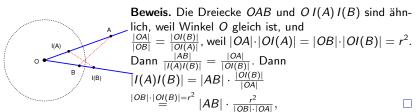
Weitere Themen über Inversion: Plan

- Was macht eine Inversion mit dem Abstand zwischen Punkten: Doppelverhältnis und Satz von Ptolemäus
- Gruppe von Kreistreuen Transformationen

Frage: Was macht eine Inversion mit dem Abstand zwischen Punkten?

Lemma 21 Sei
$$A, B \in \mathbb{R}^2 \setminus O.D$$
ann gilt: $|I_{O,r}(A)I_{O,r}(B)| = |AB| \frac{r^2}{|OA| \cdot |OB|}$.



Doppelverhältnis

Def. Doppelverhältnis (A, B; C, D) ist die Zahl $\frac{|AC|}{|BC|}$: $\frac{|AD|}{|BD|} = \frac{|AC| \cdot |BD|}{|BC| \cdot |AD|}$. (*)

Lemma 22 (A, B; C, D) = (I(A), I(B); I(C), I(D)) (falls es definiert ist) (In Worten: Inversion erhält das Doppelverhältnis.)

Beweis. Nach Lemma 21 ist

$$\begin{aligned} |I_{O,r}(A)I_{O,r}(C)| &= |AC| \frac{r^2}{|OA| \cdot |OC|}, & |I_{O,r}(B)I_{O,r}(C)| &= |BC| \frac{r^2}{|OB| \cdot |OC|} \\ |I_{O,r}(A)I_{O,r}(D)| &= |AD| \frac{r^2}{|OA| \cdot |OD|}, & |I_{O,r}(B)I_{O,r}(D)| &= |BD| \frac{r^2}{|OB| \cdot |OD|}. \end{aligned}$$

Einsetzen in (*) ergibt die Aussage.

Satz von Ptolemäus

Satz von Ptolemäus. Ecken eines Vierecks ABCD liegen auf einem Kreis. Dann gilt: $|AC| \cdot |BD| = |AB| \cdot |CD| + |AD| \cdot |BC|$.

Beweis. Z.z.: $1 = \frac{|AB| \cdot |CD| + |AD| \cdot |BC|}{|AC| \cdot |BD|}$. Aber $\frac{|AB| \cdot |CD| + |AD| \cdot |BC|}{|AC| \cdot |BD|} = \frac{|AB| \cdot |CD|}{|AC| \cdot |BD|} + \frac{|AD| \cdot |BC|}{|AC| \cdot |BD|} = (A, D; B, C) + (D, C; A, B)$ und das ändert sich nicht nach einer Inversion (Lemma 22). Nach geeigneter Inversion (s. Bild) wird das Bild wie folgt verändert:

Man bezeichne |I(A)I(B)| = a, |I(B)I(C)| = b, |I(C)I(D)| = c. Dann ist |I(A)I(C)| = a + b, |I(B)I(D)| = b + c, |I(A)I(D)| = a + b + c. Es folgt

$$\frac{|I(A)I(B)| \cdot |I(C)I(D)| + |I(A)I(D)| \cdot |I(B)I(C)|}{|I(A)I(C)| \cdot |I(B)I(D)|} = \frac{ac + (a+b+c)b}{(a+b)(b+c)} = \frac{ac + ab + b^2 + bc}{ab + b^2 + ac + bc} = 1,$$

Kreistreu Transformationen.

Def. Wir sagen, dass eine bijektive Abbildung $F: \overline{\mathbb{R}}^2 \to \overline{\mathbb{R}}^2$ ist Kreistreu, wenn für jeden verallg. Kreis K gilt: das Bild F(K) ist auch ein verallg. Kreis.

Konvention. Wir werden die Isometrien und Ähnlichkeitstransformations als Abbildungen von $\overline{\mathbb{R}}^2 \to \overline{\mathbb{R}}^2$ wie folgt verstehen: für jede Isometrie oder Ähnlichkeitstransformation F wir erweitern den Definitionsbereich bis $\overline{\mathbb{R}}^2 = \mathbb{R}^2 \cup \{\infty\}$: wir setzen $F(\infty) = \infty$.

Def. Wir sagen, dass eine bijektive Abbildung $F: \mathbb{R}^2 \to \mathbb{R}^2$ ist Kreistreu, wenn für jeden verallg. Kreis K gilt: das bild F(K) ist auch ein verallg. Kreis Konvention. Wir werden die Isometrien und Ähnlichkeitstransformations als Abbildungen von $\mathbb{R}^2 \to \mathbb{R}^2$ wie folgt verstehen: für jede Isometrie oder Ähnlichkeitstransformation F wir erweitern den Definitionsbereich bis $\mathbb{R}^2 = \mathbb{R}^2 \cup \{\infty\}$: wir setzen $F(\infty) = \infty$.

Bsp. Jede Isometrie und jede Ähnlichkeittransformation ist kreistreu: sie sind bijektiv auf \mathbb{R}^2 und deswegen auch auf $\overline{\mathbb{R}}^2$. Sie bilden Kreise \longrightarrow Kreise, Geraden \longrightarrow Geraden, also veralg. Kreise auf veralg Kreise.

Bsp. Inversion ist auch kreistreu (Lemma 19).

Bsp. Verkettungen von Ähnlichkeittransformationen und Isometrien sind kreistreu: sie sind bijektiv als Verkettungen von bijektiven Abbildungen. Offensichtlich, wenn F_1 und F_2 kreistreu sind, ist auch $F_1 \circ F_2$ kreistreu: in der Tat, für einen veralg. Kreis K haben wir dass $F_1 \circ F_2(K) = F_1(F_2(K))$ ein veralg. Kreis ist, weil $F_2(K)$ ein veralg. Kreis ist.

Satz. Eine bijektive kreistreu Abbildung $F: \overline{\mathbb{R}}^2 \to \overline{\mathbb{R}}^2$ ist eine Ähnlichkeittransformation oder die Verkettung von einer Inversion und einer Isometrie.

Beweis. Sei $F: \mathbb{R}^2 \to \mathbb{R}^2$ eine kreistreu Abbildung.

Fall 1. $F(\infty) = \infty$. Dann gilt: Bild von jede Gerade ist Gerade. Also, die Abbildung F beschränkt auf $\mathbb{R}^2 = \overline{\mathbb{R}}^2 \setminus \{\infty\}$ ist dann eine geradentreu Abbildung, also eine Kollinearität (siehe

http://users.fmi.uni-jena.de/~matveev/Lehre/LA10/vorlesung9.pdf) Dann ist die eine bijektive affine Abbildung nach Fundamentalsatz der

reellen affinen Geometrie, siehe Satz 17 aus

http://users.fmi.uni-jena.de/~matveev/Lehre/LA10/vorlesung9.pdf, also hat das Aussehen F(x) = Ax + b.

Wenn A nicht zu einer Orthogonalmatrix proportional ist, ist Bild des Einheitkreises kein Kreis (wird auf der nächsten Seite erklärt). Also, F (beschränkt auf \mathbb{R}^2) hat das Aussehen $F(x) = k \cdot Ox + b$ für eine Orthogonalmatrix O (Erklärung auf der nächsten Seite); dann ist sie eine Ähnlichkeitsabbildung.

Erklärung, dass, falls die Abbildung F(x) = Ax + b einen Kreis auf einen Kreis Abbildet, dann ist die Matrix A zur einer Orthogonalmatrix orthogonal.

Der Kreis $\{x_1^2 + x_2^2 = 1\}$ sei Bild eines Kreises K bezüglich F. Dann ist $(a_{11}x_1 + a_{12}x_2 + b_1)^2 + (a_{21}x_1 + a_{22}x_2 + b_2)^2 = 1$ für die Punkte $(x_1, x_2)^T$ des Kreises K. Ausrechnen gibt uns die Gleichung der Form

$$(a_{11}^2 + a_{21}^2)x_1^2 + 2(a_{11}a_{12} + a_{21}a_{22})x_1x_2 + (a_{12}^2 + a_{22}^2)x_2^2 = \underbrace{\qquad \dots }_{\text{Terme von Ordnung } \leq 1 \text{ in } x}$$

Wir wissen aber, dass die Kreisgleichung ist:

$$R = (x_1 - B_1)^2 + (x_2 - B_2)^2 \Leftrightarrow x_1^2 + x_2^2 = \underbrace{\dots}_{\text{Terme von Ordnung } < 1 \text{ in } x}.$$

Also, muss $(a_{11}^2+a_{21}^2)=(a_{12}^2+a_{22}^2)$ und $(a_{11}a_{12}+a_{21}a_{22})=0$. Die erste Gleichung ist die Bedingung, dass die Längen von Spaltenvektoren gleich sind; die zweite, dass die Spaltenvektoren zueinander orthogonal sind. Wenn wir die matrix A mit der Länge von Spaltenvektoren dividieren, bekommen wir die orthogonale Matrix.

Fall 2. $F(\infty) = Z \neq \infty$. Wir betrachten dann eine Inversion $I_{Z,r}$ mit

Zentrum Z und Radius r. Radius r können wir zuerst beliebig wählen, später werden wir aber den Radius r eichen.

Die Abbildung $I_{Z,r} \circ F$ ist eine kreistreu bijektive Abbildung und erfüllt die Bedingung $F(\infty) = \infty$. Dann ist sie $I_{Z,r} \circ F$ eine Ahnlichkeitsabbildung, wie wir es oben in Fall 1 bewiesen haben, also ist

 $I_{7,r} \circ F(x) = k \cdot Ox + b.$

Man merke jetzt, dass die zwei Inversionen mit einem Zentrum und verschieden Radien $I_{Z,r}$ und $I_{Z,R}$ unterscheiden sich durch eine zentrische Streckung mit Koeffizient R^2/r^2 : z.B. direkt ausrechnen: die Formel für $I_{Z,r}$ und $I_{Z,R}$ sind

$$I_{Z,r}(X) = Z + \frac{r^2}{|XZ|^2} \overrightarrow{ZX}$$
, $I_{Z,R}(X) = Z + \frac{R^2}{|XZ|^2} \overrightarrow{ZX}$.

Die Formel für die Streckung mit dem Koeffizient k und Zentrum Z ist

$$S_{Z,k}(X) = Z + k(X - Z).$$

Dann gilt für $k = R^2/r^2$:

$$S_{Z,k} \circ I_{Z,r}(X) = Z + k \left(Z + \frac{r^2}{|XZ|^2} \overrightarrow{ZX} - Z \right) = Z + \frac{R^2}{|XZ|^2} \overrightarrow{ZX} = I_{Z,R}.$$

Dann aus $I_{Z,r} \circ F(x) = k \cdot Ox + b$ bekommen wir $I_{Z,R} \circ F(x) = Ox + \frac{1}{k}b$, wobei R so gewählt ist dass $k = R^2/r^2$. Wir wenden die Inversion $I_{Z,R}$ auf beiden Seiten der letzten Gleichung und bekommen $F(x) = I_{Z,R}(Ox + \frac{1}{k}b)$,

Verkettung von Inversionen

Folgerung. Verkettung von Inversionen und Ähnlichkeitabbildungen (in beliebiger Reihenfolge) ist eine Ähnlichkeitsabbildung oder eine Verkettung von Inversion und Isometrie.

Beweis. Die Verkettung von Isometries und Ähnlichkeitabbildungen ist eine kreistreu Abbildung und daher eine Ähnlichkeittransformation oder die Verkettung von einer Inversion und einer Isometrie.