Lernziele der zweiten Woche: Die Studierenden sollen ...

- ... den Beweis des Austauschsatzes verstehen.
- ▶ ... die Folgerungen (a) bis (d) daraus anwenden können.
- ... die Koordinatenabbildung für eine Basis konstruieren können.
- ... überprüfen können, ob eine gegebene Abbildung linear ist.

- ► ... Kern und Bild einer linearen Abbildung beschreiben können.
- ... die Injektivität einer linearen Abbildung durch Untersuchung des Kerns bestimmen können.
- ... entscheiden können, ob eine Abbildung injektiv, surjektiv oder bijektiv ist, und gegebenenfalls die (links- oder rechts-)inversen Abbildungen konstruieren.

Lemma 9 (Austauschsatz von Steinitz) Sei $B = \{v_1, ..., v_n\}$ eine Basis im Vektorraum $(V, +, \cdot)$. Sei $A = \{w_1, ..., w_k\}$ eine linear unabhängige Menge. Dann gilt

- (a) k < n und
- (b) es gibt (paarweise verschiedene) $i_1,...,i_k \in \{1,...,n\}$ so dass der Austausch von allen v_{i_j} gegen w_j wieder eine Basis von V liefert

Bsp. Wir betrachten \mathbb{R}^3 und $B := \left\{ v_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ sei die Standardbasis. Wir betrachten die Menge

$$A := \left\{ w_1 := \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, w_2 := \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \right\}$$
. Die Menge ist linear unabhängig. (Wir

haben vorher gezeigt, dass $\left\{\binom{1}{2},\binom{3}{4}\right\}\subseteq\mathbb{R}^2$ linear unabhängig ist.) Nach Lemma 9 kann man irgendwelche zwei Vektoren aus B gegen Vektoren aus A austauschen, sodass die Menge trotzdem eine Basis-Menge bleibt. In unserem Bsp. kann man $i_1=2,i_2=3$ wählen. Nach dem Austausch haben wir die Menge $B'=\left\{\binom{1}{0},\binom{0}{1},\binom{0}{1}{2},\binom{0}{3}\right\}$, die auch eine Basis ist.

Bemerkung. Die "Nummern" i_1, i_2, \ldots sind nicht beliebig. Selbstverständlich kann man sie beliebig unstellen. Im Bsp. oben kann man z.B. $i_2=2$ und $i_1=3$ wählen. Im Bsp oben können wir aber nicht z.B. $i_1=1$, $i_2=2$ nehmen: Nach dem Austausch haben wir $B'=\left\{\begin{pmatrix}0\\1\\2\end{pmatrix},\begin{pmatrix}0\\3\\4\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right\}$ und dies ist keine Basis: Den Vektor $\begin{pmatrix}1\\0\\0\end{pmatrix}$ kann man nicht als Linearkombination von Vektoren aus B' erzeugen.

Wenn die Menge A einelementig ist, folgt der Austauschsatz aus dem Austauschlemma

 $B=\{v_1,...,v_n\}$ sei eine Basis, $A:=\{w\}$ sei eine einelementige linear unabhängige Menge. Wie wir vorher in Vorlesung 5 bewiesen haben (im Bsp. nach der Definition der linearen Unabhängigkeit), ist $w\neq \vec{0}$. Da B eine Basis ist, gibt es $\lambda_1,...,\lambda_n\in\mathbb{R}$ mit

$$w = \sum_{i=1}^{n} \lambda_i v_i. \tag{*}$$

Da $w \neq \vec{0}$ und B linear unabhängig ist, ist die Linearkombination (*) nichttrivial, also $\exists k \in \{1,...,n\}$ mit $\lambda_k \neq 0$.

Wir sehen, dass alle Voraussetzungen des Austauschlemmas erfüllt sind. Also kann man v_k gegen w austauschen (also $i_1 := k$), sodass die Menge $B' := \{v_1, ..., v_{k-1}, w, v_{k+1}, ..., v_n\}$ eine Basis ist.

Lemma 9 (Austauschsatz von Steinitz) Sei $B = \{v_1, ..., v_n\}$ eine Basis im Vektorraum $(V, +, \cdot)$. Sei $A = \{w_1, ..., w_k\}$ eine linear unabhängige Menge. Dann gilt

- (a) k < n und
- (b) es gibt (paarweise verschiedene) $i_1, ..., i_k \in \{1, ..., n\}$ so dass der Austausch von allen v_{i_i} gegen w_{i_i} wieder eine Basis von V liefert

Induktionsbeweis über k.

I.A. Für k = 0 ist nichts zu zeigen.

I.V. Die Aussage ist für jede Teilmenge $A \subseteq V$ aus k-1 Elementen gültig.

Induktionsschrit für (a)

I.S. Z.z.: Die Aussage ist auch für jede Teilmenge A aus k Elementen gültig. Sei $\{w_1, ..., w_k\}$ linear unabhängig.

Wir zeigen zuerst (a): $k \le n$. Nach I.V. ist $k - 1 \le n$.

Widerspruchsbeweis. Angenommen, es wäre k > n. Dann ist $k-1 \ge n$. Da nach I.V. $k-1 \le n$, ist k-1 = n. Da die Teilmenge $\{w_1, ..., w_{k-1}\}$ linear unabhänging ist, gibt es nach I.V. (paarweise verschiedene) $i_1, ..., i_{k-1} \in \{1, ..., k-1\}$ so dass der Austausch von allen v_{i_j} gegen w_{j_j} eine Basis von V liefert. Also ist $\{w_1, ..., w_{k-1}\}$ eine Basis. Dann ist nach Satz Y(c) Y

Induktionsschrit für (b)

Also $k \leq n$. Wir zeigen jetzt **(b)**: es gibt $i_1, i_2, ..., i_k$ so dass der Austausch von allen v_{i_j} gegen w_j eine Basis liefert. Betrachten wir die Menge $\{w_1, ..., w_{k-1}\}$. Da sie linear unabhängig ist, gibt es nach I.V. (paarweise verschiedene) $i_1, i_2, ..., i_{k-1} \in \{1, ..., n\}$ so dass der Austausch von allen v_{i_j} gegen w_j eine Basis liefert. O.B.d.A. können wir annehmen, dass $i_1 = 1, i_2 = 2, ..., i_{k-1} = k - 1$, sonst umnumerieren. Also ist $A_{neu} := \{w_1, ..., w_{k-1}, v_k, ..., v_n\}$ eine Basis. Deswegen kann man w_k als Linearkombination darstellen:

$$w_k = \sum_{i=1}^{k-1} \mu_i w_i + \sum_{i=k}^n \lambda_i v_i.$$

Einer der Koeffizienten λ_j ist nicht 0, da sonst $\vec{0} = -w_k + \sum_{i=1}^{k-1} \mu_i w_i$ ist, was der linearen Unabhängigkeit von $\{w_1,...,w_k\}$ widerspricht.

Also $\lambda_j \neq 0$. Nach dem Austauschlemma (Lemma 8) bekommen wir eine Basis, wenn wir den entsprechenden Vektor v_j gegen w_k austauchen.

Beweis von Satz 9

Satz 9 Die Dimension eines (endlich erzeugten) Vektorraums hängt nicht von der Wahl der Basis ab.

```
Beweis. Seien \{v_1,...,v_n\} und \{w_1,...,w_k\} Basen von (V,+,\cdot). Z.z.: k=n.  \begin{cases} \{v_1,...,v_n\} \text{ ist eine Basis} & \stackrel{Austauschsatz(a)}{\Rightarrow} n \geq k. \\ \{w_1,...,w_k\} \text{ ist linear unabhängig} & \stackrel{Austauschsatz(a)}{\Rightarrow} k \geq n. \end{cases}
```

Folgerung (a)

Es sei $\{v_1,...,v_n\}$ eine linear unabhängige Teilmenge des Vektorraums $(V,+,\cdot)$ der Dimension n. Dann ist $\{v_1,...,v_n\}$ eine Basis.

Widerspruchsbeweis. Angenommen es gibt ein $w \in V$, $w \notin \operatorname{span}(\{v_1,...,v_n\})$. Dann ist $\{v_1,...,v_n\} \cup \{w\}$ linear unabhängig. Tatsächlich, gilt für eine Linearkombination von (paarweise verschiedenen) Elementen aus $\{v_1,...,v_n\} \cup \{w\}$

$$\mu w + \sum_{i=1}^{n} \lambda_i v_i = \vec{0}, \qquad (*)$$

dann ist $\mu=0$, da sonst $w=-\sum_{i=1}^n \frac{\lambda_i}{\mu} v_i$. Dann ist (*) eine Linearkombination der Elemente aus $\{v_1,...,v_n\}$ und deswegen trivial. Also ist $\{v_1,...,v_n\}\cup\{w\}$ linear unabhängig. Aber nach dem Austauschsatz muss die Anzahl der Elemente in $\{v_1,...,v_n\}\cup\{w\}\leq n$ sein. Widerspruch!

Anwendung: Wie Antwortet man auf die Frage "Ist eine explizit gegebene Teilmenge im \mathbb{R}^n eine Basis?"

$$\mathbb{R}^n$$
 ist *n*-dimensional, weil $\left\{ \begin{pmatrix} 1\\0\\\vdots\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\0\\0 \end{pmatrix}, ..., \begin{pmatrix} 0\\0\\\vdots\\1\\1 \end{pmatrix} \right\}$ eine Basis ist. (Sie

heißt Standardbasis von \mathbb{R}^n , wurde bereits erwähnt.)

Gegeben eine Teilmenge $A = \{v_1, ..., v_k\} \subseteq \mathbb{R}^n$, wie kann mann verstehen ob diese Teilmenge eine Basis ist?

Falls $k \neq n$ ist, ist A keine Basis (Satz 9).

Angenommen k = n. Dann benutzt man Folgerung (a):

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \vec{0}$$

ist ein System von n linearen Gleichungen für n Unbekannte $\lambda_1,...,\lambda_n$, welches man löst. Gibt es eine Lösung $(\lambda_1,...,\lambda_n) \neq (0,...,0)$, so ist A linear abhängig, also keine Basis. Gibt es genau eine Lösung $(\lambda_1,...,\lambda_n)=(0,...,0)$, so ist A linear unabhängig und nach Folgerung (a) eine Basis.

Um also zu prüfen, ob eine explizit gegebene Teilmenge eine Basis ist, genügent es, nur EIN lineares Gleichungssystem zu lösen, statt n+1 wie in der letzten Vorlesung.

Bemerkung.

Das selbe gilt auch für alle Vektorräume mit bekannter Dimension – eine Basis ist eine linear unabhängige Teilmenge von V, so dass die Anzahl der Elemente gleich der Dimension von V ist (wobei $(V,+,\cdot)$ ein Vektorraum ist).

Bsp. einer Anwendung

Frage *Ist die folgende Menge A eine Basis in* \mathbb{R}^2 ?

$$A := \left\{ \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right) \right\}$$

Antwort: Nein! Tatsächlich, $\left\{ \left(\begin{array}{c} 1\\ 0 \end{array} \right), \left(\begin{array}{c} 0\\ 1 \end{array} \right) \right\}$ ist eine Basis im \mathbb{R}^2 (Standardbasis), also ist \mathbb{R}^2 zweidimensional, also (Satz 9) besteht jede Basis aus 2 Vektoren, was hier nicht der Fall ist.

Frage Ist die folgende Menge A eine Basis im \mathbb{R}^2 ?

$$A := \left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \end{array} \right), \left(\begin{array}{c} 3 \\ 4 \end{array} \right) \right\}$$

Antwort: Nein! Eine Basis im \mathbb{R}^2 besteht aus 2 Vektoren und A enthält 3.

Bsp. einer Anwendung

Frage Ist die Teilmenge $A := \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ eine Basis im \mathbb{R}^2 ?

Ja! Tatsächlich, \mathbb{R}^2 ist zweidimensional. Wegen Folgerung (a) müssen wir nur zeigen, dass A linear unabhängig ist. D.h., dass nur die triviale Linearkombination gleich $\vec{0}$ ist. Die Linearkombination mit Koeffizienten λ, μ ist

$$\lambda \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + \mu \left(\begin{array}{c} 1 \\ -1 \end{array} \right) = \left(\begin{array}{c} \lambda + \mu \\ \lambda - \mu \end{array} \right)$$

Falls diese Linearkombination gleich $\vec{0} := \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ist, muss

$$\begin{cases} \lambda + \mu = 0 \\ \lambda - \mu = 0 \end{cases}$$

Nach Addition der Gleichungen bekommen wir $2\lambda=0$, also $\lambda=0$. Nach einsetzen von $\lambda=0$ in die erste Gleichung bekommen wir $\mu=0$. Also ist diese Linearkombinaiton die triviale Linearkombination, d.h. A ist linear unabhängig.

Nach Folgerung (a) ist dann A eine Basis.

Folgerung (b) Sei $\{v_1, ..., v_n\}$ eine Basis im Vektorraum $(V, +, \cdot)$. Für $\{w_1, ..., w_n\}$ gelte: Jedes v_i ist eine Linearkombination von Elementen aus $\{w_1, ..., w_n\}$. Dann ist $\{w_1, ..., w_n\}$ eine Basis.

Beweis. Wir zeigen: $\operatorname{span}(\{w_1,...,w_n\}) = V$. D.h., jedes $v \in V$ ist eine Linearkombination von Elementen w_i .

Da $\{v_1, ..., v_n\}$ eine Basis ist, ist jedes v eine Linearkombination der Form $v = \frac{\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_n v_n}{(*)}$

Nach Voraussetzung ist jedes v_i eine Linearkombination der Elemente $w_1,...,w_n$, d.h. $v_i=\sum_{j=1}^n \mu_{ij}w_j$. Nach Einsetzen in (*) bekommen wir

$$v = \lambda_1 \sum_{j=1}^n \mu_{1j} w_j + \lambda_2 \sum_{j=1}^n \mu_{2j} w_j + \dots + \lambda_n \sum_{j=1}^n \mu_{nj} w_j = \sum_{i, j=1}^n \lambda_i \mu_{ij} w_j.$$

Also ist v eine Linearkombination der Elemente $w_1, ..., w_n$. Z.z.: Die Menge $\{w_1, ..., w_n\}$ ist linear unabhängig. Angenommen sie ist nicht linear unabhängig. Wie wir eben bewiesen haben, ist $\mathrm{span}(\{w_1, ..., w_n\}) = V$. Dann kann man nach Satz 8 aus $\{w_1, ..., w_n\}$ eine Basis A' auswählen. Nach Satz 9 muss diese Teilmenge aus n Elementen bestehen, weil alle Basen die gleiche Anzahl von Elementen haben. Also ist $A' = \{w_1, ..., w_n\}$ und deswegen ist $\{w_1, ..., w_n\}$ eine Basis.

Folgerung (c) (Basisergänzungssatz) Sei $(V, +, \cdot)$ ein endlich erzeugter Vektorraum, sei r = dim(V) und seien $\{w_1, \dots, w_n\}$ linear unabhängig. Dann ist $n \le r$ und existieren Vektoren $w_{n+1}, \dots w_r$, so dass $B = \{w_1, \dots, w_n, w_{n+1}, \dots, w_r\}$ eine Basis von V ist.

Folgerung (c') (Basisergänzungssatz) Jede linear unabhängige Teilmenge eines endlich-dimensionalen Vektorraums $(V,+,\cdot)$ läßt sich zu einer Basis von V ergänzen.

Beweis: Sei $B = (v_1, \dots, v_r)$ eine Basis von V. Dann gibt es nach dem Austauschsatz Vektoren v_{i_1}, \dots, v_{i_n} , die gegen w_1, \dots, w_n ausgetauscht werden können, so dass nach etwaigem Umnummerieren von Vektoren $B = (w_1, \dots, w_n, v_{n+1}, \dots, v_r)$ eine Basis von V ist.

Folgerung (d) Untervektorraum U eines endlich erzeugten Vektorraums $(V, +, \cdot)$ ist auch endlich erzeugt. Ferner gilt: $dim(U) \leq dim(V)$.

Wiederschpuchsbeweis. Sei $U \subseteq V$ ein Untervektorraum von $(V,+,\cdot)$. V sei n-dimensional mit der Basis $\{v_1,...v_n\}$. Ist U nicht endlich erzeugt, dann existiert nach der Folgerung aus Satz 8 eine linearunabhängige Teilmenge $A = \{u_1,...,u_{n+1}\} \subseteq U$ aus n+1 Vektoren. Ist U endlich erzeugt und $dim(U) \ge n+1$, dann existiert ebenfalls eine linearunabhängige Menge $A := \{u_1,...,u_{n+1}\} \subseteq U$ aus n+1 Vektoren – wir nehmen einfach die ersten n+1 Vektoren einer Basis.

Nach Austauschsatz ist $n+1 \le n$, was falsch ist. Widerspruch!

Summe von Untervektorräumen

Def. Seien $(V, +, \cdot)$ ein Vektorraum und $E, F \subseteq V$ Untervektorräume. Die Summe E + F ist die Teilmenge von V, die aus allen möglichen Summen e + f mit $e \in E$ und $f \in F$ besteht:

$$E+F:=\{e+f\mid e\in E\ und\ f\in F\}\subseteq V.$$

Bsp. Sei $V = \mathbb{R}^2$, $E = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \mid x \in \mathbb{R} \right\}$ und $F = \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} \mid y \in \mathbb{R} \right\}$. Dann ist E + F = V, weil man ein beliebiges Element $\begin{pmatrix} x \\ y \end{pmatrix}$ bekommt als $\begin{pmatrix} x \\ y \end{pmatrix} = \underbrace{\begin{pmatrix} x \\ 0 \end{pmatrix}}_{0 \in E} + \underbrace{\begin{pmatrix} 0 \\ y \end{pmatrix}}_{0 \in E}$.

Satz 10 (Dimensionssatz) Seien E, F Untervektorräume eines endlich erzeugten Vektorraums $(V, +, \cdot)$. Dann gilt:

E + F ist ein Untervektorraum der Dimension $dim(E + F) = dim(E) + dim(F) - dim(E \cap F)$.

Beweis. Z.z.: (a) E + F ist ein Untervektorraum.

(b) E + F hat einer Basis aus $dim(E) + dim(F) - dim(E \cap F)$ Elementen.

Beweis (a) E + F ist ein Untervektorraum

Z.z.:
$$\forall u_1, u_2 \in E + F \text{ ist } u_1 + u_2 \in E + F$$
.

Seien $u_1,u_2\in E+F$, d.h. $u_1=e_1+f_1$ und $u_2=e_2+f_2$ für irgendwelche $e_i\in E,f_i\in F$. Dann gilt:

$$u_1 + u_2 = e_1 + f_1 + e_2 + f_2 = \underbrace{e_1 + e_2}_{\in E} + \underbrace{f_1 + f_2}_{\in F} \in E + F.$$

Abgeschlossenheit bzgl. "·" zeigt man analog.

Beweis (b): Konstruktion der Basis in E + F

Zunächst ist nach dem Satz 4 $E \cap F$ ein Untervektorraum. Nach dem Basisergänzugssatz (Folg. (c)) ist $E \cap F$ endlichdimensional. Es sei $\{a_1, ..., a_m\}$ eine Basis von $E \cap F$.

Diese lässt sich nach dem Basisergänzugssatz zu einer Basis $\{a_1,...,a_m,e_1,...,e_n\}$ von E und zu einer Basis $\{a_1,...,a_m,f_1,...,f_r\}$ von F erweitern. (Ist $dim(E\cap F)=0$, dann lässt man die a's weg und setzt m:=0.)

Wir wollen jetzt zeigen, dass $B:=\{a_1,...,a_m,e_1,...,e_n,f_1,...,f_r\}$ eine Basis von E+F ist. (Offensichtlich besteht B aus $m+n+r=(m+n)+(m+r)-m=dim(E)+dim(F)-dim(E\cap F)$ Elementen.)

Nach Definition lässt sich jeder Vektor $v \in E + F$ in der Form v = e + f mit $e \in E$ und $f \in F$ darstellen. Diese Darstellung wird im Allgemeinen nicht eindeutig sein, aber jedenfalls lässt sich e als Linearkombination der $\{a_1, ..., a_m, e_1, ..., e_n\}$ und f als Linearkombination der $\{a_1, ..., a_m, f_1, ..., f_r\}$ darstellen. Damit ist v Linearkombination der Vektoren aus B, also $span(B) \supseteq E + F$. Da $B \subseteq E + F$, und E + F ein Untervektorraum ist, ist $span(B) \subseteq E + F$, also span(B) = E + F.

Lineare Unabhängigkeit von B

Wir müssen noch nachweisen, dass B linear unabhängig ist. Es sei dazu

$$\vec{0} = \sum_{i=1}^{m} \lambda_i a_i + \sum_{i=1}^{n} \mu_i e_i + \sum_{i=1}^{r} \nu_i f_i. \tag{*}$$
Dann gilt (wir addieren $-\sum_{i=1}^{r} \nu_i f_i$ zu beiden Seiten)

Dann gilt (wir addieren $-\sum_{i=1}^{r} \nu_i f_i$ zu beiden Seiten):

$$\sum_{i=1}^{m} \lambda_i a_i + \sum_{i=1}^{n} \mu_i e_i = \sum_{i=1}^{r} -\nu_i f_i := v.$$

$$\in E, \text{weil } a_i, e_i \in E$$

Also liegt der Vektor v in E und in F und deswegen in $E \cap F$. Dann kann man v als Linearkombination der a_i darstellen: $v = \sum_{i=1}^m \eta_i a_i$.

Wir wissen aber nach Satz 7(b), dass die Darstellung eines Elements als Linearkombination von paarweise verschiedenen Basisvektoren eindeutig ist. Für den Vektor v haben wir die folgenden Darstellungen:

$$v = \sum_{i=1}^{m} \eta_i a_i$$
 und $v = \sum_{i=1}^{r} -\nu_i f_i$. Also alle $\nu_i = 0$.

Analog, für den Vektor v haben wir die folgende Darstellungen:

$$v = \sum_{i=1}^{m} \eta_i a_i$$
 und $\sum_{i=1}^{m} \lambda_i a_i + \sum_{i=1}^{n} \mu_i e_i$. Also alle $\mu_i = 0$.

Da $\mu_i = \nu_i = 0$, ist (*) äquivalent zu $\vec{0} = \sum_{i=1}^m \lambda_i a_i$. Da $\{a_1, ..., a_m\}$ eine Basis in $E \cap F$ ist, sind alle λ_i ebenfalls gleich 0.

Wir haben also bewiesen, dass eine Linearkombination von Elementen aus B genau dann 0 ergibt, wenn sie trivial ist. D.h. wir haben bewiesen, dass die Menge B linear unabhängig ist.

Koordinaten in einer Basis

Def. $B:=(v_1,...,v_n)$ sei ein Basis-Tupel im Vektorraum $(V,+,\cdot)$, $w\in V$. Der Koordinatenvektor des Vektors w in dieser Basis ist das n-Tupel von Skalaren $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathbb{R}^n$ so dass $\lambda_1v_1 + \lambda_2v_2 + ... + \lambda_nv_n = w$.

(Die Skalare heißen dann die Koordinaten.)

Bemerkung Nach der Definition von Basis gibt es solche Skalare λ_i (weil $span(v_1,...,v_n)=V$ ist, also jedes Element von V eine Linearkombination der $v_1,...,v_n$ ist). Nach Satz 7(b) sind die Zahlen λ_i eindeutig.

Def— **Fortsetzung** Die Abbildung $C_B: V \to \mathbb{R}^n$,

$$C_B(\lambda_1 v_1 + ... + \lambda_n v_n) := \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$
 heißt die Koordinatenabbildung.

Bsp. Betrachte \mathbb{R}^2 mit der Standardbasis. $\left(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right)$ Dann ist der Koordinatenvektor eines Vektors $\begin{pmatrix}x\\y\end{pmatrix}$ das Paar $\begin{pmatrix}x\\y\end{pmatrix}$, weil $x\begin{pmatrix}1\\0\end{pmatrix}+y\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}x\\y\end{pmatrix}$

Bemerkung

In der Definition einer Basis haben wir Basis- und Basis- (also, "geordnete" Menge) definiert und das Wort für beide Objekte verwendet. Hier ist die erste Stelle, wo wir tatsächlich Basen als Tupel verstehen sollen: Falls wir die Vektoren in einem Basis-Tupel umordnen, werden die entsprechende Koordinaten entsprechend umgeordnet.

Bsp. Betrachte \mathbb{R}^2 mit der umgeordneten Standardbasis:

$$\left(\left(\begin{array}{c} 0\\1 \end{array}\right) \;,\; \left(\begin{array}{c} 1\\0 \end{array}\right)\right)$$

Dann sind die Koordinaten eines Vektors $\begin{pmatrix} x \\ y \end{pmatrix}$ das Paar $\begin{pmatrix} y \\ x \end{pmatrix}$, weil

$$y \underbrace{\left(\begin{array}{c} 0\\1 \end{array}\right)}_{v_1} + x \underbrace{\left(\begin{array}{c} 1\\0 \end{array}\right)}_{v_2} = \left(\begin{array}{c} x\\y \end{array}\right)$$

Bsp. Man betrachte die Basis

$$A := \left(\left(\begin{array}{c} 1 \\ 1 \end{array} \right) , \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right).$$

Welche Koordinaten hat der Vektor $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ in dieser Basis?

Antwort:
$$\begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$
, weil $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Wie findet man die Koordinaten eines Vektors in einer Basis (z.B. im \mathbb{R}^n)?

Z.B. nach Definition:

Sei $(v_1,...,v_n)$ eine Basis im \mathbb{R}^n , u sei ein Vektor. Alle Vektoren $v_1,...,v_n$, u seien explizit gegeben:

$$v_{1} := \begin{pmatrix} v_{1}^{1} \\ v_{1}^{2} \\ \vdots \\ v_{1}^{n} \end{pmatrix}, ..., v_{n} := \begin{pmatrix} v_{n}^{1} \\ v_{n}^{2} \\ \vdots \\ v_{n}^{n} \end{pmatrix}, \qquad u = \begin{pmatrix} u^{1} \\ u^{2} \\ \vdots \\ u^{n} \end{pmatrix},$$

wobei alle v_i^j explizit gegebene Zahlen sind.

Nach Definition sind die Koordinaten des Vektors u die Zahlen $\lambda_1, ..., \lambda_n$ so dass $\lambda_1 v_1 + ... + \lambda_n v_n = u$:

$$\lambda_1 \begin{pmatrix} v_1^1 \\ v_1^2 \\ \vdots \\ v_1^n \end{pmatrix} + \dots + \lambda_n \begin{pmatrix} v_n^1 \\ v_n^2 \\ \vdots \\ v_n^n \end{pmatrix} = \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^n \end{pmatrix}$$

$$\lambda_1 \begin{pmatrix} v_1^1 \\ v_1^2 \\ \vdots \\ v_1^n \end{pmatrix} + \dots + \lambda_n \begin{pmatrix} v_n^1 \\ v_n^2 \\ \vdots \\ v_n^n \end{pmatrix} = \begin{pmatrix} u^1 \\ u^2 \\ \vdots \\ u^n \end{pmatrix}$$

Und das ist das System

$$\begin{cases} \lambda_{1}v_{1}^{1} + \dots + \lambda_{n}v_{n}^{1} &= u^{1} \\ \lambda_{1}v_{1}^{2} + \dots + \lambda_{n}v_{n}^{2} &= u^{2} \\ & \vdots \\ \lambda_{1}v_{1}^{n} + \dots + \lambda_{n}v_{n}^{n} &= u^{n} \end{cases}$$

von n Gleichungen für die Unbekannten $\lambda_1, ..., \lambda_n$. (Die v_i^j und u^j sind gegeben.) Die Lösung existiert, ist eindeutig (Satz 7(b)) und ergibt die Koordinten des Vektors u in der Basis $(v_1, ..., v_n)$.

Aufgabe: Finde die Koordinaten des Vektors $u := \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$ in der

Basis

$$\left(\left(\begin{array}{c} 1\\1\\2 \end{array} \right), \left(\begin{array}{c} 1\\2\\3 \end{array} \right), \left(\begin{array}{c} 2\\-1\\3 \end{array} \right) \right).$$

Koordinaten sind die Zahlen $\lambda_1, \lambda_2, \lambda_3$ so dass

$$\lambda_1 \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$

Nach der Vektoraddition bekommen wir

$$\begin{pmatrix} \lambda_1 + \lambda_2 + 2\lambda_3 \\ \lambda_1 + 2\lambda_2 - \lambda_3 \\ 2\lambda_1 + 3\lambda_2 + 3\lambda_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} \lambda_1 + \lambda_2 + 2\lambda_3 \\ \lambda_1 + 2\lambda_2 - \lambda_3 \\ 2\lambda_1 + 3\lambda_2 + 3\lambda_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$

Das ist ein System von drei Gleichungen:

$$\begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 &= 2 \\ \lambda_1 + 2\lambda_2 - \lambda_3 &= -2 \\ 2\lambda_1 + 3\lambda_2 + 3\lambda_3 &= 2 \end{cases} Eq_1$$
 Eq₂

Wir lösen das System.

$$\begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 &= 2 & Eq_1 \\ \lambda_2 - 3\lambda_3 &= -4 & Eq_2 - Eq_1 \\ \lambda_2 - \lambda_3 &= -2 & Eq_3 - 2Eq_1 \end{cases}$$

Die letzte Gleichungen minus die vorletzte gibt $2\lambda_3=2$, also $\lambda_3=1$. Nach Einsetzen von $\lambda_3=1$ in die letzte Gleichung bekommen wir $\lambda_2-1=-2$, also $\lambda_2=-1$. Nach Einsetzen von $\lambda_3=1$ und $\lambda_2=-1$ in die erste Gleichung bekommen wir $\lambda_1-1+2=2$, also $\lambda_1=1$.

Antwort: Vektor
$$u=\left(\begin{array}{c}2\\-2\\2\end{array}\right)$$
 hat Koordinaten $\left(\begin{array}{c}1\\-1\\1\end{array}\right)$ in der

 $\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \right\}.$

Basis

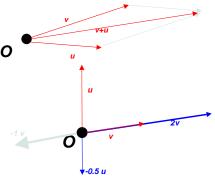
$$\begin{pmatrix} -2 \\ 2 \end{pmatrix}$$
 hat Koordinaten $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ in der

Basis in der (geometrischen) Ebene

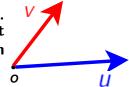
Wiederholung: Sei E eine Ebene, $O \in E$ und V die Menge $V := \{_{\text{gerichtete Strecken mit Anfangspunkt } O \text{ und Endpunkt auf } E\}.$

Addition von Vektoren: Parallelogrammregel.

 $\begin{array}{llll} & \text{Multiplikation} & \cdot & \text{von} & \text{Skalaren} \\ \in & \mathbb{R} & \text{und} & \text{Vektoren:} & \text{Streckungen/Stauchungen.} \end{array}$



Behauptung: V ist zweidimensional. Zwei beliebige Vektoren $u, v \in V$ mit $u \neq \vec{0} \neq v$ und $\forall \lambda \in \mathbb{R} \ \lambda u \neq v$ bilden eine Basis



Beweis der Behauptung.

Wir betrachten zwei Vektoren u, v mit $u \neq \vec{0} \neq v$ und $\forall \lambda \in \mathbb{R} \ \lambda u \neq v$. Wir müssen zeigen:

- (a) $\{u, v\}$ ist linear unabhängig, d.h. $\lambda u + \mu v = \vec{0} \iff \lambda = 0 = \mu$
- (b) $\{u,v\}$ ist erzeugend, d.h. jeden Vektor $w \in V$ kann man als Linearkombination $\lambda u + \mu v$ von u und v bekommen.

(mit Quantoren ausgedrückt: $\forall w \in V \ \exists \lambda, \mu \in \mathbb{R} \ \text{sodass} \ \lambda u + \mu v = w$).

Beweis (a) Wenn $\lambda \neq 0 \neq \mu$ ist, ist der Endpunkt des Vektors $\lambda u + \mu v$ nach Definition der den Punkt O gegenüberliegenden Punkt des Parallelograms auf dem Bild – die Seiten sind $\lambda \cdot u$ und $\mu \cdot v$.

Offensichtlich ist der Punkt nicht O, also wenn $\lambda \neq 0 \neq \mu$, ist $\lambda u + \mu v \neq \vec{0}$, wie behauptet.

 $\lambda u + \mu v$

Wenn $\lambda \neq 0$ und $\mu = 0$ ist, ist der Vektor $\lambda u + \mu v = \lambda u$, und ist auch nicht $\vec{0}$ (nach Lemma 5). Der Fall $\lambda = 0$ und $\mu \neq 0$ ist ähnlich.

Beweis (b)

Z.z.: Ein beliebiger Vektor $w = \overrightarrow{OA}$ (mit Endpunkt A) ist Linearkombination von u, v.

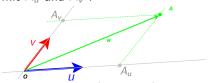
Fall 1. Wenn A auf der Gerade liegt, die durch O und Endpunkt von u geht, ist $w = \lambda u$ mit $\lambda = \pm \frac{\text{Länge von } w}{\text{Länge von } u}$.



Fall 2 — wenn A auf der Gerade liegt, die durch O und Endpunkt von v geht – analog.

Fall 3. A (=Endpunkt von w) liege jetzt weder auf der Gerade durch O und den Endpunkt von u, noch auf der Gerade durch O und den Endpunkt von v.

Wir betrachten die Geraden durch A, die zu u und v parallel sind. Sie schneiden die Gerade durch O und den Endpunkt von u und die Gerade durch O und den Endpunkt von v. Die Schnittpunkte bezeichnen wir mit A_u und A_v .



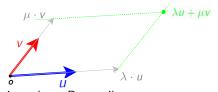
Die Vektoren $\overrightarrow{OA_u}$ und $\overrightarrow{OA_v}$ sind proportional zu u bzw. v. Also ist $\overrightarrow{OA_u} = \lambda u$ und $\overrightarrow{OA_v} = \mu v$ für irgendwelche $\lambda, \mu \in \mathbb{R}$. Dann ist $w = \lambda u + \mu v$, also auch in Fall 3 haben wir einen beliebigen Vektor w als Linearkombination von u und v erzeugt.

Bemerkung. Man kann λ und μ berechnen wie im Fall 1. In der Tat, $|\lambda| := \frac{\text{Länge von } OA_u}{\text{Länge von } u}$ und das Vorzeichen von λ ist "+", wenn A_u und der Endpunkt von u auf der gleichen Seite von O liegen, und sonst "-". Analog, $|\mu| := \frac{\text{Länge von } OA_v}{\text{Länge von } v}$ und das Vorzeichen von μ ist "+", wenn A_v und der Endpunkt von v auf der gleichen Seite von O liegen und sonst "-".

Koordinaten eines Vektors w auf der Ebene (geometrisches Beispiel)

Wir betrachten die Basis (u, v) auf der geometrischen Ebene.

Nach Definition sind die Koordinaten die Zahlen λ , μ sodass $w = \lambda u + \mu v$:



Wir betrachten die Punkte A_u , A_v wie vorher. Dann gilt $\lambda := \pm \frac{\text{Länge von } OA_u}{\text{Länge von } u}$ und $\mu := \pm \frac{\text{Länge von } OA_v}{\text{Länge von } v}$, wobei das Vorzeichen davon abhängt, auf welcher Seite von O die Punkte A_u und Endpunkt von u bzw. die Punkte A_v und der Endpunkt von v liegen.

Lineare Abbildungen

Def. Es seien $(V_1, +, \cdot)$ und $(V_2, +, \cdot)$ zwei Vektorräume. Eine Abbildung $f: V_1 \to V_2$ heißt linear, falls für alle Vektoren $u, v \in V_1$ und für jedes $\lambda \in \mathbb{R}$ gilt:

- f(u+v)=f(u)+f(v) ,
- $f(\lambda u) = \lambda f(u).$

Bsp. Die Abbildung

$$f: \mathbb{R}^2 o \mathbb{R}^3, \qquad f\left(\left(egin{array}{c} x \ y \end{array}
ight) := \left(egin{array}{c} x \ y \ 0 \end{array}
ight)$$

ist linear, weil
$$f\left(\begin{pmatrix} x_1 \\ \end{pmatrix} + \begin{pmatrix} x_2 \\ \end{pmatrix}\right) = f\left(\begin{pmatrix} x_1 + x_2 \\ \end{pmatrix}\right)$$

ist linear, weil
$$f\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}\right) = f\left(\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}\right) = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = f\left(\begin{pmatrix} x_1 \\ x_1 \end{pmatrix}\right) + f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)$$

$$\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ 0 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ 0 \end{pmatrix} = f \begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + f \begin{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \end{pmatrix},$$

$$\begin{pmatrix} y_1 + y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} y_1 \\ 0 \end{pmatrix} + \begin{pmatrix} y_2 \\ 0 \end{pmatrix} = f\left(\begin{pmatrix} \lambda_1 \\ y_1 \end{pmatrix}\right) + f\left(\begin{pmatrix} \lambda_2 \\ y_2 \end{pmatrix}\right),$$

$$f\left(\lambda\begin{pmatrix} x \\ y \end{pmatrix}\right) = f\left(\begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}\right) = \begin{pmatrix} \lambda x \\ \lambda y \\ 0 \end{pmatrix} = \lambda f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right)$$

Bsp. Sei $(V,+,\cdot)$ ein Vektorraum, $\alpha\in\mathbb{R}$. Dann ist die Streckung $f:V\to V$, $f(v):=\alpha\cdot v$ linear. Tatsächlich.

$$f(v_1 + v_2) = \alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2 = f(v_1) + f(v_2),$$

$$f(\lambda v_1) = \alpha(\lambda v_1) = (\alpha \lambda) v_1 = (\lambda \alpha) v_1 = \lambda(\alpha v_1) = \lambda f(v_1).$$

Bsp. Ist die Abbildung $f: V_1 \to V_2$, $f(v) := \vec{0}$ eine lineare Abbildung? **Ja!** Weil $f(v_1) + f(v_2) = \vec{0} + \vec{0} = \vec{0}$ und $f(\lambda v_1) = \vec{0} = \lambda \vec{0} = \lambda f(v_1)$. (Falls $V_1 = V_2 = V$ ist, ist f auch die Abbildung aus dem "Streckungs"-Bsp. vorher, mit $\alpha = 0$.)

Bitte üben: zeigen Sie, dass die folgende Abbildung linear ist

Die Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch

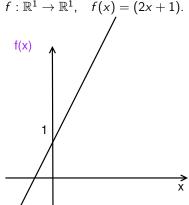
$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + 2y \\ 3x + 4y \end{pmatrix}.$$

Diese Abbildung ist linear:

$$f\left(\binom{x_1}{y_1} + \binom{x_2}{y_2}{y_2}\right) = \binom{(x_1 + x_2) + 2(y_1 + y_2)}{3(x_1 + x_2) + 4(y_1 + y_2)} = \binom{x_1 + 2y_1}{3x_1 + 4y_1} + \binom{x_2 + 2y_2}{3x_2 + 4y_2}$$
$$= f\left(\binom{x_1}{y_1}\right) + f\left(\binom{x_2}{y_2}\right).$$

Bitte üben.

Frage. Ist die folgende Abbildung linear?



Antwort. Nein. Es genügend zwei "Vektoren" $v_1, v_2 \in \mathbb{R}^1$ s.d. $f(v_1) + f(v_2) \neq f(v_1 + v_2)$. Wir nehmen $v_1 = (0) \in \mathbb{R}^1$ und $v_2 = (1) \in \mathbb{R}^1$. Dann ist $f((0)) + f((1)) = (2 \cdot 0 + 1) + (2 \cdot 1 + 1) = (4)$ und $f(v_1 + v_2) = f((0) + (1)) = f((1)) = (2 \cdot 1 + 1) = (3)$. Wir sehen dass $(4) = f((0)) + f((1)) \neq f((0) + (1)) = (3)$; also die Abbildung f ist nicht linear.

Lemma 10 $(v_1,...,v_n)$ sei eine Basis in $(V,+,\cdot)$. Wir betrachten die Koordinatenabbidung $C: V \to \mathbb{R}^n$, die den Vektor v auf seinen Koordinatenvektor $\binom{x_1}{\vdots}$ abbildet. Dann gilt: die Abbildung C ist linear.

Beweis. Z.z.: Für beliebigen Vektoren $u, w \in V$ mit Koordianten

Example 16. C(u) =
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 und $C(w) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ gilt:

(a) Der Koordinatenvektor des Vektors u + w ist $\begin{pmatrix} x_1 + y_1 \\ \vdots \end{pmatrix}$,

(b) für jedes $\lambda \in \mathbb{R}$ ist der Koordinatenvektor des Vektors λu der Vektor

$$\begin{cases} \vdots \\ \lambda x_n \end{cases}$$

$$\left(\begin{array}{c} x_1 \\ \vdots \\ \end{array}\right) \stackrel{\mathrm{Def.}}{\Leftrightarrow} u = \sum_{i=1}^n x_i v_i$$

Der Vektor u hat die Koordinaten $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \overset{\mathrm{Def.}}{\Leftrightarrow} u = \sum_{i=1}^n x_i v_i.$ Der Vektor w hat die Koordinaten $\begin{pmatrix} y_1 \\ \vdots \\ \vdots \end{pmatrix} \overset{\mathrm{Def.}}{\Leftrightarrow} w = \sum_{i=1}^n y_i v_i.$

Dann sind u + w und λu

$$u + w = \sum_{i=1}^{n} x_i v_i + \sum_{i=1}^{n} y_i v_i = \sum_{i=1}^{n} (x_i + y_i) v_i. \iff C(u + w) = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$\lambda u = \lambda \sum_{i=1}^{n} x_i v_i = \sum_{i=1}^{n} \lambda x_i v_i \iff C(\lambda u) = \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

Exkurs in die Mengenlehre: Surjektion, Injektion und Bijektion

Es seien A, B zwei Mengen und $f: A \rightarrow B$ eine Abbildung:

- ► Eine Abbildung $f: A \to B$ heißt Injektion (oder eine injektive Abbildung), falls für jedes $x \neq y \in A$ gilt: $f(x) \neq f(y)$. (Oder: $f(x) = f(y) \Longrightarrow x = y$).
- ▶ Eine Abbildung $f: A \rightarrow B$ heißt Surjektion (oder eine surjektive Abbildung), falls für jedes $x \in B$ mind. ein $y \in A$ existiert, so dass f(y) = x. (Oder: $Bild_f := \{b \in B \text{ s.d. } \exists a \in A \text{ mit } f(a) = b\} = B$).
- ► Eine Abbildung $f: A \rightarrow B$ heißt Bijektion (oder eine bijektive Abbildung), falls sie eine Injektion und eine Surjektion ist.

Die drei Bilder zusammen

Abbildung: Injektion (Abbildung in)

Abbildung: Surjektion (Abbildung auf)

Abbildung: Bijektion = Surjektion und Injektion

Wichtige Bezeichnung von der vorletzten Folie:

$$Bild_f := \{b \in B \text{ s.d. } \exists a \in A \text{ mit } f(a) = b\}$$

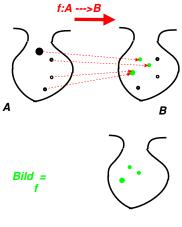


Abbildung: Bsp: Bild_f

Def. Sei $f: V \to U$ eine lineare Abbildung, wobei $(V, +, \cdot)$ und $(U, +, \cdot)$ Vektorräume sind. Der Kern von f ist die Menge

 $Kern_f := Urbild_f(\{\vec{0}\}) := \{v \in V \mid f(v) = \vec{0}\}$

Lemma 11 $f: V \rightarrow U$ sei eine lineare Abbildung. Dann gilt:

- (a) $f(\vec{0}) = \vec{0}$.
- (b) $\forall v \in V \text{ gilt } f(-v) = -f(v)$
- (c) $Kern_f = \{\vec{0}\} \iff f \text{ injektiv.}$

Beweis.

(a)
$$f(\vec{0}) = f(0v) \stackrel{\text{Def.}}{=} 0 \cdot f(v) = \vec{0}$$
.

(b)
$$f(-v) = f((-1) \cdot v) = (-1) \cdot f(v) = -f(v)$$

(c) \Longrightarrow Sei $Kern_f = \{\vec{0}\}$. Z.z.: f ist injektiv, d.h.

$$f(v_1) = f(v_2) \Longrightarrow v_1 = v_2.$$

$$f(v_1) = f(v_2) \iff f(v_1) - f(v_2) = \vec{0} \iff f(v_1 - v_2) = \vec{0}.$$

Da $Kern_f = \{\vec{0}\}$, gibt es nur einen Vektor, der auf $\vec{0}$ abgebildet wird, nämlich $\vec{0}$. Dann ist $v_1 - v_2 = \vec{0}$, also $v_1 = v_2$.

(c) \Leftarrow Sei f injektiv. Dann folgt aus f(u) = f(v), dass u = v. Wir

setzen $u := \vec{0}$. Wir erhalten, dass aus $f(\vec{0}) = f(v)$, folgt, dass $v = \vec{0}$.

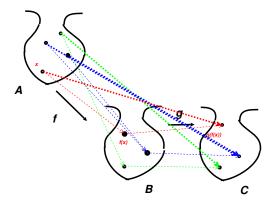
$$= \vec{0} \text{ nach (a)}$$

Also $Kern_f := \{ v \in V \mid f(v) = \vec{0} \} = \{ \vec{0} \}.$

Verkettung von Abbildungen

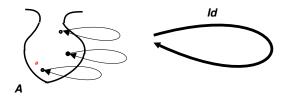
A,B,C seien die Mengen, $f:A\to B,g:B\to C$ seien Abbildungen. Die Verkettung (Komposition, Superposition, Hintereinanderausführung) von Abildungen g und f ist die Abbildung $g\circ f:A\to C,g\circ f(x):=g(f(x)).$

Bsp: $A = B = C = \mathbb{R}$, $f(x) := x^3$, $g(x) := \cos(x)$. Dann ist die Verkettung $g \circ f(x) = \cos(x^3)$.



Inverse Abbildung

Bezeichnung: Für jede Menge A definieren wir $Id_A : A \rightarrow A$, $Id(a) = a \ (\forall a \in A)$.



Wicht. Bsp: $\forall f: A \rightarrow B$ gilt: $f \circ Id_A = f$ (weil $\forall a \in A \ f \circ Id_A(a) = f(Id_A(a)) = f(a)$) $Id_B \circ f = f$ (weil $\forall a \in A \ Id_B \circ f(a) = Id_B(f(a)) = f(a)$)

Def. Sei $f:A\to B$ eine Abbildung. Eine Abbildung $g:B\to A$ heißt eine links- (bzw. rechts-)inverse Abbildung zu f, falls $g\circ f=Id_A$ (bzw. $f\circ g=Id_B$.)

Lemma 12 $f: A \rightarrow B$ sei eine Abbildung und $A \neq \emptyset$. Dann gilt:

- 1. f ist injektiv \iff f hat eine Linksinverse.
- 2. f ist surjektiv \iff f hat eine Rechtsinverse.

Beweis:

$$(1)\Rightarrow : f$$
 sei als injektiv vorausgesetzt. Sei $a\in$ —A. Die gesuchte linksinverse Abbildung $g:B\to$ A wird nun definiert durch $g(y):=x$, falls y in der Bildmenge von f liegt, und $f(x)=y$ ist (da Es f injektiv ist, ergibt sich x eindeutig aus y) und $g(y):=a$, falls y nicht in der Bildmenge von f liegt.

gilt:
$$g \circ f(x) \stackrel{\text{Def.}}{=} g(f(x)) \stackrel{y:=f(x)}{=} g(y) \stackrel{g(y)=x}{=} x = Id_A(x)$$
.

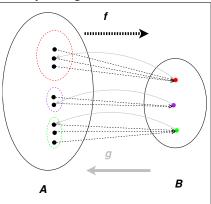
Bemerkung Die Linksinverse ist nicht immer eindeutig – das Element *a* können wir beliebig auswählen.

Beweis $(1) \Leftarrow$:

Es gelte $g \circ f = \operatorname{Id}_A$. Nun seien $x, y \in A$ mit f(x) = f(y) gegeben. Wir müssen x = y zeigen. Dazu wird g auf die Gleichung f(x) = f(y) angewendet, was g(f(x)) = g(f(y)) ergibt. Mit der Eigenschaft der Linksinversen haben wir $\operatorname{Id}_A(x) = \operatorname{Id}_A(y)$, also x = y.

Beweis (2): f ist surjektiv \iff f hat eine Rechtsinverse.

 \implies : $f: A \to B$ werde als surjektiv vorausgesetzt. Für jedes Element $y \in B$ gibt es also mindestens ein $x \in A$ mit f(x) = y.

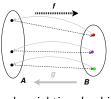


 $g: B \to A$ sei eine Abbildung, die jedem $y \in B$ ein Urbild zuweist. Dann gilt für jedes $y \in B$: $f \circ g(y) = f(g(y)) = f(x) = y = \mathrm{Id}_B(y)$.

 \Leftarrow : Es gelte $f \circ g = \operatorname{Id}_B$. Nun sei $y \in B$ gegeben. Wir müssen zeigen, dass $y \in Bild_f$ ist, also ein $x \in A$ mit f(x) = y angeben. Die Festlegung x := g(y) leistet das Verlangte, denn $f(x) = f(g(y)) = f \circ g(y) = \operatorname{Id}_B(y) = y$.

Lemma 13 Sei $f: A \rightarrow B$. Dann gilt:

f ist Bijektion $\iff \exists g: B \to A$ s.d. $g \circ f = Id_A$ und $f \circ g = Id_B$. Ferner gilt: Solches g ist eindeutig



Beweis: ". Nach Lemma 12 ist f injektiv und surjektiv, also bijektiv.

"
$$\Longrightarrow$$
": Zuerst **Existenz**. f sei surjektiv und injektiv. Nach Lemma 12 $\exists g_1$ und g_2 mit $g_1 \circ f = Id_A$, $f \circ g_2 = Id_B$. Z.z.: $g_1 = g_2$.

Für beliebiges $b \in B$ gilt:

$$g_1(b) = g_1(Id_B(b)) = g_1(f(g_2(b))) = g_1(f(g_2(b))) = Id_A(g_2(b)) = g_2(b).$$
(*)

Also $\forall b \in B$ gilt $g_1(b) = g_2(b)$, also $g_1 = g_2$.

Dann hat $g := g_1 = g_2$ die Eigenschaft $g \circ f = Id_A$ und $f \circ g = Id_B$.

Eindeutigkeit: Angenomen, zwei Abbildungen g_1 und g_2 haben die gewünschte Eigenschaft: $g_i \circ f = Id_A$, $f \circ g_i = Id_B$ (i = 1, 2). Dann ist g_1 eine Linksinverse (also $g_1 \circ f = Id_A$) und g_2 eine Rechtsinverse $(f \circ g_2 = Id_B)$, weil beide sowohl Links- als auch Rechtsinverse sind. Wie wir in (*) gezeigt haben, ist dann $g_1 = g_2$.

Bezeichnung. Ein solches g werden wir mit f^{-1} bezeichnen und die Inverse nennen.

Definition eines Isomorphismus

Seien $(V, +, \cdot)$ und $(U, +, \cdot)$ Vektorräume. Eine bijektive lineare Abbildung $f: V \to U$ heißt ein Isomorphismus. Wenn ein Isomorphismus $f: V \to U$ existiert, dann heißen die Räume V und U isomorph.

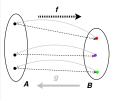
Wiederholung – Lemma 13 Sei $f: A \rightarrow B$. Dann gilt:

gilt:

$$f \text{ ist Bijektion} \iff \exists g : B \to A \\ s.d. \ g \circ f = Id_A \ und \ f \circ g = Id_B.$$

Ferner gilt: Solches $g \text{ ist eindeutig}$

Ferner gilt: Solches g ist eindeutig



Sei $f:V\to U$ ein Isomorphismus. Dann ist f bijektiv, also existiert f^{-1} . Ist sie auch ein Isomoprhimus? – Ja, siehe Lemma 14

Die Inverse Abbildung zu einem Isomorphismus ist ebenfalls ein Isomorphismus

Lemma 14. Sei $f: V \to U$ ein Isomorphismus. Dann ist $f^{-1}: U \to V$ auch ein Isomorphismus.

Bemerkung. Die Existenz von f^{-1} folgt aus Lemma 13, weil ein Isomorphismus nach Definition bijektiv ist.

Beweis. Z.z.: f^{-1} ist (a) linear, (b) bijektiv.

(a) Additivität:

$$\begin{array}{lll} f^{-1}(u+v) & = & f^{-1}\left(f\circ f^{-1}(u)+f\circ f^{-1}(v)\right) \text{ weil } f\circ f^{-1} = Id_{U} \\ & = & f^{-1}\left(f\left(f^{-1}(u)+f^{-1}(v)\right)\right) \text{ weil } f \text{ linear ist} \\ & = & f^{-1}\circ f\left(f^{-1}(u)+f^{-1}(v)\right) \text{ Definition von ,,o``} \\ & = & f^{-1}(u)+f^{-1}(v) & \text{weil } f^{-1}\circ f = Id_{V} \end{array}$$

Abg. bzgl. Multiplikation zeigt man analog.

(b) Bijektivität. Da $f \circ f^{-1} = Id_U$, hat f^{-1} eine Linksinverse. Da $f^{-1} \circ f = Id_V$, hat f^{-1} auch eine Rechtsinverse. Dann ist f^{-1} eine Bijektion nach Lemma 13.