Plan

- ► Glatte Kurven und deren Tangenten
- Winkel zwischen zwei Kurven und Winkeltreuesatz
- Anwendungen in elementargeometrischen Aufgaben
- Inversion als "Kreisspiegelung" und Sekanten-Tangenten-Satz noch einmal

Glatte Kurven und deren Tangenten

Def. Eine (glatte ebene) Kurve ist das Bild einer Abbildung $C: [\alpha, \beta] \to \mathbb{R}^2$, d.h., $C(t) = \binom{C_1(t)}{C_2(t)}$ wobei C_1, C_2 stetig differenzierbar sind, und $(C_1')^2 + (C_2')^2 > 0$. Physikalisch kann man eine Kurve als die Bahn eines Teilchens verstehen.

Bsp. Strecke $\binom{C_1(t)}{C_2(t)} = \binom{x_0 + u \cdot t}{y_0 + v \cdot t}, \ t \in [\alpha, \beta]$, ist eine Kurve.

Bsp. Kreis ist eine Kurve. Z.B. $\binom{C_1(t)}{C_2(t)} = \binom{\cos(t)}{\sin(t)}$, $t \in [0, 2\pi]$, ist die Abbildung deren Bild der Kreis mit der Gleichung $x^2 + y^2 = 1$ ist; das ist Kreis vom Radius 1 um $\vec{0}$.

Bsp. Ellipse ist eine Kurve. Z.B. $\binom{C_1(t)}{C_2(t)} = \binom{\frac{\cos(t)}{\sqrt{\lambda}}}{\frac{\sin(t)}{\sqrt{\mu}}}$, $t \in [0, 2\pi]$, ist die Abbildung, deren Bild die Ellipse mit der Gleichung $\lambda x^2 + \mu y^2 = 1$ ist.

Sei
$$C: [\alpha, \beta] \to \mathbb{R}^2$$
, ($C(t) = \binom{c_1(t)}{c_2(t)}$) eine Kurve. Was ist deren

Tangente im Punkt $P = C(t_0)$? Geometrische Definition: Nehme die Folge von Sekanten (=Geraden die durch $C(t_0)$ und $C(t_i)$ gehen,) wobei $t_i \rightarrow t_0$. Dann heißt deren Grenzwert die Tangente.

(Jede Gerade ist gegeben durch eine Gleichung der Form ax + by + c = 0, wobei (*) $a^2 + b^2 = 1$ (Hessische Normalform). OBdA ist $c \neq 0$, also können wir die Gleichung so wählen, dass (**) c > 0.

Die Bedingungen (*), (**) bestimmen die Gleichung einer gegebenen Geraden eindeutig. Also bekommen wir die Folgen a_i , b_i , c_i . Die Folgen konvergieren, siehe Beweis von Lemma 20. Seien \bar{a} , \bar{b} , \bar{c} die Grenzwerte. Dann ist die Gerade mit der Gleichung $\bar{a}x + \bar{b}y + \bar{c} = 0$ die Tangente.)

Analytische Definition: Die Tangente einer Kurve $C(t) = \binom{C_1(t)}{C_2(t)}$ in t_0 ist die Gerade $\left\{C(t_0) + \binom{C_1'(t_0)}{C_2'(t_0)}\right\}$ s wobei $s \in \mathbb{R}$.

Lemma 20. Die analytische und geometrische Definition stimmen überein.

Beweis OBdA ist $t_0 = 0$. Betrachte die Taylor-Reihe von $C_1(t)$, $C_2(t)$ im Punkt t = 0:

$$C_1(t) = C_1(0) + C_1'(0)t + Rest_1(t)$$
, $C_2(t) = C_2(0) + C_2'(0)t + Rest_2(t)$, wobei $\lim_{t\to 0} \frac{Rest_1(t)}{t} = \lim_{t\to 0} \frac{Rest_2(t)}{t} = 0$.

Dann ist die Gleichung der Sekantedurch C(0), C(t) gleich (LAAG1, Vorl. 25)

$$\det \begin{pmatrix} C_{1}(0) - x & C_{2}(0) - y \\ C_{1}(0) - C_{1}(t) & C_{2}(0) - C_{2}(t) \end{pmatrix} = 0 \iff$$

$$\det \begin{pmatrix} C_{1}(0) - x & C_{2}(0) - x \\ C_{1}(0) - C_{1}(0) + C'_{1}(0)t + Rest_{1}(t) & C_{2}(0) - (C_{2}(0) + C'_{2}(0)t + Rest_{2}(t)) \end{pmatrix} = 0 \iff$$

$$\det \begin{pmatrix} C_{1}(0) - x & C_{2}(0) - y \\ C_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix} = 0 \iff$$

$$\times \underbrace{\begin{pmatrix} C'_{2}(0) + \frac{1}{t}Rest(t) \end{pmatrix} - y \underbrace{\begin{pmatrix} C'_{1}(0) + \frac{1}{t}Rest(t) \end{pmatrix}}_{s(t)} - y \underbrace{\begin{pmatrix} C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{1}(t) & C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{1}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwise both equations} = \underbrace{\det \begin{pmatrix} C_{1}(0) & C_{2}(0) \\ C'_{2}(0) + \frac{1}{t}Rest_{2}(t) \end{pmatrix}}_{otherwis$$

Da die Normalisierung $a\mapsto \frac{a}{\sqrt{a^2+b^2}},\ b\mapsto \frac{b}{\sqrt{a^2+b^2}},\ c\mapsto \frac{c}{\sqrt{a^2+b^2}}$ stetig ist bzgl. a,b,c, ist der Grenzwert von $\frac{a}{\sqrt{a^2+b^2}},\ \frac{b}{\sqrt{a^2+b^2}}$ und $\frac{c}{\sqrt{a^2+b^2}}$ gleich dem Wert in t=0, und damit gleich

$$\times \frac{c_2'(0)}{\sqrt{c_1'(0)^2 + c_2'(0)^2}} - y \frac{c_1'(0)}{\sqrt{c_1'(0)^2 + c_2'(0)^2}} = \frac{1}{\sqrt{c_1'(0)^2 + c_2'(0)^2}} \det \begin{pmatrix} c_1(0) & c_2(0) \\ c_1'(0) & c_2'(0) \end{pmatrix}$$

der analytischen Definition.

Also ist der Richtungsvektor der Grenzwertgeraden (proportional zu)

 $\binom{C_1'(0)}{C_2'(0)}$, und die Gerade geht durch C(0). Damit ist die Gerade wie in

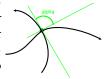
Kreistangente

$$\begin{array}{llll} \textbf{Bsp.} & \textbf{Tangente} & \textbf{an} & \textbf{Kreis} & \left\{ \binom{\cos(t)}{\sin(t)}, \right. \\ t & \in & \left[0, 2\pi\right] \right\} & \textbf{in} & t_0 & \textbf{ist} & \textbf{die} & \textbf{Gerade} \\ \left. \left(\binom{\cos(t_0)}{\sin(t_0)} + \binom{-\sin(t_0)}{\cos(t_0)} \right) s, & \textbf{wobei} & s \in \mathbb{R} \right\}. \end{array}$$

Sie ist orthogonal zum Radius (Richtungsvektor vom Radius ist $\binom{\cos(t_0)}{\sin(t_0)}$.)

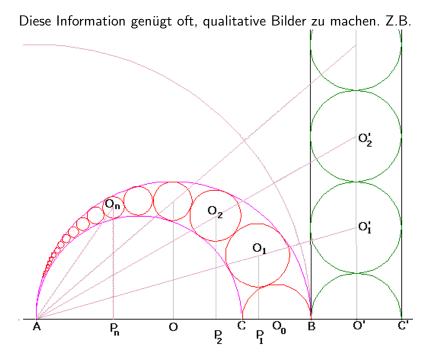
Winkeltreuesatz

Def. Seien C(t) und $\overline{C}(t)$ zwei Kurven, die einander im Punkt $P = C(t_0) = \overline{C}(\overline{t_0})$ schneiden. Der Winkel zwischen den Kurven im Schnittpunkt, ist der Winkel (alpha $\in [0, \frac{\pi}{2}]$) zwischen deren Tangenten im Schnittpunkt. Ist der Winkel = 0, so berühren die Kurven einander



Satz. Seien C(t), $\overline{C}(t)$ glatte ebene Kurven, die im Punkt $P \neq O$ einander schneiden. Dann gilt: Der Winkel zwischen C und \overline{C} im Punkt P ist gleich dem Winkel zwischen $I_{O,r}(C(t))$, $I_{O,r}(\overline{C}(t))$ im Punkt $I_{O,r}(P)$.

In Worten: Inversion ist winkeltreu.



Beweis. OBdA ist r=1 und $O=\begin{pmatrix} 0\\0 \end{pmatrix}$. Dann ist $I\begin{pmatrix} x\\y \end{pmatrix}=\frac{1}{x^2+y^2}\begin{pmatrix} x\\y \end{pmatrix}$, und deswegen $I\left(\binom{C_1(t)}{C_2(t)}\right) = \frac{1}{C_1(t)^2 + C_2(t)^2} \binom{C_1(t)}{C_2(t)}$. Dann ist der Richtungvektor

deswegen
$$I\left(\binom{C_1(t)}{C_2(t)}\right) = \frac{1}{C_1(t)^2 + C_2(t)^2} \binom{C_1(t)}{C_2(t)}$$
. Dann ist der Richtungvektor von $I(C(t))$ gleich
$$\frac{d}{dt} \left(\frac{1}{C_1(t)^2 + C_2(t)^2} \binom{C_1(t)}{C_1(t)^2 + C_2(t)^2} - 2C_1(t) \frac{C_1(t)C_1'(t) + C_2'(t)C_2(t)}{(C_1(t)^2 + C_2(t)^2)^2}\right) = 0$$

$$\frac{d}{dt} \left(\frac{1}{C_1(t)^2 + C_2(t)^2} \binom{C_1(t)}{C_2(t)} \right) = \begin{pmatrix} \frac{C_1'(t)}{C_1(t)^2 + C_2(t)^2} - 2C_1(t) \frac{C_1(t)C_1'(t) + C_2'(t)C_2(t)}{(C_1(t)^2 + C_2(t)^2)^2} \\ \frac{C_2'(t)}{C_1(t)^2 + C_2(t)^2} - 2C_2(t) \frac{C_1(t)C_1'(t) + C_2'(t)C_2(t)}{(C_1(t)^2 + C_2(t)^2)^2} \end{pmatrix} = \\ \frac{1}{(C_1(t)^2 + C_2(t)^2)^2} \binom{C_2(t)^2 - C_1(t)^2}{-2C_1(t)C_2(t)} - \frac{-2C_1(t)C_2(t)}{C_1(t)^2 - C_2(t)^2} \binom{C_1'(t)}{C_2'(t)} = \frac{1}{\gamma} \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} \binom{C_1'(t)}{C_2'(t)}, \\ \text{wobei } \alpha, \beta, \gamma \text{ nur von } C(t) \text{ abhängen.}$$

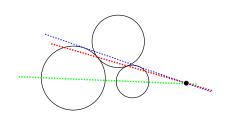
wobei α, β, γ nur von C(t) abhängen.

Also werden wir für die Kurve
$$\overline{C}$$
, s.d. $\overline{C}(t) = C(t)$, die Formel $\frac{d}{dt}I(\overline{C}(t) = \frac{1}{\gamma}\begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}\begin{pmatrix} \overline{C}_1^{\prime}(t) \\ \overline{C}_2^{\prime}(t) \end{pmatrix}$ mit denselben α,β,γ haben.

Wir wissen aber, dass $\frac{1}{\gamma}\begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$ zu einer orthogonalen Matrix proportional ist. Also ist $v\mapsto \frac{1}{\gamma}\begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}v$ eine Verkettung von einer orthogonalen Abbildung und einer Streckung. Dann ist der Winkel zwischen u, v gleich dem Winkel zwischen $\frac{1}{\gamma} \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix} v$,

$$\frac{1}{\gamma}\begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}u$$
, also ist der Winkel zwischen $C'(t), \overline{C}'(t)$ gleich dem Winkel zwischen $(I(C(t)))', (I(\overline{C}(t)))'$.

Diese Information genügt oft, schulgeometrische Aufgaben zu lösen

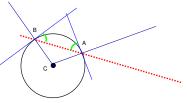


Aufgabe Der Kreis S berührt S_1 und S_2 . Man beweise: Die folgenden 3 Geraden

- 1. durch Berührungspunkte.
- 2. durch Mittelpunkte von S_1 und S_2 .
- 3. die Gerade, die beide Kreise berührt

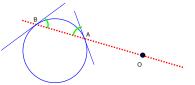
haben einen gemeinsamen Schnittpunkt.

HA: Winkel zwischen Kreis und Gerade fallen in beiden Schnittpunkten zusammen.

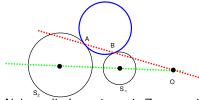


Beweis: ACB ist gleichschenklig, und deswegen $\angle CAB = \angle CBA$. Da $\angle CAO = \angle CBO = \frac{\pi}{2}$, gilt $\angle BAO = \angle ABO$.

Folgerung. Betrachte ein O auf der Geraden und eine Inversion, die A in B und B in A überführt (d.h. $|AO| \cdot |BO| = r^2$). Dann führt sie den Kreis in sich selbst über.

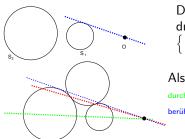


Beweis. Die Gerade enthält O und wird deswegen auf sich selbst abgebildet. Der Kreis wird auf einen Kreis abgebildet (Lemma 19). Da der Kreis die Punkte A und B enthält, und da A auf B, B auf A abgebildet wird, wird das Bild des Kreises die Punkte A und B enthalten. Da Inversion winkeltreu ist, erhält sie Winkel zwischen Bild des Kreises und der Geraden, also wird der Kreis auf sich selbst abgebildet.

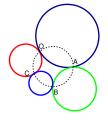


Lösung der Aufgabe Betrachte die Gerade durch Berührungspunkte, und die Gerade durch Mittelpunkte von S_1 und S_2 . Sei O deren Schnittpunkt.

Nehme die Inversion mit Zentrum in O, die A in B und B in A überführt $(r = \sqrt{|OA| \cdot |OB|})$. Nach HA wird Kreis auf sich selbst abgebildet. Dann wird S_1 auf einen Kreis abgebildet, der Kreis in A berührt. Aber da Gerade auf sich selbst abgebildet wird, und da sie durch Mittelpunkt des Kreises S_1 geht (s.d. Winkel zwischen S_1 und Gerade gleich $\pi/2$ ist), muss nach Winkeltreuesatz die Gerade durch Bild des Kreises S_1 gehen. Also ist das Bild von S_1 gleich S_2 . Ähnlich zeigt man, dass das Bild von S_2 der Kreis S_1 ist.

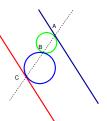


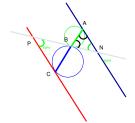
Also haben alle 3 Geraden durch Berührungspunkte, durch Mittelpunkte von S_1 und S_2 , die Gerade, die beide Kreise berührt, einen gemeinsamen Schnittpunkt O.



Aufgabe Betrachte die geschlossene Kette aus 4 Kreisen: S_1 berührt S_2 , S_2 berührt S_3 , S_3 berührt S_4 , und S_4 berührt S_1 . Man zeige: die Berührungspunkte der Kreise liegen auf einem Kreis.

Beweis. Betrachte die Inversion mit Zentrum in *O*. Nach der Inversion werden die Kreise wie rechts aussehen. Der Kreis durch *OCA* wird in eine Gerade durch *C* und *A* überführt. Man zeige: die Gerade enthält *B*.

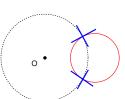


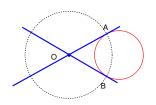


Wir betrachten die gemeinsame Tangente in B. Es gilt: $\angle CPB = \angle ANB = alpha$. Nach HA ist $\angle BAN = \angle ABN$. Da $alpha + \angle BAN = \angle ABN = \pi$, ist $\angle ABN = \frac{\pi - alpha}{2}$. Ähnlich, ist $\angle CBP = \frac{\pi - alpha}{2}$. Also ist $\angle CBP = \angle ABN$, und die Segmente CB und CBA liegen auf einer Geraden.

Kreise, die zum Inversionskreis orthogonal sind

Folgerung A Betrachte einen Kreis, der zum Kreis mit Zentrum in O und Radius r orthogonal ist. Dann gilt: die Inversion $I_{O,r}$ bildet den Kreis auf sich selbst ab.

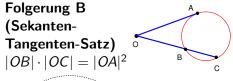




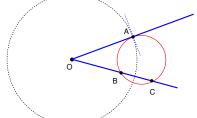
Beweis. Die Tangenten zum Kreis sind in den Schnittpunkten orthogonal zu den Tangenten des Inversionskreises, und gehen deswegen durch O.Der Kreis, dessen Tangenten OA und OB, und die Punkte A und B haben die folgenden Eigenschaften:

 $\begin{cases} I(A) = A, \ I(B) = B \\ Bild_I(OA) = (OA) \ Bild_I(OB) = (OB) \\ \text{Kreis berührt } OA \ \text{in } A \ \text{und } OB \ \text{in } B \end{cases} . \qquad \text{Dann}$ berührt das Bild des Kreises $OA \ \text{in } A \ \text{und}$ $OB \ \text{in } B$, und deswegen fällt es mit dem Kreis zusammen.

Sekanten-Tangenten-Satz



Beweis Betrachte den Kreis mit Mittelpunkt O und Radius r = |OA|.

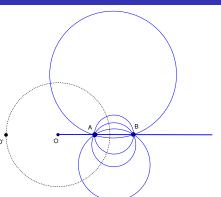


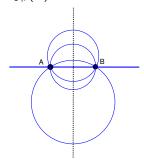
Er ist orthogonal zum Kreis. Dann bildet $I_{O,r}$ den Kreis auf sich ab. Da $I_{O,r}$ die Gerade erhält, ist $I_{O,r}(B) = C$. Dann ist $|OB| \cdot |OC| = r^2 = |OA|^2$.

Folgerung C Jeder Kreis, der durch B und $C := I_{O,r}(B)$ geht (falls $C \neq B$, ist zum Kreis um O vom Radius r orthogonal. **Beweis.** Betrechte die Tangentialgerade zum diesem Kreis, welche den Punkt O enthält, sei A der Berührungspunkt. Wegen Sekanten-Tangenten-Satz gilt: $|OA|^2 = |OB| \cdot |OC|$. Weil B das Bild von C bezüglich Inversion ist, gilt auch $r^2 = |OB| \cdot |OC|$.

Warum heißt Inversion auch Kreisspiegelung?

Folgerung D Alle Kreise, die zum Kreis um O vom Radius r orthogonal sindund Punkt A enthalten (angenommen, A liegt nicht auf dem Kreis um O vom Radius r), haben genau 2 gemeinsame Schnittpunkte (z.B. A und B). Ferner gilt: $I_{O,r}(A) = B$ und of $I_{O,r}(B) = A$.





Bemerkung Betrachte die Spiegelung S bzgl. einer Geraden G. Dann sind alle Kreise, die durch $A \notin G$ und B := S(A) gehen, zur Geraden orthogonal.

Bemerkung Inversion von O' vom Bild oben gibt das Bild links.