#### Plan

- ► Neues Thema: Konvexgeometrie
- Definitionen
- Schwerpunkt
- ► Konvexe Hülle und Satz über Äquivalenz von zwei Definitionen

### Konvexe Mengen

**Def.** Eine Teilmenge  $A \subseteq \mathbb{R}^n$  heißt konvex, wenn sie mit je zwei Punkten x, y auch stets deren Verbindungsstrecke

$$\overline{xy} = \{x + t \cdot \overrightarrow{xy} \mid 0 \le t \le 1\} = \{(1 - t)x + ty \mid 0 \le t \le 1\} \quad \text{enthält.}$$





#### Lemma 25.

Der Durchschnitt von konvexen Mengen ist konvex.

Beweis. Wir betrachten konvexe Mengen  $K_{\alpha}$ ,  $\alpha \in \mathcal{A}$ ; wir müssen zeigen, dass  $\bigcap_{\alpha \in \mathcal{A}} K_{\alpha}$  konvex ist, d.h. wir müssen zeigen, dass  $\bigcap_{\alpha \in \mathcal{A}} K_{\alpha}$  mit je zwei Punkten x,y die ganze Strecke  $\overline{xy}$  enthält. Angenommen, die Punkte x,y liegen im Durschnitt der konvexen Mengen  $K_{\alpha}$ ,  $\alpha \in \mathcal{A}$ . Dann liegt auch die Strecke  $\overline{xy}$  in allen  $K_{\alpha}$ . Deswegen liegt diese Strecke im Durchschnitt  $\bigcap_{\alpha \in \mathcal{A}} K_{\alpha}$ 

## Drei Definitionen der konvexen Hülle und Aquivalenzsatz:

**Def. (a)** Die konvexe Hülle von A ist die Menge  $conv_{(a)}(A) := \{\lambda_1 x_1 + ... + \lambda_k x_k \mid \lambda_1 + ... + \lambda_k = 1, \lambda_i \geq 0, x_i \in A\}.$ 

**Def.** (b) Die konvexe Hülle von A ist der Durchschnitt von allen konvexen Mengen, die A enthalten:

$$conv_{(b)}(A) = \bigcap_{\substack{C \supseteq A \\ C \text{ ist konvex}}} C.$$

**Satz (über der konvexen Hülle).** Die Definitionen (a), (b) sind äquivalent: ist eine Menge eine konvexe Hülle nach einer Definition, so ist sie auch eine konvexe Hülle nach den anderen Definitionen.

Vor dem Beweis machen wir Exkurs zum Thema "Schwerpunkt"; in Hausaufgaben werden Sie die Schwerkpunktmethode in der Elementargeometrischen Aufgaben anwenden.

#### Exkurs: Schwerpunkt

Seien  $x_1,...,x_k$  Punkte des Raumes  $\mathbb{R}^n$ , und  $m_1,...,m_k \in \mathbb{R}_{\geq 0}$ , so dass mind. ein  $m_i > 0$ .

**Def.** Der Schwerpunkt von  $x_1,...,x_k$  mit Massen  $m_1,...,m_k$  ist der Punkt  $a+\frac{1}{\sum_{i=1}^k m_i}\sum_{i=1}^k m_i \overrightarrow{ax_i} = a+\frac{1}{\sum_{i=1}^k m_i}\sum_{i=1}^k m_i (x_i-a).$ 

**Lemma 26** Schwerpunkt hängt nicht von der Wahl des Punktes *a* ab. **Beweis.** 

$$b + \frac{1}{\sum_{i=1}^{k} m_{i}} \sum_{i=1}^{k} m_{i} \overrightarrow{bx_{i}} = a + \overrightarrow{ab} + \frac{1}{\sum_{i=1}^{k} m_{i}} \sum_{i=1}^{k} m_{i} \overrightarrow{bx_{i}}$$

$$= a + \frac{1}{\sum_{i=1}^{k} m_{i}} \left( \sum_{i=1}^{k} m_{i} \overrightarrow{ab} + \sum_{i=1}^{k} m_{i} \overrightarrow{bx_{i}} \right)$$

$$= a + \frac{1}{\sum_{i=1}^{k} m_{i}} \sum_{i=1}^{k} m_{i} (\overrightarrow{ab} + \overrightarrow{bx_{i}})$$

$$= a + \frac{1}{\sum_{i=1}^{k} m_{i}} \sum_{i=1}^{k} m_{i} \overrightarrow{ax_{i}}.$$

**Bemerkung.** Die Eigenschaft "Schwerpunkt zu sein" ist eine affine Eigenschaft: ist  $F: \mathbb{R}^n \to \mathbb{R}^m$  eine affine Abbildung, dann ist der Schwerpunkt von  $F(x_1),...,F(x_k)$  (mit Massen  $m_1,...,m_k$ ) das Bild des Schwerpunktes von  $x_1, ..., x_k$  (mit denselben Massen  $m_1, ..., m_k$ ). In der Tat, sei F(x) = Ax + b für eine  $m \times n$ -Matrix A und  $b \in \mathbb{R}^m$ . Dann gilt:

$$F(x) - F(y) = Ax + b - Ay - b = A(x - y)$$
 (\*)

Wir setzen (\*) in die Definition des Schwerpunktes von  $F(x_1), ..., F(x_k)$  (mit Massen  $m_1, ..., m_k$  und "Anfangspunkt"  $a = F(\vec{0})$  ein und erhalten:

$$F(\vec{0}) + \frac{1}{\sum_{i=1}^{k} m_i} \sum_{i=1}^{k} m_i (F(x_i) - F(\vec{0}))$$

$$F(\vec{0}) + \frac{1}{\sum_{i=1}^{k} m_i} \sum_{i=1}^{k} m_i (F(x_i) - F(\vec{0}))$$

$$\stackrel{(*)}{=} b + \frac{1}{\sum_{i=1}^{k} m_i} \sum_{i=1}^{k} m_i (A(x_i - \vec{0})) = b + A\left(\frac{1}{\sum_{i=1}^{k} m_i} \sum_{i=1}^{k} m_i x_i\right)$$

$$= F\left(\underbrace{\vec{0} + \frac{1}{\sum_{i=1}^{k} m_i} \sum_{i=1}^{k} m_i x_i}_{\text{Schwerpunkt von } x_1, \dots, x_k}\right)$$

**Lemma 27.** Seien  $x_1, ..., x_k$  und  $y_1, ..., y_r$  Punkte;  $m_{x_1}, ..., m_{x_k}, m_{y_1}, ..., m_{y_r}$  die Massen, s.d.  $m_{x_1} + ... + m_{x_k} > 0$  und  $m_{y_1} + ... + m_{y_r} > 0$ . Der Schwerpunkt von  $x_1, ..., x_k$  sei  $S_x$ . Der Schwerpunkt von  $y_1, ..., y_r$  sei  $S_y$ . Dann gilt: Der Schwerpunkt von dem Punktepaar  $S_x$  und  $S_y$  mit Massen  $\sum_{i=1}^k m_{x_i}$  und  $\sum_{i=1}^r m_{y_i}$  ist gleich dem Schwerpunkt der Punkte  $x_1, ..., x_k, y_1, ..., y_r$  mit Massen  $m_{x_1}, ..., m_{x_k}, m_{y_1}, ..., m_{y_r}$ .

**Beweis.** Wir berechnen die beiden Schwerpunkte und stellen fest, dass sie zusammenfallen. Nach Lemma 26 können wir einen beliebigen Punkt als den Punkt *a* in der Formel

$$a + \frac{1}{\sum_{i=1}^{k} m_{x_i} + \sum_{j=1}^{r} m_{y_j}} \left( \sum_{i=1}^{k} m_{x_i} \overrightarrow{ax_i} + \sum_{j=1}^{r} m_{y_j} \overrightarrow{ay_j} \right) (*)$$

wählen; wir nehmen  $a = S_x$ . Da  $S_x$  Schwerpunkt von  $x_1,...,x_k$  ist, ist  $S_x + \frac{1}{\sum_{i=1}^k m_{x_i}} \sum_{i=1}^k m_{x_i} \overrightarrow{S_x x_i} = S_x$ , folglich  $\sum_{i=1}^k m_{x_i} \overrightarrow{S_x x_i} = \overrightarrow{0}$ . Dann ist die ist (\*) gleich

$$S_{x} + \frac{1}{\sum_{i=1}^{k} m_{x_{i}} + \sum_{j=1}^{r} m_{y_{j}}} \left( \sum_{j=1}^{r} m_{y_{j}} \overrightarrow{S_{x} y_{j}} \right).$$

Wenn wir den Schwerpunkt von  $y_1, ..., y_r$  berechnen, bekommen wir

$$S_y = S_x + \frac{1}{\sum_{j=1}^r m_{y_j}} \sum_{j=1}^r m_{y_j} \overrightarrow{S_x y_j}, \ \text{also} \ \overrightarrow{S_x S_y} = \frac{1}{\sum_{j=1}^r m_{y_j}} \sum_{j=1}^r m_{y_j} \overrightarrow{S_x y_j},$$

und deswegen

$$\frac{1}{\sum_{i=1}^k m_{x_i} + \sum_{j=1}^r m_{y_j}} \left( \sum_{j=1}^r m_{y_j} \overrightarrow{S_x y_j} \right) = \frac{\sum_{j=1}^r m_{y_j}}{\sum_{i=1}^k m_{x_i} + \sum_{j=1}^r m_{y_j}} \overrightarrow{S_x S_y}.$$

Dann ist die Formel (\*) gleich

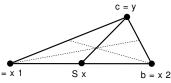
$$S_{x} + \frac{\sum_{i=1}^{k} m_{x_{i}}}{\sum_{i=1}^{k} m_{x_{i}} + \sum_{j=1}^{r} m_{y_{j}}} \vec{0} + \frac{\sum_{j=1}^{r} m_{y_{j}}}{\sum_{i=1}^{k} m_{x_{i}} + \sum_{j=1}^{r} m_{y_{j}}} \vec{S}_{x} \vec{S}_{y},$$

und dies ist die Formel für den Schwerpunkt der zwei Punkte  $S_x$ ,  $S_y$  mit Massen  $\sum_{i=1}^k m_{x_i}$ ,  $\sum_{i=1}^r m_{y_i}$ ,

## Beispiel: Schwerpunkt eines Dreiecks

**Folgerung.** Man betrachte die Eckpunkte a,b,c eines Dreiecks mit Massen  $m_a=1,\ m_b=1,\ m_c=1.$  Dann ist der Schwerpunkt der Schnittpunkt der Seitenhalbierenden. Ferner gilt: der Schnittpunkt teilt die Seitenhalbierenden im Verhältnis 1:2.

**Beweis.** Wir nehmen k=2,  $x_1=a, x_2=b$  und r=1,  $y_1=c$ . Dann ist  $S_x=\frac{1}{1+1}(a+b)=\frac{1}{2}(a+b)$ . Wir sehen, dass  $S_x$  der Mittelpunkt der Seite  $\overline{ab}$  ist, deswegen ist  $\overline{S_xc}$  eine Seitenhalbierende.



Offensichtlich ist  $S_y = \frac{1}{1}c = c$ . Dann ist nach Lemma 26 (wir nehmen  $S_x$  als Fußpunkt)

$$S = S_x + \frac{1}{2+1} \left( 2 \cdot \overrightarrow{S_x S_x} + 1 \cdot \overrightarrow{S_x S_y} \right) = S_x + \frac{1}{3} \overrightarrow{S_x S_y}.$$

Wir sehen, dass der Schwerpunkt auf der Seitenhalbierenden die vom Punkt c ausgeht liegt, und dass er die Seitenhalbierende im Verhältnis 1:2 teilt. Analog zeigt man, dass der Schwerpunkt auch auf allen anderen Seitenhalbierenden liegt (und sie im Verhältnis 1:2 teilt). Deswegen ist der Schwerpunkt der Schnittpunkt der Seitenhalbierenden.

## Schwerpunkt versus konvexe Kombination:

**Def.** Seien  $x_1,...,x_k \in \mathbb{R}^n$  und  $\lambda_1,...,\lambda_k \in \mathbb{R}$  s.d.  $\lambda_i \geq 0$  und  $\sum_{i=1}^k \lambda_i = 1$ . Die konvexe Kombination von  $x_1,...,x_k$  mit Koeffizienten  $\lambda_1,...,\lambda_k$  ist der Punkt  $\sum_{i=1}^k \lambda_i x_i$ .

Einfach zu sehen: ein Schwerpunkt mit Massen  $m_k$ , so dass  $\sum m_k = 1$  ist eine konvexe Kombination.

In der Tat, als Punkt a können wir nach Lemma 26 den Punkt  $\vec{0}$  nehmen.

Dann gilt:  $S_x := \frac{1}{\sum_{i=1}^k m_i} \sum_{i=1}^k m_i x_i$ , und das ist Definition der konvexen Kombination.

Sei  $S_x$  ein Schwerpunkt von  $x_1,...,x_k$  mit Massen  $m_1,...,m_k \in \mathbb{R}_{\geq 0}$ , so dass mind. ein  $m_i > 0$ . Dann ist  $S_x$  eine konvexe Kombination von  $x_1,...,x_k$  mit Koeffizienten  $\frac{m_1}{M},...,\frac{m_k}{M}$ , wobei  $M:=\sum_{i=1}^k m_i$ .

# Beweis des Satzes über der konvexen Hülle: $conv_{(a)} = conv_{(b)}$

Wir beweisen zuerst das folgende Lemma.

**Lemma 28.** Eine Menge  $A \subseteq \mathbb{R}^n$  ist genau dann konvex, wenn für alle  $k \in \mathbb{N}$ , für alle  $x_1,...,x_k \in A$  und für alle  $\lambda_1,...,\lambda_k \in \mathbb{R}$  mit  $\sum_i \lambda_i = 1,\ \lambda_i \geq 0$  gilt:

$$\lambda_1 x_1 + \dots + \lambda_k x_k \in A \tag{*}$$

**Beweis**  $\Leftarrow$ : Angenommen  $x_1, x_2 \in A$ . Wir nehmen k=2 und  $\lambda_1=(1-t), \ \lambda_2=t$ . Dann sind (für  $t\in[0,1]$ )  $\lambda_1x_1+\lambda_2x_2$  genau die Punkte der Strecke, die  $x_1$  und  $x_2$  verbindet. Falls (\*) erfüllt ist, liegen sie in A und damit ist die Menge A konvex.

**Lemma 28.** Eine Menge  $A\subseteq\mathbb{R}^n$  ist genau dann konvex, wenn für alle  $k\in\mathbb{N}$ , für alle  $x_1,...,x_k\in A$  und für alle  $\lambda_1,...,\lambda_k\in\mathbb{R}$  mit  $\sum_i\lambda_i=1$ ,  $\lambda_i\geq 0$  gilt:

$$\lambda_1 x_1 + \dots + \lambda_k x_k \in A \tag{*}$$

**Beweis**  $\Longrightarrow$ : Angenommen *A* ist konvex.

Zuerst bemerken wir, dass  $\lambda_1 x_1 + ... + \lambda_k x_k$  genau der Schwerpunkt der Punkte  $x_1, ..., x_k$  mit Massen  $\lambda_1, ..., \lambda_k$  ist ( weil  $\sum_i \lambda_i = 1$ ). Falls wir alle Massen mit derselben Konstanten multiplizieren,ändern wir den Schwerpunkt nicht, weil diese Konstante in der Formel

$$S := \vec{0} + \sum_{i} \frac{m_i}{\sum_{j} m_j} x_i$$

im Zähler und im Nenner erscheint (siehe auch Abschnitt: Schwerpunkt versus konvexe Kombination). Also müssen wir beweisen, dass für alle  $k \in \mathbb{N}$  und für alle Massen  $m_1, ..., m_k$  der Schwerpunkt von  $x_1, ..., x_k \in A$  mit Massen  $m_1, ..., m_k$  wieder in A liegt.

**Induktion nach** k. Induktionsanfang: für k=2 ist das offensichtlich: in dem Fall liegt der Schwerpunkt auf der Verbindungsstrecke  $\overline{x_1x_2}=\{(1-t)x_1+tx_2\mid t\in[0,1]\}$  und diese liegt in A da A konvex ist.

Induktionsschritt  $k-1 \mapsto k$ . Es seien  $x_1, ..., x_k \in A$  und  $m_1, ..., m_k \ge 0$  mit k > 2,  $\sum_i m_i > 0$ .

Sei S der Schwerpunkt von  $x_1,...,x_{k-1}$  mit Massen  $m_1,...,m_{k-1}$ . Nach Induktionsvoraussetzung ist  $S \in A$ .

Nach Lemma 27 ist der Schwerpunkt von  $x_1,...,x_k$  (mit Massen  $m_1,...,m_k$ ) der Schwerpunkt von  $S\in A$ ,  $x_k\in A$  mit Massen jeweils

 $m_1 + ... + m_{k-1}$  und  $m_k$ .

Nach Induktionsvoraussetzung liegt der Schwerpunkt dann in A,

## $(a) \Longleftrightarrow (b)$

Satz. Die Definitionen (a) und (b) sind äquivalent: ist eine Menge konvexe Hülle nach einer Definition, so ist sie auch eine konvexe Hülle nach den anderen Definitionen.

Def. (a) Die konvexe Hülle von A ist die Menge  $conv(A) := \{\lambda_1 x_1 + \ldots + \lambda_k x_k \mid \lambda_1 + \ldots + \lambda_k = 1, \lambda_i > 0, x_i \in A\}.$ 

Def. (b) Die konvexe Hülle von A ist der Durchschnitt von allen konvexen Mengen, die A enthalten:

$$\frac{conv(A)}{C} = \bigcap_{\substack{C \supseteq A \\ C \text{ ist konvex}}} C.$$

Nach Lemma 25 ist  $conv_{(b)}(A)$  konvex (als durchschnitt von konvexen Mengen), und enthält A (weil jede Mendge C die Menge A enthält). Dann liegen nach Lemma 28 alle Punkte der Form  $\sum_i \lambda_i x_i$  (wobei  $\lambda_i \geq 0, \sum_i \lambda_i = 1, x_i \in A$ ) in  $conv_{(b)}(A)$ .

Daraus folgt:  $conv_{(a)}(A) \subseteq conv_{(b)}(A)$ .

Um zu Inklusion  $conv_{(a)}(A) \supseteq conv_{(b)}(A)$  zu zeigen, reicht es zu zeigen, dass  $conv_{(a)}(A)$  konvex ist. (Da  $A \subseteq conv_{(a)}(A)$  ist, ist dann  $conv_{(a)}(A)$ eine der Mengen C aus Definition conv<sub>(b)</sub> und deswegen  $conv_{(b)}(A) \subseteq conv_{(a)}(A).$ 

Angenommen die Punkte x und y sind konvexe Kombinationen von Punkten  $x_1,...,x_k \in A$  (OBdA können wir denken, dass die Punkte in der Linearkombination für x und y gleich sind, weil wir die fehlenden Punkte mit Koeffizient  $\lambda=0$  hinzufügen können.)

$$x = \sum_{i} \lambda_{i} x_{i}$$
  $y = \sum_{i} \mu_{i} x_{i}$ .

Dann besteht die Verbindungsstrecke  $\overline{xy}$  aus den Punkten der Form (wobei  $t \in [0,1]$ )  $(1-t)\sum_i \lambda_i x_i + t\sum_i \mu_i x_i = \sum_i \underbrace{((1-t)\lambda_i + t\mu_i)}_{} x_i$ .

Die Koeffizienten  $\eta_i$  erfüllen  $\eta_i \geq 0$  und  $\sum_i \eta_i = \sum_i ((1-t)\lambda_i + t\mu_i) = (1-t) + t = 1$ . Deswegen liegt jeder Punkt der Verbindungsstrecke  $\overline{xy}$  in  $conv_{(a)}(A)$ ,