Plan

 Wir beweisen Satz 1 (Beschreibung von Isometrien des Euklidischen Raumes)

Satz 1 Jede Isometrie I von $(\mathbb{R}^n, \langle , \rangle)$ hat die Form I(x) = Ox + b, wobei O eine orthogonale $n \times n$ -Matrix ist, und $b \in \mathbb{R}^n$.

(Ferner gilt: die Abbildungen der Form I(x) = Ox + b sind Isometrien, später, in Folgerung 1, sehen wir, dass sie bijektiv sind.)

Beweis des Satzes in \leftarrow Richtung: Warum ist f(x) = Ox + v eine Isometrie in allen Dimensionen?

Beobachtung.
$$\langle x, y \rangle = x^t y = (x_1, ..., x_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 (als Ergebnis des

Matrizenproduktes $(x_1,...,x_n)$ bekommen wir eine 1×1 -Matrix; wir

identifizieren 1×1 -Matrizen mit Zahlen.)

Wir müssen zeigen, dass $d(a,b)^2 = d(f(a),f(b))^2$ ist. Wir rechnen es aus:

$$d(f(a), f(b))^{2} = \langle f(a) - f(b), f(a) - f(b) \rangle = \langle Oa + v - (Ob + v), Oa + v - (Ob + v) \rangle = \langle O(a - b), O(a - b) \rangle \stackrel{\text{Beob.}}{=} (O(a - b))^{t} O(a - b) \stackrel{(AB)^{t}}{=} {}^{B^{t}A^{t}} (a - b)^{t} \underbrace{O^{t}O(a - b)}_{Id} = 0$$

[weil Matrizenprodukt assoziativ ist] $(a-b)^t(a-b) = \langle a-b, a-b \rangle = d(a,b)^2$.

Beweis des Satzes in ⇒ Richtung

Sei f eine Isometrie des \mathbb{R}^n . Wir betrachten $v=-f(\vec{0})$ und die Translation

$$T_{\nu}: \mathbb{R}^n \to \mathbb{R}^n, \quad T_{\nu}(x) = x + \nu \quad (= x - f(\vec{0})).$$

Sie ist eine Isometrie (da

$$d(T_v(x), T_v(y)) = |x + v - (y + v)| = |x - y| = d(x, y)).$$

Wir betrachten die Verkettung $\tilde{f}:=T_v\circ f$, welche eine Isometrie ist als Verkettung von zwei Isometrien. Unser Ziel ist es zu zeigen, dass \tilde{f} eine lineare orthogonale Abbildung $x\mapsto Ox$ (für eine orthogonale Matrix O) ist.

Bemerkung. Wir wissen noch nicht, dass \tilde{f} linear ist; zu zeigen, dass \tilde{f} linear ist, ist ein Teil der Aufgabe.

Unten werden wir nur die folgenden Eigenschaften von \hat{f} benutzen:

(a) \tilde{f} ist Isometrie;

(b)
$$\tilde{f}(\vec{0}) = T_{\nu} \circ f(\vec{0}) = T_{\nu}(f(\vec{0})) = f(\vec{0}) - f(\vec{0}) = \vec{0}$$
.

Beweis, dass \tilde{f} linear ist

Wir müssen zeigen, dass $\tilde{f}(x+y) = \tilde{f}(x) + \tilde{f}(y)$, und dass $\tilde{f}(\lambda x) = \lambda \tilde{f}(x)$.

Wir zeigen zuerst, dass \tilde{f} das Skalarprodukt erhält: $\langle \tilde{f}(x), \tilde{f}(y) \rangle = \langle x, y \rangle$ (für alle $x, y \in \mathbb{R}^n$).

Da $d(x,y)=d(\tilde{f}(x),\tilde{f}(y))$ ist, bekommen wir

$$\underbrace{\langle x - y, x - y \rangle}_{d(x,y)^{2}} = \underbrace{\langle \tilde{f}(x) - \tilde{f}(y), \tilde{f}(x) - \tilde{f}(y) \rangle}_{d(\tilde{f}(x), \tilde{f}(y))^{2}} \stackrel{\text{Linearität}}{\Longrightarrow}$$
$$\langle x, x \rangle + \langle y, y \rangle - 2\langle x, y \rangle = \langle \tilde{f}(x), \tilde{f}(x) \rangle + \langle \tilde{f}(y), \tilde{f}(y) \rangle - 2\langle \tilde{f}(x), \tilde{f}(y) \rangle. \quad (*)$$

Weil $\tilde{f}(\vec{0}) = \vec{0}$, bekommen wir $\langle x, x \rangle = \langle x - \vec{0}, x - \vec{0} \rangle = d(x, \vec{0})^2 = d(\tilde{f}(x), \underbrace{\tilde{f}(\vec{0})}_{\vec{0}})^2 = \langle \tilde{f}(x) - \vec{0}, \tilde{f}(x) - \vec{0} \rangle = \langle \tilde{f}(x), \tilde{f}(x) \rangle$. Analog gilt: $\langle y, y \rangle = \langle \tilde{f}(y), \tilde{f}(y) \rangle$. Wir setzen dies in (*) ein und bekommen

 $\langle \tilde{f}(x), \tilde{f}(y) \rangle = \langle x, y \rangle$ wie angekündigt.

Beweis $\tilde{f}(\lambda x) = \lambda \tilde{f}(x)$

```
Jetzt zeigen wir \tilde{f}(\lambda x) - \lambda \tilde{f}(x) = \vec{0}. Dazu betrachten wir d(\tilde{f}(\lambda x), \lambda \tilde{f}(x))^2 = \langle \tilde{f}(\lambda x) - \lambda \tilde{f}(x), \tilde{f}(\lambda x) - \lambda \tilde{f}(x) \rangle = \langle \tilde{f}(\lambda x), \tilde{f}(\lambda x) \rangle - 2\lambda \langle \tilde{f}(x), \tilde{f}(\lambda x) \rangle + \lambda^2 \langle \tilde{f}(x), \tilde{f}(x) \rangle =  [da \tilde{f} Skalarprodukt erhält] = \langle \lambda x, \lambda x \rangle - 2\lambda \langle x, \lambda x \rangle + \lambda^2 \langle x, x \rangle = 0. Dann ist \tilde{f}(\lambda x) = \lambda \tilde{f}(x) wie angekündigt.
```

Analog zeigt man, dass $\tilde{f}(x+y) = \tilde{f}(x) + \tilde{f}(y)$:

$$\langle \tilde{f}(x) + \tilde{f}(y) - \tilde{f}(x+y), \tilde{f}(x) + \tilde{f}(y) - \tilde{f}(x+y) \rangle =$$

[Ausrechnen unter Benutzung von $\langle x, y \rangle = \langle \tilde{f}(x), \tilde{f}(y) \rangle$]

$$\langle x+y-(x+y),x+y-(x+y)\rangle=0.$$

Dann ist \tilde{f} linear; also kann man \tilde{f} in der Form $\tilde{f}(x)=Ax$ für eine $n\times n$ -Matrix A darstellen. Wir zeigen, dass die Matrix A orthogonal ist. Da \tilde{f} das Skalarprodukt erhält, gilt für alle $x,y\in\mathbb{R}^n$

$$\langle x, y \rangle = x^t y = \left(\tilde{f}(x) \right)^t \tilde{f}(y) = (Ax)^t Ay = x^t A^t Ay$$

Dann muss $A^tA = Id$ sein (um dies zu zeigen, setzen wir $x = e_i$ und $y = e_j$ ein und bekommen, dass der (i,j)— Eintrag von A^tA gleich 1 für i = j und 0 sonst ist). Damit ist A orthogonal.

Dann ist $\tilde{f}(x) = T_v \circ f(x) = f(x) + v = Ox$; also ist f(x) = Ox - v. Damit ist der Satz bewiesen.

Folgerungen

Satz 1 Jede Isometrie I von $(\mathbb{R}^n, \langle , \rangle)$ hat die Form

 $I(x) = Ox + b, \quad \text{wobei O eine orthogonale } n \times n\text{-Matrix ist, und } b \in \mathbb{R}^n.$

Folgerung 1. Jede Isometrie von \mathbb{R}^n ist eine Bijektion.

Beweis. Nach Satz 1 hat jede Isometrie das Aussehen I(x) = Ox + b. Für diese Abbildung können wir sofort eine inverse Abbildung konstruieren:

$$G(x) = O^t x - \underbrace{O^t b}_{t}$$
. In der Tat,

$$G \circ I(x) = O^{-1}(Ox + b) - O^{-1}b = O^{-1}Ox + O^{-1}b - O^{-1}b = x.$$
 $I \circ G(x) = O(O^{-1}x - O^{-1}b) + b = OO^{-1}x - OO^{-1}b + b = x.$ Existenz der inversen Abbildung impliziert Bijektivität.

Folgerung 2. Isometrien bilden Geraden auf Geraden ab.

Beweis. Eine Gerade ist eine Menge der Form

$$L_{a,v} = \{a + t \cdot v \mid t \in \mathbb{R}\}$$
, wobei $v \neq 0$.

Nach der Anwendung von $I: x \mapsto Ox + b$ auf alle Punkte von $L_{a,v}$ bekommen wir

$$I(L_{a,v}) = \{O(a+t \cdot v) + b \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} + t \underbrace{Ov}_{v'} \mid t \in \mathbb{R}\} = \{\underbrace{Oa+b}_{a'} \mid t \in \mathbb{R}\} = \underbrace{Oa+b}_{a'} \mid t \in \mathbb{R}$$

 $\{a'+t\cdot v'\mid t\in\mathbb{R}\}=L_{a',v'}.$ (Der Vektor v'=Ov ist nicht 0, da O orthogonal und deswegen nicht ausgeartet ist).

Folgerung 3. Jede Isometrie des \mathbb{R}^n erhält das Skalarprodukt: für alle $x,y,z\in\mathbb{R}^n$ gilt

$$\langle x-z,y-z\rangle = \langle I(x)-I(z),I(y)-I(z)\rangle.$$

Beweis: Ausrechnen wie im Beweis, dass Ox + v eine Isometrie in allen Dimensionen ist.

$$\langle I(x) - I(z), I(y) - I(z) \rangle = \langle Ox + v - (Oz + v), Oy + v - (Oz + v) \rangle =$$

$$\langle O(x - z), O(y - z) \rangle \stackrel{\text{Beob.}}{=} (O(x - z))^t O(y - z) \stackrel{(AB)^t}{=} \stackrel{B^t A^t}{=}$$

$$(x - z)^t \underbrace{O^t O(y - z)}_{Id} =$$
[weil Matrizenprodukt assoziativ ist]

[weil Matrizenprodukt assoziativ ist] $(x-z)^t(y-z) = \langle x-z, y-z \rangle$.

Zusammenfassung der Woche

Die Eigenschaften/Objekte/Aussagen, die für uns interessant sind, ändern sich nicht, wenn wir eine Isometrie anwenden. Wir haben die Gruppe von Isometrien der Ebene vollständig beschrieben und alle zugehörige Begriffe wiederholt; auf dieser Basis werden wir in den nächsten Wochen aufbauen.