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We suggest a simple approach for obtaining integrals of Hamiltonian systems if there is known a trajectorian map

of two Hamiltonian systems. An explicite formila is given. As an example, it is proved that if on a manifold are

given two Riemannian metrics which are geodesically equivalent then there is a big family of integrals. Our theorem

is a generalization of the well-known Painlev�e | Liouville theorems.

1. Introduction

Let v and �v be Hamiltonian systems on symplectic manifolds (M2n
; !) and ( �M2n

; �!) with Hamil-

tonians H and �H respectively. Consider the isoenergy surfaces

Q
def
=
�
x 2M

2n : H(x) = h
	
; �Q

def
=
�
x 2 �M2n : �H(x) = �h

	
;

where h and �h are regular values of the functions H, �H respectively.

De�nition 1. A di�eomorphism � : Q �! �Q is said to be trajectorial, if it takes the trajectories of

the system v to the trajectories of the system �v. The systems v and �v are called trajectory equivalent

(on Q and �Q, respectively), if there exists a trajectorial diffeomorphism � : Q �! �Q.

In the paper [22] it was shown, that a trajectorial di�eomorphism allows one to construct n

integrals of the geodesic 
ow of the system v. This result could be considered as a particular result of

a theory, developing in [4], [22]. More precisely, in [4] it was shown, that the existence of a vector �eld

on Q which commutes with the Hamiltonian vector �eld v allows one to construct a (multi-valued

in general situation) integrals of the Hamiltonian system. In the paper [22] the result of [4] was

generalized to tensor �elds. It was shown, that if a Hamiltonian 
ow preserves a tensor �eld, then

there exist an (also multi-valued) integrals of the Hamiltonian system.

Now, the trajectorial di�eomorphism allows one to construct an invariant tensor �eld. Take the

restriction �!j �Q of the symplectic form ! to the isoenergy surface Q, and consider the form �
��!j �Q on Q.

This form is preserved by the Hamiltonian 
ow v, see Lemma 1 in Section 2.
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For the invariant form �
��!j �Q the integrals are not multi-values. The explicit formulae for them

are given in Theorem 4.

There are not very many examples of trajectorial di�eomorphisms of mechanical systems, see [11],

and all of them are a-priory integrable.

Now let the number of the degrees of freedom of the system be two. Since trajectorial diffe-

omorphism allows to construct integrals, there is almost no sense (at least from symplectic point of

view) to consider non-integrable trajectory equivalent systems. In the series of papers [5], [6], [7], [8],

[9] it was constructed a trajectory invariant of integrable Hamiltonian systems on isoenergy surfaces.

This invariant is called trajectory molecule. Two Hamiltonian systems are trajectory equivalent (on

isoenergy surfaces), if and only if they have the same trajectory molecule.

A classical example of trajectory equivalence of Hamiltonian systems is geodesic equivalence of

metrics. Let g = (gij) and �g = (�gij) be smooth metrics on the same manifold M
n.

De�nition 2. The metrics g and �g are geodesically equivalent, if they have the same geodesics

(considered as unparameterized curves).

For geodesically equivalent metrics, a trajectorial di�eomorphism� is given by �(x; �) = (x;
k�kg

k�k�g
�).

Here (x; �) 2 TMn, x is a point of Mn and � 2 TxM
n.

The theory of geodesically equivalent metrics is rather classical material. The setting of it is due

Beltrami [1], [2]. He has proved, that the metric on a surface, geodesically equivalent to the metric

of a constant curvature, is also a metric of a constant curvature. In 1869 Dini [10] formulated the

problem of local description of geodesically equivalent metrics, and solved it for dimension two. In

1896 Levi-Civita [12] got a local description of geodesically equivalent metrics on manifolds of arbitrary

dimension. A signi�cant contribution to the theory of geodesically equivalent metrics was made by

Aminova, Sinukov, Venzi, Mikesh, Pogorelov, see [16] for references.

Let us recall a few examples of geodesically equivalent metrics. There always exists a trivial

example, which is not interesting for our consideration: an arbitrary metric g is geodesically equivalent

to the metric Cg, where C is a constant.

The �rst non-trivial in this sense example is the following. Take the torus T n = S
1�S1� : : :�S1.

Consider the coordinate system x
1
; : : : ; x

n on T
n, assuming xk is the cyclic coordinate on the circle

number k. Now consider the metrics ds21 =
P

n

i=1(dx
i)2 and ds

2
2 =

P
n

i;j=1 aij(dx
i)(dxj), where (aij) is

a positive de�nite symmetric matrix. The metrics ds21 and ds
2
2 are evidently geodesically equivalent,

and they are, generally speaking, not proportional.

The second non-trivial example is due to Beltrami. Consider the standard sphere
P

n+1
i=1 (x

i)2 = 1,

where x1; : : : ; xn+1 are standard coordinates in the Euclidean space R
n+1. Take a non-degenerate

linear transformation L : Rn+1 ! R
n+1 of the space Rn+1, and consider the corresponding projective

transformation l of the sphere. Let x be a point of the sphere. Consider the ray [0; x), where 0 is the

zero point of Rn+1. Evidently the image L([0; x)) is also a ray with origin in zero. Let the intersection

of the ray L([0; x)) and the sphere be y. Then, by de�nition, put l(x) = y.

It is easy to see, that the mapping l preserves the geodesics of the sphere. Actually, the geodesics

of the sphere are intersections of the planes, which go through the zero point, with the sphere. The

linear mapping L takes the planes to the planes. Therefore the projective mapping l takes geodesics to

geodesics. Then the standard metric gstandard of the sphere and the metric l�gstandard are geodesically

equivalent.

We would like to point out the following common property of these two examples: the geodesic


ows of both metrics are completely integrable, in sense that there exist n integrals in involution. We

claim that this property is common for all geodesically equivalent metrics in general position.

Denote by G the linear operator g�1�g = (gi��g�j). Consider the characteristic polynomial

det(G� �E) = c0�
n + c1�

n�1 + : : :+ c
n
:
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The coe�cients c1; : : : ; cn are smooth functions on the manifold M
n, and c0 � (�1)n. Consider

functions Ik : TMn ! R, k = 0; : : : ; n � 1, given by formulae Ik(x; �) =

�
det(g)

det(�g)

� k+2
n+1

�g(Sk�; �),

where Sk is the linear operator given by Sk
def
=
P

k

i=0 ciG
k�i, and �g(�; �) denotes the dot product of

the tangent vectors (�; �) in the metrics �g.

Theorem 1. If the metrics g and �g on M
n are geodesically equivalent, then the functions Ik are

integrals of the geodesic 
ow of the metric g and pairwise commute.

The metrics g, �g are strictly non-proportionally, if the characteristic polynomial det(G��E) has

no multiply roots. It can be shown, that if the metrics g, �g are geodesically equivalent and strictly

non-proportional at the point x, then in a neighborhood of the point the integrals Ik are functionally

independent almost everywhere.

What is the dimension of the space of the metrics, geodesically equivalent to a given one? This

question was actively discussed, see [16] for references. Even locally, there exist metrics that have

no non-trivially geodesically equivalent. Even locally, the dimension of space of metrics, geodesically

equivalent to a given one, does not exceed
(n+ 1)(n+ 2)

2
and is equal to

(n+ 1)(n+ 2)

2
only for the

metrics of constant curvature.

If the metrics g, �g are geodesically equivalent, then there exists an one-parameter family of metrics,

geodesically equivalent to g. Note, that the integrals Ik from Theorem 1 are quadratic in velocities.

Then there exists symmetric bilinear forms ~Ik, such that for any k 2 f0; ::; n � 1g ~Ik(�; �) = Ik(�).

Take a real number � and consider the form

f�
def
=

n�1X
i=0

(��)i ~Ii:

The form is positive de�nite for positive �, and therefore can be positive de�nite for small negative �.

Consider the metric

g�
def
=

�
det(g)

det(f�)

� 2

n�1

f�:

Theorem 2. If the metrics g, �g are geodesically equivalent, then for any �, such that the metric g�

is positive de�nite, the metric g� is geodesically equivalent to the metric g.

Let the manifold M
n be closed, and let the metrics g, �g be strictly non-proportional at almost

everywhere dense set of points. Then the geodesic 
ow of the metric g is completely integrable,

and almost all trajectories lie at the corresponding Liouville tori. Suppose, that the geodesic 
ow is

non-resonant. Then the Liouville foliation is unique de�nite, and any integral of the geodesic 
ow

commutes with the integrals I0; : : : ; In�1. Assume in additional, that there are su�ciently many

caustics of the Liouville tori of the geodesic 
ow: almost each point of the surface is an intersection

of n caustics. Then the Levi-Civita coordinates are unique de�nite, and the dimension of the space of

the metric, geodesically equivalent to the metric g, is equal one.

The geodesic 
ow of the metric of an ellipsoid satis�es all these conditions. First of all, it admits

non-trivially geodesically equivalent metric

Consider the ellipsoid

nX
i=1

(xi)2

ai
= 1; where ai > 0; i = 1; : : : ; n:
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Theorem 3. The restriction of the metric
P

n

i=1(dx
i)2 to the ellipsoid

P
n

i=1
(xi)2

ai
= 1 is geodesically

equivalent to the restriction of the metric

1P
n

i=1

�
xi

ai

�2
 

nX
i=1

(dxi)2

ai

!

to the ellipsoid.

A very beautiful construction that allows one to �nd the metric, that is geodesically equivalent

to the metric of ellipsoid, is due to Tabachnikov [20].

If we apply Theorem 1 to the metrics from Theorem 3, then the integrals I0; : : : ; In�1 are linear

combinations of the integrals from [17]. In [17] it was shown, that the geodesic 
ow of the metric on

the ellipsoid is non-resonance, and almost each point is the point of intersection of n caustics.

The paper is organized as follows. In Section 2 we prove Theorem 4 that gives an explicit formula

for an one-parameter family of �rst integrals, if there exist a trajectorial di�eomorphism between

two Hamiltonian systems. In Section 3, for readers convenience, we formulate Levi-Civita's results

about the local form of geodesically equivalent metrics. In Section 4 we apply Theorem MainTh to

geodesically equivalent metrics. As the result we get the formulae for the integrals Ik. In Section 5

we prove that the integrals Ik are in involution. In Sections 6, 7 we prove Theorems 2, 3.

The authors are grateful to A. V. Bolsinov, A. T. Fomenko, V. V. Kozlov, I. A. Taimanov,

K. F. Siburg and V. Bangert for useful discussions. Essential part of the results were obtained during

a 4-week visit of P. Topalov to Bremen University. Authors are grateful to the Institute of Theoretical

Physics of the Bremen University for the hospitality and to the Deutsche Forschungsgemeinschaft for

partial �nancial support.

2. Trajectorial di�eomorphism and integrals

Let v and �v be Hamiltonian systems on symplectic manifolds (M;!) and ( �M; �!) with Hamiltonians

H and �H respectively. Consider the isoenergy surfaces

Q
def
= fx 2M : H(x) = hg ; �Q

def
=
�
x 2 �M : �H(x) = �h

	
;

where h and �h are regular values of the functions H, �H respectively. Let U(Q) �M and U( �Q) � �M

be neighborhoods of the isoenergy surfaces Q and �Q.

De�nition 3. A di�eomorphism � : U(Q) �! U( �Q), �(Q) = �Q, is said to be trajectorial on Q, if

the restriction �jQ takes the trajectories of the system v to the trajectories of the system �v.

Denote the restriction �jQ by �. Since � takes the trajectories of v to the trajectories of �v, it takes

the vector �eld v to the vector �eld that is proportional to �v. Denote by a1 : Q! R the coe�cient of

proportionality, i.e. ��(v) = a1�v. Since � takes Q to �Q, it takes the di�erential dH to a form that is

proportional to d �H. Denote by a2 : Q! R the coe�cient of proportionality, i.e. ��dH = a2d�H. By a

we denote the product a1a2. We denote the Pfa�an of a skew-symmetric matrix X by Pf(X).

Theorem 4. Let a di�eomorphism � : U(Q) ! U( �Q), �(Q) = �Q, be trajectorial on Q. Then for

each value of the parameter t the polynomial

P
n�1(t)

def
=

Pf (���! � t!)

Pf (!) (t� a)

is an integral of the system v on Q. In particular, all the coe�cients of the polynomial Pn�1(t) are

integrals.
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Proof.

Denote by �, �� the restrictions of the forms !; �! to Q, �Q respectively. Consider the form �
���

on Q.

Lemma 1. [22] The 
ow v preserves the form �
���.

Proof of Lemma 1.

The Lie derivative Lv of the form �
��� along the vector �eld v satis�es

Lv�
��� = d [{v�

���] + {vd [�
���] :

On the right side both terms vanish. More precisely, for an arbitrary vector u 2 TxQ at an arbitrary

point x 2 Q we have
{v�

���(u) = ��(��(v); ��(u)) =

= ��(a1�v; ��(u)) =

= �a1d �H (��(u)) = 0:

Since the form �! is closed, the form �� is also closed and d [����] = �
�(d��) = 0. �

It is obvious that the kernels of the forms � and �
��� coincide (in the space TxQ at each point

x 2 Q) with the linear span of the vector v. Therefore these forms induce two non-degenerate tensor

�elds on the quotient bundle T Q=hvi. We shall denote the corresponding forms on T Q=hvi also by

the letters �; ��.

Lemma 2. The characteristic polynomial of the operator (�)�1(����) on T Q=hvi is preserved by the


ow v.

Proof of Lemma 2.

Since the 
ow v preserves the Hamiltonian H and the form !, the 
ow v preserves the form �.

Since the 
ow v preserves both forms, it preserves the characteristic polynomial of the operator

(�)�1(����). �

Since both forms are skew-symmetric, each root of the characteristic polynomial of the operator

(�)�1(����) has an even multiplicity. Then the characteristic polynomial is the square of a polynomial

�
n�1(t) of degree n � 1. Hence the polynomial �n�1(t) is also preserved by the 
ow v. It is obvious

that

�
n�1(t) = (�1)n�1Pf (�

��� � t�)

Pf (�)
:

The last step of the proof is to verify that

(t� a)�n�1 =
Pf (���! � t!)

Pf (!)

def
= �n

:

Take an arbitrary point x 2 Q. Consider the form ���! � a! on TxM . The form {v(�
��! � a!) equals

zero. More precisely, for any vector u 2 TxM we have

{v(�
��! � a!) = �!(��(v);��(u))� a!(v; u) =

= �!(a1v;��(u))� a!(v; u) =

= �a1d�H(��(u)) + adH =

= �adH + adH = 0:

There exists a vector A 2 TxM such that !(A; v) 6= 0 and the restriction of the form {A(�
��! � a!)

to the space TxM equals zero. More precisely, since the forms ���!, ! are skew-symmetric, then the
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kernel K���!�a! of the form ���! � a! has an even dimension, and the kernel of the restriction of the

form ���! � a! to TxQ has an odd dimension. Thus the intersection K���!�a! \ (TxM n TxQ) is not

empty. For each vector A from the intersection we obviously have !(A; v) 6= 0 and {A(�
��!� a!) = 0.

Without loss of generality we can assume !(A; v) = 1.

Consider a basis (v; e1; : : : ; e2n�2) for the space TxQ. The set (A; v; e1; : : : ; e2n�2) is a basis for

the space TxM . In this basis we have

det(���! � t!) = det

������
0 a� t (�)

�(a� t) 0 0 � � � 0

�(�) 0 (���! � t!)he1;::: ;e2n�2i

������ =
= (a� t)2 det((���! � t!)he1;::: ;e2n�2i)

= (a� t)2 det(���� � t�);

where (���! � t!)he1;::: ;e2n�2i is the matrix of the form ���! � t! in the basis (e1; : : : ; e2n�2). Finally,

�
n�1 = Pn�1. �

3. Levi-Civita theorem

Let g and �g be smooth metrics on a manifold M
n. Denote by �

1
; : : : ; �

m (1 � m � n) the common

eigenvalues of the metrics g and �g. Suppose the functions �1; : : : ; �m are di�er at every point of

an open domain D � M
n. In the paper [12], Levi-Civita proved that for every point P 2 D there

is an open neighborhood U(P ) � D and a coordinate system �x = (�x1; : : : ; �xm) (in U(P )), where

�xi = (x1
i
; : : : ; x

ki

i
), (1 � i � m), such that the quadratic forms of the metrics g and �g have the

following form:

g( _�x; _�x) = �1(�x)A1(�x1; _�x1) + �2(�x)A2(�x2; _�x2) + � � � +

+ �m(�x)Am(�xm; _�xm); (1)

�g( _�x; _�x) = �
1�1(�x)A1(�x1; _�x1) + �

2�2(�x)A2(�x2; _�x2) + � � �+

+ �
m�m(�x)Am(�xm; _�xm); (2)

where Ai(�xi; _�xi) are positive-de�nite quadratic forms in the velocities _�xi with coe�cients depending

on �xi,

�i

def
= (�i � �1) � � � (�i � �i�1)(�i+1 � �i) � � � (�m � �i) (3)

and �1; �2; : : : ; �m, 0 < �1 < �2 < : : : < �m, are smooth functions such that

�i =

�
�i(�xi); if ki = 1

constant; else:

It is easy to see that the functions �i as functions of �i and the function �i as functions of �
i are given

by

�
i =

1

�1 : : : �m

1

�i

�i =
1

�i
(�1�2 : : : �m)

1

m+1

De�nition 4. Let metrics g and �g be given by formulae (1) and (2) in a coordinate chart U . Then

we say that the metrics g and �g have Levi-Civita local form (of type m), and the coordinate chart U

is Levi-Civita coordinate chart (with respect to the metrics).
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Levi-Civita proved that the metrics g and �g given by formulae (1) and (2) are geodesically

equivalent. If we replace �i by �i + c, i = 1; : : : ;m, where c is a (positive for simplicity) constant, in

(1) and (2), we obtain the following one-parameter family of metrics, geodesically equivalent to g:

gc( _�x; _�x) =
1

(�1 + c) � � � (�m + c)

�
1

�1 + c
�1A1 + � � �+

1

�m + c
�mAm

�
:

The next theorem is essentially due to Painlev�e, see [12].

Theorem 5. If the metrics g and �g are geodesically equivalent, then the function

I0
def
=

�
det(g)

det(�g)

� 2

n+1

�g( _�x; _�x); (4)

is an integral of the geodesic 
ow of the metric g.

Substituting gc instead of �g in (4), we obtain the following one-parameter family of integrals

Ic
def
=

�
det(g)

det(gc)

� 2

n+1

gc( _�x; _�x) =

= C[(�1 + c) � � � (�m + c)]

�
1

�1 + c
�1A1 + � � � +

1

�m + c
�mAm

�
= CfL1c

m�1 + L2c
m�2 + � � �+ Lmg;

where

L1 = �1A1 + � � �+�mAm | the twice energy integral;

L2 = �1(�2; : : : ; �m)�1A1 + � � �+ �1(�1; : : : ; �m�1)�mAm;

L3 = �2(�2; : : : ; �m)�1A1 + � � �+ �2(�1; : : : ; �m�1)�mAm;

...

Lm = (�2 : : : �m)�1A1 + � � �+ (�1 : : : �m�1)�mAm;

�k denotes the elementary symmetric polynomial of degree k, and

C
def
=
�
(�1 + c)k1�1 � � � (�m + c)km�1

� 2

n+1 is a constant. Therefore the functions Lk, k = 1; : : : ;m; are

integrals of the geodesic 
ows of the metric g. We call these integrals Levi-Civita integrals.

From the results of [18] it follows that Levi-Civita integrals are in involution. More precisely,

let D = (di
j
) be an m � m matrix. Suppose that for any i; j the element di

j
depends only on the

variables �xj. Denote by � the determinant of the matrix D and by �i

j
the minor of the element di

j
.

In the paper [18] it was shown that, for arbitrary functions Ai(�xi; _�xi), quadratic in velocities _�xi, the

Lagrangian system with Lagrangian

T1 = �

�
A1(�x1; _�x1)

�1
1

+
A2(�x2; _�x2)

�1
2

+ : : :+
Am(�xm; _�xm)

�1
m

�

admits (m� 1) integrals

Ti = �

�
A1(�x1; _�x1)

�i

1

(�1
1)

2
+A2(�x2; _�x2)

�i

2

(�1
2)

2
+ : : :+Am(�xm; _�xm)

�i

m

(�1
m)

2

�
;

where i = 2; : : : ;m, and if we identify the tangent and cotangent bundles the Lagrangian T1 and

consider the standard symplectic form on the cotangent bundle, then the integrals are in involution.
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If we take di
j
= (�j)

m�i, then � and �i

j
are given by

�i

j = (�1)m�1
�
i�1(�1; �2; : : : ; �j�1; �j+1; : : : ; �m)

Y
�>��1;� 6=j;� 6=j

(�� � ��);

� = (�1)m
Y

�>��1

(�� � ��):

Therefore,
��i

j

(�1
j
)2

= �
i�1(�1; �2; : : : ; �j�1; �j+1; : : : ; �m)�j ;

so Ti = �Li and thus the integrals Li are in involution. �

4. Geodesic equivalence and corresponding integrals

Let metrics g and �g on a manifold M (of dimension n) be geodesically equivalent. By de�nition,

put

U
r

gM
def
= f(x; �) 2 TM : jj�jjg = rg ;

where x 2M , � 2 TxM and jj�jjg
def
=
p
g(�; �) =

p
gij�

i�j is the norm of the vector � in the metric g.

By the geodesic 
ow of the metric g we mean the Lagrangian system of di�erential equations
d

dt

�
@L

@ _x

�
� @L

@x
= 0 on TM with Lagrangian L

def
= 1

2
gij _x

i _xj. Because of the Legendre transformation,

the geodesic 
ow could be considered as a Hamiltonian system on TM (as a symplectic form we take

!g
def
= d[gij�

jdxi]) with the Hamiltonian Hg

def
= 1

2
gij�

i
�
j.

Since the metrics g, �g are geodesically equivalent, the mapping � : TM ! TM ,

�(x; �) =
�
x; �

jj�jjg
jj�jj�g

�
, takes the trajectories of the geodesic 
ow of the metric g to the trajectories of

the geodesic 
ow of the metric �g. This mapping is a di�eomorphism (for r 6= 0), takes U r

g
M to U r

�gM

and is trajectorial on U
r

g
M . Obviously the surfaces U r

g
, U r

�g are regular isoenergy surfaces fHg =
r

2
g,

fH�g =
r

2
g.

By Theorem 4, in order to obtain a family of �rst integrals we have to �nd the polynomial �n(t)

and divide it by (t� a). In our case Hg = H�g � �. Therefore the function a from Theorem 4 equals

to
jj�jj�g
jj�jjg

.

In coordinates we have

!g = d[gij�
jdxi]

and

!�g = d[�gij�
jdxi]:

Therefore,

��
!�g = d

�
jj�jjg

jj�jj�g
�gij�

jdxi
�
=

=
@

@xk

�
jj�jjg

jj�jj�g
�gij�

j

�
dx

k
^ dx

i
�

@

@�k

�
jj�jjg

jj�jj�g
�gij�

j

�
dx

i
^ d�

k
:

It is easy to see that at a point � 2 TxM the quantities

Aik

def
= �

@

@�k

�
jj�jjg

jj�jj�g
�gij�

j

�
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form an element of TxM 
TxM . Without loss of generality we can assume that in the space TxM the

metrics g and �g are given in principal axes. Then

Aij

def
= ��

i(x)
@

@�j

0
@�i

q
�1

2
+ : : :+ �n

2q
�1�1

2
+ : : :+ �n�n

2

1
A =

= �
i
�
i

j

jj�jjg

jj�jj�g
� �

i
�
i

0
@ jj�jj�g

jj�jjg
� �

j jj�jjg
jj�jj�g

jj�jj2�g
�
j

1
A =

= diag(�1; : : : ; �n)�A
B:

Here �i; i = 1; : : : ; n are common eigenvalues (here we allow �
i to be equal to �j for some i; j) of the

metrics g and �g, �i
def
= ��i

jj�jjg
jj�jj�g

, Ai

def
= �

i
�
i and

Bi

def
=

jj�jj�g
jj�jjg

� �
i jj�jjg
jj�jj�g

jj�jj2�g
�
i
:

We have

det(��
!�g � t!g) = det

���� (�) (Aij + t�ij)

�(Aij + t�ij) 0

����
= det(Aij + t�ij)

2
:

Therefore,

�n(t) = det (diag(t+ �1; : : : ; t+ �n)� a
 b) :

Lemma 3. The following relation holds:

�n(t) = (t+ �1) � � � (t+ �n)� (a1b1)(t+ �2) � � � (t+ �n)� : : :

� (t+ �1) � � � (t+ �n�1)(anbn): (5)

The lemma follows from induction considerations.

To divide the polynomial by (t � a) we shall use the Horner scheme. Suppose that �n(t) =

t
n + an�1t

n�1 + � � �+ a0 and �
n�1(t) = t

n�1 + bn�2t
n�2 + � � �+ b0. Then we have

bn�1 = an = 1; (6)

bn�2 = an�1 + a; (7)

� � �

bk = ak+1 + abk+1; (8)

� � �

0 = a0 + ab0: (9)

It follows from lemma 3 that

a0 = (�1 : : : �n)� (A1B1)(�2 : : : �n)� � � � � (�1 : : : �n�1)AnBn =

= (�1)n
�
jj�jjg

jj�jj�g

�
n

(�1 � � � �n):
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�

Combining with (9) we get

b0 = �
a0

a
= (�1)n+1

�
jj�jjg

jj�jj�g

�
n+1

(�1 � � � �n):

Since 1
2
gij�

i
�
j is an integral of the geodesic 
ow of the metric g, the function

I0
def
= (�1 � � � �n)

� 2

n+1 �g(�; �) (10)

is also an integral of the geodesic 
ow of the metric g. Using Lemma 3 we have

an�1 = (�1 + : : : + �n)� (A1B1 + : : :+AnBn) =

=
jj�jjg

jj�jj3�g

n
(�1

2
�
12 + : : :+ �

n2
�
n2)�

� (�1 + : : :+ �
n)(�1�1

2
+ : : :+ �

n
�
n2)
o
�
jj�jj�g

jj�jjg
:

Using (7) we get

bn�2 = an�2 + a =

=
jj�jjg

jj�jj3�g

n
(�1

2
�
12 + : : :+ �

n2
�
n2)� (�1 + : : :+ �

n)(�1�1
2
+ : : : + �

n
�
n2)
o
:

Therefore, the function

I1
def
= (�1 � � � �n)

� 3

n+1

n
(�1

2
�
12 + : : : + �

n2
�
n2)�

� (�1 + : : :+ �
n)(�1�1

2
+ : : :+ �

n
�
n2)
o

is an integral. (It is easy to see that
jj�jj2g
jj�jj2�g

= (�1 � � � �n)
� 2

n+1
jj�jj2g
I0

:)

Arguing as above, we see that the functions

Ik
def
= (�1 � � � �n)

� k+2
n+1

n
(�1

k+1
�
12 + : : :+ �

nk+1
�
n2)�

� (�1 + : : :+ �
n)(�1

k
�
12 + : : :+ �

nk
�
n2) + � � �

+ (�1)k�k(�
1
; : : : ; �

n)(�1�1
2
+ : : :+ �

n
�
n2)
o
;

are integrals of the geodesic 
ow of the metric g, where by �k we denote the elementary symmetric

polynomial of degree k. It is obvious that (�1)k�k = ck from Theorem 1, and therefore

Ik =

�
det(g)

det(�g)

� k+2
n+1

�g(Sk�; �). Thus Ik, k = 0; : : : ; n � 1, are integrals of the geodesic 
ow of the

metric g. �

5. Liouville integrability

The last step of the proof of Theorem 1 is to verify that the integrals I0; : : : ; In�1 are in involution.

We proceed along the following plan. First we show that it is su�cient to prove the involutivity in

each Levi-Civita chart. Then we prove that in each Levi-Civita chart the integrals I0; : : : ; In�1 are

linear combinations of Levi-Civita integrals, and therefore commute.
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Let g; �g be metrics on M . A point x 2 M is called stable, if in a neighborhood of x the number

of di�erent eigenvalues of the metrics g, �g does not depend of a point.

Denote by M the set of stable points of M . The set M is an open subset of M . Obviously

M =
G

1�q�n

M
q
; (11)

where Mq denotes the set of stable points whose number of distinct common eigenvalues equals q.

Points x 2M nM are called points of bifurcation.

Lemma 4. The set M is everywhere dense in M .

Proof of Lemma 4.

Denote by N(x) the number of distinct common eigenvalues of the metrics g; ĝ at a point x.

Recall that the common eigenvalues of the metrics g, ĝ at a point x 2M are roots of the characteristic

polynomial Px(t) = det (G� tE)jx, where G =
�
g
i��g�j

�
. In particular, all roots of Px(t) are real.

Let us prove that, for a su�ciently small neighborhood of an arbitrary point x 2 M , for any y

from the neighborhood the number N(x) is no less than N(y). Take a small � > 0 and an arbitrary

root � of Px(t). Let us prove that for a su�ciently small neighborhood U(x) � M , for any y 2 U(x)

there is a root �y, � � � < �y < � + �, of the polynomial Py(t). If � is small, then for a su�ciently

small neighborhood U(x) of the point x, for any y 2 U(x) the numbers �+ � and �� � are not roots of

Py(t). Consider the circle S�
def
= fz 2 C : jz � �j = �g on the complex plane C. Clearly the number

of roots (with multiplicities) of the polynomial Py inside the circle is equal to

1

2�i

Z
S�

P
0
y
(z)

Py(z)
dz:

Since for any y 2 U(x) there are no roots of Py on the circle S�, then the function

1

2�i

Z
S�

P
0
y(z)

Py(z)
dz

continuously depends on y 2 U(x), and therefore is a constant. Clearly it is positive. Thus for any

y 2 U(x) there is at least one root of Py that lies between � + � and � � �. Then for any y from a

su�ciently small neighborhood of x we have N(y) � N(x).

Now let us prove the lemma. Evidently the set M is an open subset of M . Then it is su�cient

to prove that for any open subset U � M there is a stable point x 2 U . Suppose otherwise, i.e. let

all the points of U be points of bifurcation. Take a point y 2 M with maximal value of the function

N on it. We have that in a neighborhood U(y) of the point y the function N is constant and equals

N(y). Then the point y is a stable point, and we get a contradiction. �

Now let the metrics g; �g be geodesically equivalent. Since the set of points of bifurcation is nowhere

dense, it is su�cient to prove the involutivity in each Levi-Civita chart. Let the metrics g and �g be

given by

g( _�x; _�x) = �1(�x)A1(�x1; _�x1) + �2(�x)A2(�x2; _�x2) + � � �+

+ �m(�x)Am(�xm; _�xm); (12)

�g( _�x; _�x) = �
1�1(�x)A1(�x1; _�x1) + �

2�2(�x)A2(�x2; _�x2) + � � �

+ �
m�m(�x)Am(�xm; _�xm): (13)

We show that the integrals Ik are linear combinations of the Levi-Civita integrals. We have

�G = diag(�1; : : : ; �1| {z }
k1

; : : : ; �m; : : : ; �m| {z }
km

); (14)
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�

where �k =
1

(�1:::�m)
1
�k
. It is easy to check that

Sk = (�1)kdiag(�1
k
; : : : ; �

1
k| {z }

k1

; : : : ; �
m

k
; : : : ; �

m

k| {z }
km

); (15)

where

�
l

k

def
= �k(�1; : : : ; �1| {z }

k1

; : : : ; �l; : : : ; �l| {z }
kl�1

; : : : ; �m; : : : ; �m| {z }
km

): (16)

We have

�
1
k

=
1

(�1 : : : �m)k
�k

� 1

�1
; : : : ;

1

�1| {z }
k1�1

; : : : ;
1

�m
; : : : ;

1

�m| {z }
km

�
= (17)

=
1

(�1 : : : �m)k

X
j�j=k

�
k1 � 1

�1

��
k2

�2

�
� � �

�
km

�m

�
1

�
�1

1

1

�
�2

2

� � �
1

�
�m
m

; (18)

(19)

where j�j
def
= �1+ � � �+�m and �i � 0. Substituting

�
kl�1
�l

�
+
�
kl�1
�l�1

�
for
�
kl

�l

�
(we assume that

�
k

0

�
= 1,�

k

�1

�
= 0, k � 0) for 2 � l � m we obtain

�
1
k

=
1

(�1 : : : �m)k

�
Bk +Bk�1�1

� 1

�2
; : : : ;

1

�m

�
+ � � �+

+ Bk�m+1�m�1

� 1

�2
; : : : ;

1

�m

��
;

where

Bk

def
=
X
j�j=k

�
k1 � 1

�1

�
� � �

�
km � 1

�m

�
1

�
�1

1

� � �
1

�
�m
m

: (20)

Note that

�
det(g)

det(�g)

� k+2
n+1

= Ck(�1 : : : �m)
k+2

; (21)

where Ck = [�k1�1
1 : : : �

km�1
m

]
k+2
n+1 . Therefore,

Ik
def
=

�
det(g)

det(�g)

� k+2
n+1

�g(Sk _�x; _�x) =

= (�1)kCk(�1 : : : �m)
k+2

�
�
1
�
1
k
�1A1 + � � �+ �

m
�
m

k
�mAm

	
=

= (�1)kCk(�1 : : : �m)
k+2

�
1

�1 : : : �m

1

�1

�
1

(�1 : : : �m)k
(Bk+

+ � � �+Bk�m+1�m�1

� 1

�2
; : : : ;

1

�m

���
�1A1 + � � �

�
=

= (�1)kCk fBkLm +Bk�1Lm�1 + � � � +Bk�m+1L1g ; (22)

where Li are Levi-Civita integrals.
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Finally, since the integrals I0; : : : ; In�1 are linear combinations of Levi-Civita integrals with

constant coe�cients, and since Levi-Civita integrals commute, then the integrals I0; : : : ; In�1 also

commute. �

Remark 1. Let m be the number of distinct common eigenvalues of geodesically equivalent metrics g,

�g at a point x. Then in a neighborhood U of the point x the number of functionally independent almost

everywhere Levi-Civita integrals is no less than m. Therefore the dimension of the space generated by

the di�erentials (dI0; dI1; : : : ; dIn�1) no less than m in almost all points of T U .

6. A family of geodesically equivalent metrics

Lemma 5. Let A be the diagonal n�n matrix Diag( 1
a1a

;
1

a2a
; : : : ;

1
aia

), where a is
Q

n

i=1 ai, and ai are

positive. Let the characteristic polynomial det(A � �E) be c0�
n + c1�

n�1 + : : : + c
n. Then for any �

the matrix

A

n�1X
k=0

(��)k
�

1

det(A)

� k+2
n+1

kX
i=0

A
k�i

ci

is equal to
Q

i=0 n(ai + �)Diag( 1
a1+�

;
1

a2+�
; : : : ;

1
an+�

).

Proof.

It is clear that
�

1
det(A)

� k+2
n+1

equals ak+2, and that ck = �
k

�
�1
aa1

;
�1
aa2

; : : : ;
�1
aan

�
, where �k denotes

the symmetric polynomial of degree k. Then,

A

n�1X
k=0

(��)k
�

1

det(A)

� k+2
n+1

kX
i=0

A
k�i

ci = A

n�1X
k=0

(��)kak+2
kX

i=0

A
k�i

�
i

�
�1

aa1
; : : : ;

�1

aan

�
:

The matrix

A

n�1X
k=0

(��)kak+2
kX

i=0

A
k�i

�
i

�
�1

aa1
; : : : ;

�1

aan

�

is evidently diagonal. The element number l on the diagonal is given by

1

aal

n�1X
k=0

(��)kak+2
kX

i=0

�
1

aal

�
k�i

�
i

�
�1

aa1
; : : : ;

�1

aan

�
=

a

al

n�1X
k=0

(��)k
kX

i=0

�
i

�
�1

a1
; : : : ;

�1

an

��
1

al

�k�i

=

a

al

n�1X
i=0

�
i

�
�1

a1
; : : : ;

�1

an

�X
k=i

n� 1
(��)k

a
k�i
l

=

a

al

n�1X
i=0

a
i

l�
i

�
�1

a1
; : : : ;

�1

an

� ���
al

�
n

�

�
��
al

�
i

� �

al
� 1

=

�
a

al + �

nX
i=0

a
i

l
�
i

�
�1

a1
; : : : ;

�1

an

� �
��

al

�n

�

�
��

al

�i
!

=

�
a(��)n

al + �

nX
i=0

1

a
n�i
l

�
i

�
�1

a1
; : : : ;

�1

an

�
+

a

al + �

nX
i=0

�
i

�
�1

a1
; : : : ;

�1

an

�
=

(23)
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�

�a(��)n

al + �

nY
i=0

�
1

al
�

1

ai

�
+

a

al + �

nY
i=1

�
1 +

�

ai

�
=

0 +
1

al + �

nY
i=1

(ai + �) ;

�

Proof of Theorem 2.

Because of Lemma 4, it is su�cient to prove the theorem only in Levi-Civita chart. Let the

metrics g and �g be given by

g( _�x; _�x) = �1(�x)A1(�x1; _�x1) + �2(�x)A2(�x2; _�x2) + � � �+

+ �m(�x)Am(�xm; _�xm); (24)

�g( _�x; _�x) =
1

�1(�
k1

1 �
k2

2 : : : �
km
m )

�1(�x)A1(�x1; _�x1) +
1

�2(�
k1

1 �
k2

2 : : : �
km
m )

�2(�x)A2(�x2; _�x2) + � � �+

+
1

�1(�
k1
m�

k2

2 : : : �
km
m )

�m(�x)Am(�xm; _�xm); (25)

For this metrics the operator �G
def
= (g�g�1) is given by the diagonal matrix

Diag(�1; �1; : : : ; �1| {z }
k1

; �2; �2; : : : ; �2| {z }
k2

; : : : ; �m; �m; : : : ; �m| {z }
km

). It is easy to see that for any �; � 2 TxM
n we

have �g(�; �) = g(G�; �). Then the formula for ~Ik is

~Ik(�; �) =

�
1

det(G)

� k+2
n+1

g(G

kX
i=0

G
k�i

ci�; �);

and f� is given by

f� =

n�1X
k=0

(��)k ~Ik

=

n�1X
k=0

�
1

det(G)

� k+2
n+1

g(G

kX
i=0

G
k�i

ci�; �)

= g(G

n�1X
k=0

�
1

det(G)

� k+2
n+1

kX
i=0

G
k�i

ci�; �): (26)

Combining (26) with Lemma 5, we have that the form f� is given by

f�( _�x; _�x) =
(�1 + �)k1(�2 + �)k2 : : : (�m + �)km

�1 + �
�1(�x)A1(�x1; _�x1) (27)

+
(�1 + �)k1(�2 + �)k2 : : : (�m + �)km

�2 + �
�2(�x)A2(�x2; _�x2) + � � �+

+
(�1 + �)k1(�2 + �)k2 : : : (�m + �)km

�m + �
�m(�x)Am(�xm; _�xm):

Then the metric

g�
def
=

�
det(g)

det(f�)

� 2

n�1

f�
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is given by the formula

g�( _�x; _�x) =
1

(�1 + �)k1 � � � (�m + �)km

�
1

�1 + �
�1A1 + � � � +

1

�m + �
�mAm

�
;

and is evidently geodesically equivalent to g, �

7. Geodesically equivalent metrics on the ellipsoid.

Proof of Theorem 3.

We show that in the elliptic coordinate system the restriction of the metrics

ds
2 def
=

nX
i=1

(dxi)2 and dr
2 def
=

1P
n

i=1

�
xi

ai

�2
 

nX
i=1

(dxi)2

ai

!

to the ellipsoid
P

n

i=1

(xi)2

ai
= 1 have Levi-Civita local form, and therefore are geodesically equivalent.

More precisely, consider elliptic coordinates �1; : : : ; �n. Without loss of generality we can assume

that a1 < a
2
< : : : < a

n. Then the relation between the elliptic coordinates �� and the Cartesian

coordinates �x is given by

x
i =

s Q
n

j=1(a
i � �j)Q

n

j=1;j 6=i
(ai � aj)

:

Recall that the elliptic coordinates are non-degenerate almost everywhere, and the set

f�
1 = 0; a1 < �

2
< a2; a2 < �

3
< a3; : : : ; an�1 < �

n
< a

n
g

is the part of the ellipsoid fx1 > 0; x2 > 0; : : : ; xn > 0g. Since for any i the symmetry x
i ! �xi

takes the ellipsoid to the ellipsoid and preserves the metrics ds2 and dr
2, it is su�cient to check the

statement of the theorem only in the quadrant fx1 > 0; x2 > 0; : : : ; xn > 0g.

In the elliptic coordinates the restriction of the metric ds2 to the ellipsoid has the following form

nX
i=1

�iAi(d�
i)2;

where �i

def
=
Q

n

j=1;j 6=i
(�i��j), and Ai

def
= �

i
Qn

j=1(a
j��i)

. The restriction of the metric dr2 to the ellipsoid

is

(a1a2 : : : an)

nX
i=1

�
i�iAi(d�

i)2;

where �i
def
=

1

�i(�1�2 : : : �n)
:We see that the metrics ds2, dr2 have Levi-Civita local form, and therefore

are geodesically equivalent. �
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