L = LLLn−1uL = LLL(Ln−2u)L = L2LLn−2uL = · · · = LnLuL,

and, therefore, by linearity
Lp(L)uL = p(L)LuL.

Thus, we have
(Lp(L)u − p(L)Lu)L = 0.

Now consider the expression D = Lp(L)u − p(L)Lu as a “first order differential opera-
tor” which satisfies the obvious property D(Ln) = D(Ln−1)L + Ln−1D(L). Hence, the
identity D(L) = 0 immediately implies D(p(L)) = 0, i.e.,

(
Lp(L)u − p(L)Lu

)
p(L) = 0,

which is exactly the desired condition Np(L) = 0.
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Lemma 7. Let NL = 0 and χ = χ1 ·χ2 be an admissible factorisation of the character-
istic polynomial of L. Then there exists a local coordinate system (x1, ..., xr, yr+1, ..., yn)
such that ∂x1 , . . . , ∂xr and ∂yr+1 , . . . , ∂yn generate the kernels D1 and D2 of the operators
χ1(L) and χ2(L) respectively and

L(x, y) =

(
L1(x) 0

0 L2(y)

)
.

In particular, the distributions D1 and D2 are integrable.

Proof. At each tangent space TxM we have the natural decomposition TxM = D1⊕D2

where Di = ker χi(L). This decomposition defines two natural projectors P1 and P2

onto the subspaces D1 and D2 respectively. A simple but important observation is
that (locally) these projectors can be viewed as functions P1 = f1(L) and P2 = f2(L)
satisfying the assumptions (i–v) from Section 1.3 (see Example 4).

Thus, by Lemma 6, NPi
= 0, and we will use this fact to prove the integrability of

D1 and D2. In terms of the projectors P1 and P2, these distributions can obviously be
interpreted as D1 = ker P2 and D2 = ker P1. Let u, v ∈ D1 = ker P2, then the condition
NP2

= 0 gives

P 2
2 [u, v] − P2[P2u, v] − P2[u, P2v] + [P2u, P2v] = P 2

2 [u, v] = 0,

that is, [u, v] ∈ ker P 2
2 = ker P2 = D1 which is equivalent to the integrability of D1 by

the Frobenius Theorem. The same is obviously true for D2 by the same reason.

The integrability of these two distributions is equivalent to the existence of a coordi-
nate system (x, y) such that ∂x1 , . . . , ∂xr and ∂yr+1 , . . . , ∂yn generates the kernels of the
operators χ1(L) and χ2(L). In particular, the operator L in this coordinate system has
a block diagonal form:

L(x, y) =

(
L1(x, y) 0

0 L2(x, y)

)
.

Whithout loss of generality we may assume that detL 6= 0, otherwise we can (locally)
replace L by L + c · Id where c is an appropriate constant.

Notice that the operator

LP1 =

(
L1(x, y) 0

0 0

)
,
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being a function of L, has zero Nijenhuis torsion. Thus, for u = ∂yα
∈ D2 = ker P1 we

have (
0 0
0 0

)
= LLP1u(LP1) − LP1Lu(LP1) = LP1Lu(LP1)

=

(
L1 0
0 0

)(
∂yα

L1 0
0 0

)
=

(
L1∂yα

L1 0
0 0

)
.

Since L1 is non-degenerate, we conclude that ∂yα
L1 = 0, i.e., L1 = L1(x). Similarly,

L2 = L2(y), as needed.

Proof of Theorems 1, 2. The statements of these theorems are straightforward from
Lemmas 5, 7.

3.2 Proof of the generalised Topalov-Sinjukov Theorem 5

Consider two geodesically equivalent metrics g and ḡ and assume that L given by (1)
and a function f : K → C satisfy the assumptions (i–v) of Section 1.3. Our goal is to
prove Theorem 5, i.e., to show that the metric gf := gf(L) is compatible with L. To
simplify our notation below, we shall denote gf by g̃.

We need to verify that the main equation (21) for g and L implies the similar relation
for g̃ = gf(L) and L:

∇̃uL =
1

2

(
u ⊗ l + (u ⊗ l)e∗) , (22)

where Ce∗ denotes the operator g̃-adjoint of C, and ∇̃ is the covariant differentiation
with respect to the Levi-Civita connection related to g̃.

First of all, we rewrite the condition that we should verify in a slightly different way
by subtracting (21) from (22):

(∇̃u −∇u)L =
1

2

(
(u ⊗ l)∗ − (u ⊗ l)e∗) . (23)

Now notice that the difference of two covariant derivatives in the left hand side is not
a differential operator, but a tensor expression of the form

(∇̃u −∇u)L = TuL − LTu,

26



where (Tu)
i
j = T i

jku
k and T i

jk = Γi
jk − Γ̃i

jk is a (1, 2)-tensor that represents the difference
of the two connections related to g and g̃.

Using the obvious fact that Ce∗ = f(L)−1C∗f(L) for any operator C, we can rewrite
(23) as:

TuL − LTu =
1

2

(
(u ⊗ l)∗ − f(L)−1(u ⊗ l)∗f(L)

)
.

Finally multiplying both sides by f(L) from the left, we see that the statement of the
Topalov–Sinjukov Theorem is equivalent to the following algebraic relation

[f(L)Tu, L] =
1

2
[f(L), (u ⊗ l)∗], (24)

where [· , ·] denotes the standard commutator of linear operators.

To verify it, we compute the tensor Tu explicitly, using the following equation:

T s
jk g̃si + T s

ki g̃sj = (∇̃k −∇k) g̃ij = −∇kg̃ij.

This is a system of linear equations w.r.t. T s
jkg̃si with the well-known unique solution:

T s
jkg̃si =

1

2
(∇j g̃sk + ∇kg̃sj −∇sg̃jk) ,

or, in invariant terms,

g̃(Tuv, w) =
1

2

(
(∇ug̃)(v, w) + (∇vg̃)(u,w) − (∇wg̃)(u, v)

)
. (25)

In our particular case, we have:

∇ug̃ = g∇uf(L) = gf ′
t=0(L + t∇uL) =

f ′
t=0

(
L + t1

2
(u ⊗ l + (u ⊗ l)∗)

)
=

1
2
gf ′

t=0(L + t(u ⊗ l)) + 1
2
gf ′

t=0(L + t(u ⊗ l)∗) = 1
2
g(Au + A∗

u),

(26)

where Au = f ′
t=0(L + t(u⊗ l)) and A∗

u = f ′
t=0(L + t(u⊗ l)∗). The operators Au and A∗

u

are g-adjoint to each other and satisfy the following important property.
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Lemma 8. In the notation above, A∗
uv = A∗

vu.

Proof. If f(L) = L then A∗
u = (u ⊗ l)∗ = g−1(l) ⊗ g(u) and we have A∗

uv =
g(u, v)g−1(l) = A∗

vu (here we consider g and g−1 as identification operators between
the tangent and cotangent spaces).

If f(L) = L2, then A∗
u = L(u ⊗ l)∗ + (u ⊗ l)∗L and A∗

uv = g(u, v) · Lg−1(l) + g(u, Lv) ·
g−1(l) = A∗

vu (we use, of course, the fact that L is g-self-adjoint).

More generally, for f(L) = Ln, we have

A∗
uv =

n−1∑

m=0

g(Ln−mu, v) · Lm−1g−1(l) = A∗
vu.

Thus, the statement holds for any polynomial f(L) and, therefore, for any smooth
function f satisfying (i–v) in Section 1.3.

Using these properties, we get a surprisingly simple result by substituting (26) into
(25):

g̃(Tuv, w) = 1
4

(
g((Au+A∗

u)v, w) + g((Av+A∗
v)u,w),

−g((Aw+A∗
w)u, v)

)
= 1

2
g(A∗

uv, w).

In other words, f(L)Tu = A∗
u = 1

2
f ′

t=0(L + t(u ⊗ l)∗g).

We are now ready to complete the proof. We use the following simple matrix relation
which obviously holds for any L,B and f :

0 = [f(L + tB), L + tB]′t=0 = [f ′
t=0(L + tB), L] + [f(L), B],

that is,
[f ′

t=0(L + tB), L] = [B, f(L)].

In our case B = (u ⊗ l)∗g and f ′
t=0(L + tB) = 2f(L)Tu which gives exactly (24), as

required.
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3.3 Proof of Theorem 3

Theorems 1, 2 reduce our consideration to the block-diagonal case in the sense that the
metric g and operator L both have block-diagonal form in local coordinates (x, y) =
(x1, ..., xr, yr+1, ..., yn), more precisely

g =

(
g1(x, y) 0

0 g2(x, y)

)
, L =

(
L1(x) 0

0 L2(y)

)
. (27)

Notice first that in such a situation, the main equation (21) has a rather special form.
Namely, it can naturally be divided into three parts each of which has its own meaning
and can be treated separately (up to some extent).

Index notation convention. For convenience, throughout the rest of the paper we
denote the indices for x1, . . . , xr by Latin letters i, j, k, l,m = 1, . . . , r, and those for
yr+1, . . . yn by Greek letters α, β, γ, δ = r + 1, . . . , n. The indices p, q, r, s, t will serve
for both cases, i.e., p, q, r, s, t = 1, . . . , n.

Let u ∈ D1, then the main equation (21) can be written in a block form as
(
∇uL

i
j ∇uL

i
α

∇uL
β
j ∇uL

β
α

)
=

(1
2

(
ui ∂tr L

∂xj + gil ∂tr L
∂xl umgmj

)
1
2
ui ∂tr L

∂yα

1
2
gβγ ∂tr L

∂yγ umgmj 0

)
.

We rewrite it for each block separately taking into account the block-diagonal form of
g and L and the fact that ∂tr L

∂xl = ∂tr L1

∂xl and ∂tr L
∂yα = ∂tr L2

∂yα :

uk
∂(L1)

i
j

∂xk
+ ukΓi

km(L1)
m
j − ukΓm

kj(L1)
i
m =

1

2

(
ui ∂tr L1

∂xj
+ (g1)

il ∂tr L1

∂xl
um(g1)mj

)
, (28)

ukΓj
kβ(L2)

β
α − ukΓm

kα(L1)
j
m =

1

2
uj ∂tr L2

∂yα
, (29)

ukΓα
γk(L2)

γ
β − (L2)

α
γukΓγ

βk = 0. (30)

We omit the equation for ∇uL
β
j because it is obtained from (29) by using the fact that

the left hand side and right hand side on (21) are both g-self-adjoint).
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First of all, we notice that the Christoffel symbols Γi
jk (i, j, k = 1, . . . , r < n) of the

Levi-Civita connection associated with g coincide with those for the metric g1 defined
on the leaves of the integrable distribution D1. Thus, the first equation (28) simply
means that g1(x, y) and L1(x) are compatible on each leaf of D1, i.e., for every fixed y.

To simplify (29) and (30), we notice that

Γi
αk =

1

2
gim ∂gmk

∂yα
and Γβ

αk =
1

2
gβγ ∂gγα

∂xk
.

Substituting these expressions into (29) and (30) and taking into account that u ∈ D1

is an arbitrary vector, we obtain

gjm ∂gmk

∂yβ
(L2)

β
α − (L1)

j
mgml ∂glk

∂yα
= δ

j
k

∂tr L2

∂yα
(31)

and

gαβ ∂gβγ

∂xk
(L2)

γ
β − (L2)

α
γgγβ ∂gβα

∂xk
= 0. (32)

Summarizing this discussion and rewriting (31) and (32) in a shorter “matrix” form,
we obtain

Proposition 4. For g and L of block-diagonal form (27), the compatibility equation
(21) for u ∈ D1 is equivalent to the following three conditions:

Condition 1: g1(x, y) and L1(x) are compatible on each leaf of B1 (here x are coordi-
nates on a leaf, y is a parameter which determines the leaf);

Condition 2:
(g−1

1 dyg1) L2 − L1 (g−1
1 dyg1) = IdD1

⊗ dytr L2; (33)

Condition 3:
(g−1

2 dxg2) L2 − L2 (g−1
2 dxg2) = 0. (34)

As we shall see now, Theorems 3 and 4 are algebraic corollaries of these equations,
generalized Topalov-Sinjukov Theorem 5 and vanishing of NL.
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The first part of Theorem 3 states that the metric

h =

(
h1 0
0 h2

)
=

(
g1χ2(L1)

−1 0
0 g2χ1(L2)

−1

)

is of local product structure. In other words, we need to check that

∂(h1)lm

∂yα
= 0 and

∂(h2)αβ

∂xm
= 0.

We shall verify the first condition only, the proof for the second is similar. We start
with straightforward computation.

Lemma 9. Let h1 = g1 χ2(L1)
−1, then

∂(h1)lm

∂yα

= gli

(
gij ∂gjk

∂yα
−
(
χ2(L1)

−1
)i

j

∂χ2(L1)
j
k

∂yα

)
(
χ2(L1)

−1
)k

m
(35)

or, in coordinate-free form,

dyh1 = g1

(
g−1
1 dyg1 − χ2(L1)

−1dyχ2(L1)
)
χ2(L1)

−1. (36)

Proof. Thinking of h1 = g1 χ2(L1)
−1 as a product of two r × r-matrices, we have

∂

∂yα

h1 =
∂

∂yα

(
g1χ2(L1)

−1
)

=
∂g1

∂yα
χ2(L1)

−1 + g1
∂χ2(L1)

−1

∂yα

=
∂g1

∂yα
χ2(L1)

−1 − g1 χ2(L1)
−1∂χ2(L1)

∂yα
χ2(L1)

−1

= g1

(
g−1
1

∂g1

∂yα
− χ2(L1)

−1∂χ2(L1)

∂yα

)
χ2(L1)

−1

as needed.

Thus, we need to prove that the expression in brackets in the left hand side of (35)
(or (36) ) is actually zero. To do so, we need some properties of the differential of the
characteristic polynomial of L in the case when NL vanishes.
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Lemma 10. Let L be a tensor with zero Nijenhuis torsion, l = d tr L be the differential
of tr L viewed as a covector and χ(t) = det(t · Id−L) the characteristic polynomial of L

viewed as a smooth function on M with t as a formal parameter. Then the differential
of χ(t) satisfies the following relation:

dχ(t) L − t · dχ(t) = χ(t) · l. (37)

Remark 8. In (37), the right and left hand sides are both covectors, i.e. elements of
the cotangent space. The expression dχ(t) L means that we apply the operator L to
the covector dχ using right multiplication. In coordinates, this means

(
dχ(t) L

)
s

=
∂χ(t)

∂xp
Lp

s. The multiplication denoted by · simply means multiplying a covector by a

scalar function.

Proof of Lemma 10. The differential of the polynomial

χ(t) = det(t · Id − L) = a0 + a1t + a2t
2 + . . . + tn,

is defined to be

dχ(t) = da0 + t · da1 + t2 · da2 + . . . + tn−1 · dan−1.

Instead of differentiating each coefficient separately, we are going to differentiate the
whole polynomial (thinking of t as a certain constant). For the operators L with NL = 0,
the following property is well known (see, for example, [BM, Lemma1]):

(
d log | det L|

)
L = d tr L = l.

Notice that Nt·Id−L = 0 and apply the above identity to χ(t) = det(t · Id − L):

(
d log |χ(t)|

)
(t · Id − L) = d tr (t · Id − L) = −d tr L = −l.

Thus 1
χ(t)

dχ(t) (L − t · Id) = l, which is equivalent to (37).

In fact, we need to compute the differential of the characteristic polynomial in the case
when L = L2 and t is replaced by L1. More precisely we shall need the expression:

(
dyχ2(L1)

)i
j,α

=
∂

∂yα
(χ2(L1))

i
j .
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This object can be naturally viewed as an element of the space Hom(D1, D1) ⊗ D∗
2.

Since (37) is purely algebraic (in the sense that the nature of t is not important) and
t = L1 does not depend on y, we can reformulate (37) for our special case as follows:

dyχ2(L1) L2 − L1 dyχ2(L1) = χ2(L1) ⊗ l2, (38)

or, in coordinates,

(
dyχ2(L1)

)i
j,β

(L2)
β
α − (L1)

i
k

(
dyχ2(L1)

)k
j,α

= (χ2(L1))
i
j (l2)α ,

where l2 = d tr L2.

Multiplying the both sides of (38) by χ2(L1)
−1, and using that L1 commute with χ2(L1),

we obtain

Lemma 11. If NL = 0, then the expression χ2(L1)
−1 dyχ2(L1) satisfies the following

relation (
χ2(L1)

−1 dyχ2(L1)
)
L2 − L1

(
χ2(L1)

−1 dyχ2(L1)
)

= IdD1
⊗ l2 (39)

or, in coordinates,

(χ2(L1)
−1)j

m

(
dyχ2(L1)

)m
k,β

(L2)
β
α − (L1)

j
m(χ2(L1)

−1)m
l

(
dyχ2(L1)

)l
k,α

= δ
j
k (l2)α.

We are now ready to complete the proof of Theorem 3. Let L and g be compatible.
Then Condition 2 from Proposition 4 holds. Comparing this condition (33) with the
relation (39), we see that χ2(L1)

−1 dyχ2(L1) and g−1
1 dyg1 satisfy the same relation. If

we fix index k in (33) and (39), we shall see that these relations can be treated as a
linear matrix equation of the form

X L2 − L1 X = C,

where X is an (unknown) matrix of dimension r × (n − r), and L1, L2, C are given
matrices of dimensions r × r, (n − r) × (n − r) and r × (n − r) respectively.

It is a simple fact in Linear Algebra that if L1 and L2 have no common eigenvalues,
then the solution to this equation is unique for any C. Hence we conclude that

χ2(L1)
−1 dyχ2(L1) = g−1

1 dyg1,
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which immediately implies
∂(h1)ij

∂yα = 0 (see Lemma 9).

Analogously (i.e., just by interchanging the distributions D1 and D2), we can check

that
∂(h2)αβ

∂xi = 0. This means that in the metric

h =

(
h1 0
0 h2

)

the block h1 depends on the x−coordinates only, and the block h2 depends on the
y−coordinates only, i.e., (h,B1, B2) is a local product structure. Thus, the first state-
ment of Theorem 3 is proved.

The second statement of the theorem 3 says that the restrictions of h and h̄ on the
same leaf of B1, i.e., the metrics h1(x) = g1χ2(L1)

−1 and h̄1(x) = 1
χ2(0)

g1χ2(L1)
−1 are

geodesically equivalent. Equivalently, we can reformulate this saying that h1 and L1

are compatible on each leaf of the foliation F1. To prove this fact we only need to
notice that on each fixed leaf χ2(L1) is a polynomial (with constant coefficients) in
L1 and, therefore, χ2(L1)

−1 is a “good” function of L1 so that the compatibility of
h1 = g1χ2(L1)

−1 and L1 follows from the Theorem 5 and Condition 1 of Proposition 4.

3.4 Proof of Theorem 4

Now we are going to show that the compatibility of the pairs h1(x), L1(x) and h2(y), L2(y)
imply the compatibility of

g =

(
g1(x, y) 0

0 g2(x, y)

)
=

(
h1χ2(L1) 0

0 h2χ1(L2)

)
and L =

(
L1 0
0 L2

)
,

which is equivalent to the statement of Theorem 4.

We shall verify the compatibility condition (21) for u ∈ D1 only (the proof for u ∈ D2

is absolutely similar). Since g and L are of block-diagonal form (27), we may use
Proposition 4 and replace (21) by Conditions 1–3.

Condition 1 (i.e., compatibility of g1 = h1χ2(L1) and L1 on leaves of B1) immediately
follows from the Topalov-Sinjukov theorem and compatibility of h1 and L1.
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To verify Condition 2, we notice that Lemma 9 and the condition ∂
∂yα h1(x) = 0 imply

the relation:
g−1
1 dyg1 − χ2(L1)

−1dyχ2(L1) = 0.

By Lemma 11, χ2(L1)
−1dyχ2(L1) satisfies (39), therefore so does g−1

1 dyg1, which gives
exactly Condition 2.

The last relation (34) (Condition 3) is the matrix equation
[
L2, g

−1
2

∂g2

∂xk

]
= 0, for any k = 1, . . . , r.

By our construction, g2 = h2χ1(L2), where χ1(L2) is a polynomial of the form χ1(L2) =
a0(x) + a1(x)L2 + a2(x)L2

2 + a3(x)L3
2 + . . . and neither h2 nor L2 depend on xk. Hence

g−1
2

∂g2

∂xk
= χ1(L2)

−1h−1
2 h2

(
∂a0

∂xk
+

∂a1

∂xk
L2 +

∂a2

∂xk
L2

2 +
∂a3

∂xk
L3

2 + . . .

)

= χ1(L2)
−1

(
∂a0

∂xk
+

∂a1

∂xk
L2 +

∂a2

∂xk
L2

2 +
∂a3

∂xk
L3

2 + . . .

)
= f(L2),

where f(L2) is a function of L2 (depending on x as a parameter). Thus, (34) holds
since [L2, f(L2)] = 0 for every function f (satisfying assumptions (i–v) of Section 1.3).
This completes the proof of Theorem 4.
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