Plan

- Wir werden zuerst uns weiter mir Anwendungen von Jordannormalform beschäftigen
 - ▶ Wir besprechen auch den Fall wenn $\mathbb{K} = \mathbb{R}$ ist.
 - Die Hausaufgaben und Anwesenheitsübungen werden schwerpunkmässig auf Jordannormalform und Anwendungen gestellt.

Kurze Wiederholung

- ▶ Satz 8 (Jordansche Normalform) Sei $\mathbb K$ ein Körper, sei V ein endlichdimensionaler $\mathbb K$ -Vektorraum und sei $\phi:V\to V$ ein Endomorphismus, dessen Minimalpolynom in Linearfaktoren zerfällt. Dann existiert eine Basis von V, so dass die Matrix von ϕ eine Jordan-Matrix ist. Diese Jordansche Normalform ist bis auf Reihenfolge der Jordanblöcke eindeutig.
- lackbreak Die Matrix der Form $\left(egin{array}{c|c} J_{\lambda_1}^{r_1} & & & \\ & \ddots & & \\ & & & J_{\lambda_m}^{k_m} \end{array}
 ight)$, wobei $J_{\lambda_j}^{k_j}$ Jordan-Blöcke sind, heißt Jordan-Matrix.

Reelle Jordan-Form

In den meisten bis jetzt bewiesenen Aussagen über Jordan-Formen haben wir stets vorausgesetzt, dass das charakteristische Polynom in Linearfaktoren zerfällt.

Diese Bedingung ist für $\mathbb{K}=\mathbb{C}$ immer erfüllt. Im Fall $\mathbb{K}=\mathbb{R}$ gibt es Matrizen deren charakteristische Polynome nicht in Linearfaktoren zerfallen – Beispiele haben wir bereits in Vorl. 1 gesehen – etwa $\binom{1}{-1}.$

Kann man dies überwinden? Antwort ist "Ja", und das ist unseres nächstes Ziel.

Komplexifizieren von \mathbb{R} -Vektorräumen und deren Endomorphismen

Sei V ein Vektorraum über \mathbb{R} . Wir betrachten

$$V_{\mathbb{C}} := \{ \quad \underbrace{u + iv} \quad | \ u, v \in V \}.$$

Formale Summe

(Mengenteoretisch ist $V_{\mathbb{C}} = V \times V$. Wir schreiben nur die Elemente von $V \times V$, also Paare $(u, v) \in V \times V$, als u + iv.)

Auf $V_{\mathbb{C}}$ definieren wir Addition und Muptiplikation MIT ELEMENTEN VON \mathbb{C} :

- u + iv + u' + iv' = (u + u') + i(v + v').
- Für $\alpha + i\beta \in \mathbb{C}$ definieren wir $(\alpha + i\beta)(u + iv) = (\alpha u \beta v) + i(\alpha v + \beta u)$.

$V_{\mathbb{C}}$ ist ein \mathbb{C} -Vektorraum.

Lemma 7. Sei V ein Vektorraum über \mathbb{R} . Dann gilt: $V_{\mathbb{C}}$ ist ein Vektorraum über \mathbb{C} .

Die Operationen "Addition" und "Multiplikation mit Elementen von $\mathbb{K}=\mathbb{C}$ " sind wohldefiniert. Um das Lemma zu beweisen, müssen wir die Axiome I-VIII as der Definition eines Vektorraums überprüfen.

```
I Für alle u, v, w \in V_{\mathbb{C}} gilt (u+v)+w=u+(v+w)
II Für alle u, v \in V_{\mathbb{C}} gilt u+v=v+u
```

III Es existiert ein
$$\vec{0} \in V_{\mathbb{C}}$$
, so dass für alle $v \in V_{\mathbb{C}}$ gilt $\vec{0} + v = v$

IV Für jedes
$$v \in V_{\mathbb{C}}$$
 existiert ein $-v \in V_{\mathbb{C}}$, so dass gilt $-v+v=\vec{0}$

V Für alle
$$\lambda, \mu \in \mathbb{C}$$
 und $v \in V_{\mathbb{C}}$ gilt $(\lambda \mu)v = \lambda(\mu v)$

VI Für alle
$$\lambda, \mu \in \mathbb{C}$$
 und $v \in V_{\mathbb{C}}$ gilt $(\lambda + \mu)v = \lambda v + \mu v$

VII Für alle
$$\lambda \in \mathbb{C}$$
 und $u, v \in V_{\mathbb{C}}$ gilt $\lambda(u+v) = \lambda u + \lambda v$

VIII Für alle
$$v \in V_{\mathbb{C}}$$
 gilt $(1 + i \cdot 0) \cdot v = v$

$$x + iy + x' + iy' = (x + x') + i(y + y').$$

$$Für \alpha + i\beta \in \mathbb{C} \text{ wir definieren } (\alpha + i\beta)(x + iy) = (\alpha x - \beta y) + i(\alpha x + \beta y).$$

- Für alle $u, v, w \in V_{\mathbb{C}}$ gilt (u + v) + w = u + (v + w)
- II Für alle $u, v \in V_{\mathbb{C}}$ gilt u + v = v + u
- Element in $V_{\mathbb{C}}$ ist das Element $\vec{0} + i \cdot \vec{0}$. III Es existiert ein $\vec{0} \in V_{\mathbb{C}}$, so dass für alle $v \in V_{\mathbb{C}}$ Das Element $-x + i \cdot (-y)$ (Umgangs-
- gilt $\vec{0} + v = v$ sprachlich: -x - iy) ist das additive In-IV Für jedes $v \in V_{\mathbb{C}}$ existiert ein $-v \in V_{\mathbb{C}}$, so dass
- gilt $-v + v = \vec{0}$ V Für alle $\lambda, \mu \in \mathbb{C}$ und $v \in V_{\mathbb{C}}$ gilt $(\lambda \mu)v = \lambda(\mu v)$
- VI Für alle $\lambda, \mu \in \mathbb{C}$ und $v \in V_{\mathbb{C}}$ gilt $(\lambda + \mu)v = \lambda v + \mu v$
- VII Für alle $\lambda \in \mathbb{C}$ und $u, v \in V_{\mathbb{C}}$ gilt $\lambda(u+v) = \lambda u + \lambda v$
- VIII Für alle $v \in V_{\mathbb{C}}$ gilt $(1 + i \cdot 0) \cdot v = v$
- verse zu x + iy. V,VI,VII kann man nach der Definition überprüfen, ähnlich wie wir es in der Einführung der komplexen Zahlen in LA I gemacht haben, wo wir ähnliche Eigenschaften für das Addieren/Multiplizieren von komplexen

I, II, VIII sind offensichtlich.

Zahlen bewiesen haben.

Die Menge
$$V_{\mathbb{C}}$$
 ist die Menge $\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + i \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \mid x_k, y_k \in \mathbb{R} \right\}$.

Die Operationen "." und "+" sind wie oben definiert:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + i \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} + i \begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = \begin{pmatrix} x_1 + x_1' \\ x_2 + x_2' \\ x_3 + x'3 \end{pmatrix} + i \begin{pmatrix} y_1 + y_1' \\ y_2 + y_2' \\ y_3 + y_3' \end{pmatrix}$$

$$(\alpha + i\beta) \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + i \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1\alpha - y_1\beta \\ x_2\alpha - y_2\beta \\ x_3\alpha - y_3\beta \end{pmatrix} + i \begin{pmatrix} x_1\beta + y_1\alpha \\ x_2\beta + y_2\alpha \\ x_3\beta + y_3\alpha \end{pmatrix}.$$

Ich behaupte, dass $V_{\mathbb C}$ zu ${\mathbb C}^3$ isomorph ist: In der Tat, man kann den Isomorphismus explizit angeben:

$$f\left(\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}+i\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix}\right)=\begin{pmatrix}x_1+iy_1\\x_2+iy_2\\x_3+iy_3\end{pmatrix}.$$

Man überlege, dass die Abbildung f wohldefiniert linear und bijektiv ist. z.B.

$$(\alpha + i\beta)f \left(\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + i \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \right) \right) = \begin{pmatrix} x_1\alpha - y_1\beta \\ x_2\alpha - y_2\beta \\ x_3\alpha - y_3\beta \end{pmatrix} + i \begin{pmatrix} x_1\beta + y_1\alpha \\ x_2\beta + y_2\alpha \\ x_3\beta + y_3\alpha \end{pmatrix} = f \begin{pmatrix} (\alpha + i\beta)(x_1 + iy_1) \\ (\alpha + i\beta)(x_2 + iy_2) \\ (\alpha + i\beta)(x_3 + iy_3) \end{pmatrix}.$$

Basis von $V_{\mathbb{C}}$

Was ist die Dimension von $V_{\mathbb{C}}$? Sei $(b_1,...,b_n)$ eine Basis von V. Kann man mit Hilfe von $(b_1,...,b_n)$ eine Basis konstrurieren? Ja! $(b_1+i\cdot\vec{0},b_2+i\cdot\vec{0},...,b_n+i\cdot\vec{0})$ ist eine Basis in $V_{\mathbb{C}}$!

Bsp. Wir haben gesehen, dass für $V=\mathbb{R}^3$ gilt $V_{\mathbb{C}}=\mathbb{C}^3$. Für die Standard-Basis $\begin{pmatrix} 1\\0\\0\end{pmatrix}, \begin{pmatrix} 0\\1\\0\end{pmatrix}, \begin{pmatrix} 0\\1\\0\end{pmatrix} \end{pmatrix}$ ist die "komplizifizierte" Basis $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1+i\cdot0\\0+i\cdot0\\0+i\cdot0\\0+i\cdot0 \end{pmatrix}, \begin{pmatrix} 0+i\cdot0\\1+i\cdot0\\0+i\cdot0\\0+i\cdot0 \end{pmatrix}, \begin{pmatrix} 0+i\cdot0\\0+i\cdot0\\1+i\cdot0\\0+i\cdot0 \end{pmatrix} \end{pmatrix}$.

Warum ist $(b_1 + i \cdot \vec{0}, b_2 + i \cdot \vec{0}, ..., b_n + i \cdot \vec{0})$ eine Basis?

- Weil sie linear unabhändigt ist: Ist $\vec{0}+i\cdot\vec{0}=(\alpha_1+i\beta_1)(b_1+i\cdot\vec{0})+...+(\alpha_n+i\beta_n)(b_n+i\cdot\vec{0})=\\ (\alpha_1b_1+...+\alpha_nb_n)+i(\beta_1b_1+...+\beta_nb_n), \text{ so ist}\\ \alpha_1b_1+...+\alpha_nb_n=\vec{0} \text{ (und deswegen }\alpha_i=0) \text{ und}\\ (\beta_1b_1+...+\beta_nb_n)=\vec{0} \text{ (und deswegen }\beta_i=0).$
- Weil sie erzeugend ist: Wir bekommen ein beliebiges Element $\alpha_1 h_1 + \dots + \alpha_l h_l + \dots + \beta_l h_l$ als die folgende

$$\underbrace{\alpha_1b_1 + ... + \alpha_nb_n}_{u} + i \cdot \underbrace{(\beta_1b_1 + ... + \beta_nb_n)}_{v}$$
 als die folgende Linearkombination (mit komplexen Koeffizienten):

 $\alpha_1 b_1 + \cdots + \alpha_n b_n + i \cdot (\beta_1 b_1 + \cdots + \beta_n b_n) =$

$$\underbrace{\alpha_1 b_1 + \dots + \alpha_n b_n}_{u} + i \cdot \underbrace{(\beta_1 b_1 + \dots + \beta_n b_n)}_{v} = \underbrace{(\alpha_1 + i\beta_1)b_1 + \dots + (\alpha_n + i\beta_n)b_n}_{v}.$$

Wichtige Erkenntnis: Dimensionen von V und $V_{\mathbb{C}}$ sind gleich.

Komplexifizieren von linearen Abbildungen

Sei $\phi:V\to V$ ein Endomorphismus eines \mathbb{R} - Vektorraums V (der Dimension n). Kann man damit einen Endomorphismus $\phi_{\mathbb{C}}:V_{\mathbb{C}}\to V_{\mathbb{C}}$ ("kanonisch") konstruieren?

Ja! Wir definieren $\phi_{\mathbb{C}}(u+iv)=\phi(u)+i\phi(v)$. Wohldefinierheit ist offensichtlich. Linearität ist einfach zu zeigen:

$$\phi_{\mathbb{C}}(u + iv + u' + iv') = \phi_{\mathbb{C}}(u + u' + i(v + v')) = \phi(u + u') + i\phi(v + v')$$
$$= \phi(u) + \phi(u') + i(\phi(u) + i\phi(u')) = \phi_{\mathbb{C}}(u + iv) + \phi_{\mathbb{C}}(u' + iv').$$

$$\phi_{\mathbb{C}}((\alpha+i\beta)(u+iv)) = \phi_{\mathbb{C}}((\alpha v - \beta u) + i(\alpha u + \beta v)) = \alpha \phi(v) - \beta \phi(u) + i(\alpha u + \beta v)$$
$$= (\alpha + i\beta)(\phi(u) + i\phi(v)) = (\alpha + i\beta)\phi_{\mathbb{C}}(u+iv).$$

Matrix der komplifizierten linearen Abbildung

Wähle eine Basis $(b_1,...,b_n)$ in V. Betrachte die entsprechende Basis $(b_1+i\cdot\vec{0},b_2+i\cdot\vec{0},...,b_n+i\cdot\vec{0})$ in $V_{\mathbb{C}}$.

Frage. Was ist die Matrix von $\phi_{\mathbb{C}}$ bzgl. dieser Basis?

Antwort. Dieselbe wie die Matrix von ϕ in der Basis $(b_1,...,b_n)$:

Begründung: Um die Matrix zu definieren, brauchen wir nur die Koordinaten der Bilder der Basisvektoren, und diese sind in den Basen $(b_1,...,b_n)$ und $(b_1+i\cdot\vec{0},b_2+i\cdot\vec{0},...,b_n+i\cdot\vec{0})$ gleich (wenn wir die Zahlen $\alpha+i\cdot 0\in\mathbb{C}$ und $\alpha\in\mathbb{R}$ identifizieren).

Anwendung aus LA I: ("Beste" Form einer reellen $n \times n$ Matrix A, die über komplexen Zahlen diagonalisierbar ist).

Folgerung D (aus LA) Sei $\phi:V\to V$ ein Endomorphismus eines \mathbb{R} -Vektorraums V. Angenommen $\phi_{\mathbb{C}}$ ist diagonalisierbar. Dann gibt es eine Basis in V, sodass die Matrix von ϕ in dieser Basis die

Block-diagonale Form
$$\begin{pmatrix} A_1 \\ & \ddots \\ & A_m \end{pmatrix} \text{ hat, wobei jedes } A_j \text{ eine}$$

$$(1 \times 1) - \text{Matrix } (\lambda_j), \text{ oder eine } (2 \times 2) - \text{Matrix der Form } \begin{pmatrix} \alpha_j & -\beta_j \\ \beta_j & \alpha_j \end{pmatrix} \text{ ist, wobei } \beta \neq 0.$$

Bemerkung. Die Eigenwerte von dieser Matrix sind λ_j und $\mu_j = \alpha_j + i\beta_j, \ \bar{\mu}_j = \alpha_j - i\beta_j.$

Beweisstrategie für Folgerung D LA I (wird auch im Beweis der Verallgemeinerung für Jordan-Blöcke benutzt.

Wir finden eine Basis $(b_1+ia_1,...,b_n+ia_n)$ in $V_{\mathbb{C}}$, sodass die Matrix von $\phi_{\mathbb{C}}$ diagonal ist. Dann konstruieren wir mit Hilfe der Basisvektoren b_i+ia_i die REELLEN Basisvektoren und bekommen die Aussage.

Ich bitte Sie den Beweis von Folgerung D LA I noch einmal anschauen. Drei Schritte des Beweises:

Schritt 1: man zeigt, dass wenn μ ein EW ist, dann ist auch $\bar{\mu}$ EW. Ferner zeigt man, dass wenn V=v+iu ein EV zu μ ist, dann ist $\bar{V}=v-iu$ ein EV zu $\bar{\mu}$. Diese Aussage werden wir wieder benutzen; ich werde den Beweis wiederholen und verallgemeinern.

Schritt 2: Man wählt in \mathbb{C}^n eine Basis aus Eigenvektoren der Form

$$\underbrace{\left(\underbrace{b_1+i\vec{0},...,b_k+i\vec{0}}_{\text{zu reellen EW }\lambda_1,...,\lambda_k},\underbrace{b_{k+1}+ia_{k+1},b_{k+1}-ia_{k+1},...,b_{\frac{n-k}{2}}-ia_{\frac{n-k}{2}}}_{\text{zu komplexen EW }\mu_{k+1},\bar{\mu}_{k+1},...,\mu_{\frac{n-k}{2}},\bar{\mu}_{\frac{n-k}{2}}}\right)}$$

Schritt 3: Man zeigt, dass $(b_1,...,b_k,b_{k+1},a_{k+1},b_{k+2},a_{k+2},...,b_{\frac{n-k}{2}},a_{\frac{n-k}{2}})$ eine Basis in \mathbb{R}^n bilden (die Anzahl ist richtig; man muss nur Linearunabhängigkeit prüfen) und dass die Matrix in der Basis wie angekündigtt ist.

Ähnliche Methode wird auch im allgemeinen Fall angewendet.

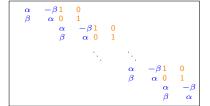
Reelle Jordan-Matrix

Satz 8' (Jordansche Normalform für reellen Endomorphismem)

 $A \in Mat(\mathbb{R}, n \times n)$. Dann gibt es eine $B \in GL(\mathbb{R}, n \times n)$ sodass $A' = B^{-1}AB$ die reelle Jordannormalform hat: dass bedeuted sie ist

blockdiagonal,
$$A' = \begin{pmatrix} A_1 & & & \\ & A_2 & & & \\ & & \ddots & & \\ & & & A_k \end{pmatrix}$$

und jeder Block A_i hat das Aussehen



Sie haben bestimmt bereits die "Regel" verstanden: statt λ

steht
$$\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$$
, statt 1

► Eigenwerte von

$$\begin{array}{ccc} \alpha & -\beta \\ \beta & \alpha \end{array}$$

sind komplexkonjugierte Zahlen $\alpha + i\beta$ und $\alpha - i\beta$.

Beweis vom Satz 8'

Endomorphismus zu A (früher f_A genannt) bezeichnen wir mit f. Zuerst zerlegen wir V in Direktprodukt $V_1 \oplus V_2 \oplus \cdots \oplus V_k$ sodass jeder V_m f-invariant ist, d.h., $Bild_f(V_m) \subseteq V_m$.

Die Vektorräume $V_1,...,V_p$ sind verallgemeinerte Vektorräume von reellen EW $\lambda_1,...,\lambda_p$.

Die weitere Vektorräume V_{p+1} , ... sind wie folgt gegeben:

 $V_{p+1}=Kern((A-\mu_{p+1}Id)^{\gamma}(A-\bar{\mu}_{p+1}Id)^{\gamma})$ u.s.w. (weiter schreibe ich μ für μ_{p+1}).

Dabei ist $\mu=\alpha+i\beta$ ein komplexe (sodass $\beta\neq 0$) EW von A, und $\gamma\in\mathbb{N}$ ist genügend groß.

▶ Die Matrix $(A - \mu Id)(A - \bar{\mu}Id)$ ist eine reelle Matrix, denn $(A - (\alpha - \beta i)Id)(A - (\alpha + \beta i)Id)) = (A - \alpha Id)^2 - \beta^2 Id.$

- $ightharpoonup V_{p+1}$ ist dann die Lösungsmenge der reellen Gleichung $(A - \mu Id)^{\gamma} (A - \bar{\mu} Id)^{\gamma} x = \vec{0}$. Die Dimension der Lösung ist dann $n - Rang((A - \mu Id)^{\gamma}(A - \bar{\mu} Id)^{\gamma}).$
- Man kann die Gleichung $(A \mu Id)^{\gamma} (A \bar{\mu} Id)^{\gamma} x = \vec{0}$ auch in $V_{\mathbb{C}}$ aufstellen.
- Dimension der Lösungsmenge davon ist wieder $n - Rang((A - \mu Id)(A - \bar{\mu} Id))$, und Rang hängt nicht davon ab, ob wir die Matrix als eine reelle Matrix betrachten, oder als
- eine komplexe Matrix sodass die Komponenten reell sind. Aus der Theorie von Jordannormalformen wissen wie aber. dass (über C) die Dimension der Lösungsmenge der Gleichung $(A - \mu Id)^{\gamma} (A - \bar{\mu} Id)^{\gamma} = \vec{0}$ ist die Summe der Dimensionen von
- $Kern((A \mu Id)^{\gamma})$ und $Kern((A \bar{\mu}Id)^{\gamma})$. Wir wissen auch, dass in $V_{\mathbb{C}}$, die Lösungmenge von $(A - \mu Id)^{\gamma} (A - \bar{\mu} Id)^{\gamma} x = \vec{0}$ die direkte Summe von veralg. Eigenraumen zu μ und zu $\bar{\mu}$ ist. V_{p+1} ist f-invariant: sei $v \in V_{p+1}$. Dann gilt: $(A - \mu Id)^{\gamma}(A - \bar{\mu}Id)^{\gamma}Av = A(A - \mu Id)^{\gamma}(A - \bar{\mu}Id)^{\gamma}v = A\vec{0} = \vec{0}.$

und wir sehen dass Av wieder in V_{p+1} liegt.

Wir zeigen: $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$

Dazu betrachten wir die Summe

 $W = V_1 + V_2 + \cdots + V_p + V_{p+1} + \cdots + V_k$. Die Summe ist direkt, weil $V_1,...,V_p$ Eigenräume (zu verschiedenen EW $\lambda_1,...,\lambda_p$) sind, und V_{n+1} und weitere Summanten sind (wenn wir sie komplexifiziert betrachten) Direktsummen $V_{\mu_{p+1}} \oplus V_{\bar{\mu}_{p+1}}$.Man bemerke, dass wenn die Summe von komplexifizierten Räumen direkt ist, dann auch die ursprüngliche Summe. In der Tat, wenn die Eindeutigkeitsbedingung in der Definition von Direktsumme über \mathbb{C} erfüllt ist. dann ist sie auch über \mathbb{R} erfüllt.

Die Dimension von W ist n = dim(V), weil die Summe von Dimensionen von veralg. Räumen gleich Dimension von gesamten Raum ist. Damit haben wir gezeigt, dass $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$. Deswegen existiert eine Basis sodass in der Basis die Matrix von f

blockdiagonal ist,

$$egin{pmatrix} A_1 & & & & & & \\ & A_2 & & & & & \\ & & & \ddots & & & \\ & & & & A_k \end{pmatrix}$$

Block V_{p+1} u.s.w.

Dabei gilt: die Blöcke $A_1,...,A_p$ haben die Eigenschaft $(A_m - \lambda_m Id)^{\gamma_m} = \mathbf{0}$ und die Blöcke $A_{p+1},...,A_k$ haben die Eigenschaft $(A_m - \mu_m Id)^{\gamma_m} (A_m - \bar{\mu}_m Id)^{\gamma_m} = \mathbf{0}$.

Wir müssen also in jedem V_m eine Basis finden, sodass in der Basis der Block wie in Satz 8' ist. Für die ersten Räumen $V_1,...,V_p$ haben wir es bereits getan, im Bewies von Satz 8 (eigentlich in Zerlegungssatz 7). Auf der nächsten Folie beschäftigen wir uns mit

Wir brauchen noch die folgende Aussage:

Hilfsaussage. Sei $A\in Mat(n,n,\mathbb{R})$ und $V:=v+iu\in\mathbb{C}^n$ (wobei $u,v\in\mathbb{R}^n$) ein Eigenvektor zum Eigenwert $\mu=\alpha+i\cdot\beta$. Dann ist auch v-iu (= \bar{V} ; "V konjugiert") ein Eigenvektor zum Eigenwert $\bar{\mu}(=\alpha-i\cdot\beta)$.

Ferner gilt, falls die (komplexe) Vektoren $V_1:=v_1+iu_1,...,V_k=v_k+iu_k$ mit $u_m,v_m\in\mathbb{R}^n$ die Eigenschaft: $(A-\mu Id)V_m=V_{m-1}$ haben (für m>1) und $(A-\mu Id)V_1=\vec{0}$, dann haben die komplexkonjugierte Vektoren $\bar{V}_1=v_1-iu_1,...,\bar{V}_k=v_k+iu_k$ die Eigenschaft: $(A-\bar{\mu}Id)\bar{V}_m=\bar{V}_{m-1}$ haben (für m>1) und $(A-\bar{\mu}Id)\bar{V}_1=\vec{0}$, .)

Bemerkung. Den ersten Teil der Aussage haben wir in LA I bewiesen und bereits heute teilweise benutzt.

Beweis. Wir konjugieren für m > 1 die Gleichung $(A - \mu Id)V_m = V_{m-1}$: Wir bekommen:

$$ar{V}_{m-1} = \overline{AV_m - \mu V_m} \overset{\mathrm{Rechnen regeln; \ siehe \ LA \ I}}{\Longrightarrow} \frac{ar{A} ar{V}_m - ar{\mu} ar{V}_m}{ar{A} ar{V}_m - ar{\mu} ar{V}_m} \overset{\mathrm{Weil \ } A \ \mathrm{reell \ ist}}{=} A ar{V}_m - ar{\mu} ar{V}_m = (A - ar{\mu} Id) ar{V}_m \ \mathrm{wie \ behauptet}.$$

Der Beweis dass die Eigenschaft $(A - \mu Id)V_1 = \vec{0}$, also die Eigenschaft dass V_1 ein EV zu μ ist, die Eigenschaft $(A - \bar{\mu}Id)\bar{V}_1 = \vec{0}$ impliziert, ist analog ,

Bemerkung. Die Bedingung $(A - \mu Id)V_m = V_{m-1}$ und

Matrix der Beschränkung von f Jordanblockform hat.

 $(A-\mu Id)V_1=\vec{0}$ ist die Bedingung, die wir benutzt haben um die Basis im verallgemeinerten Eigenraum zu konstruieren sodass die

Bemerkung. Ich betone noch einmal, dass die komplexe (=nichtreelle) EW in Paaren vorkommen: ist μ ein EW, so ist $\bar{\mu}$ auch. Das wissen wir aber seit LA L

Wir betrachten jetzt einen Endomorphismus f mit der Eigenschaft $(f - \mu Id)^{\gamma} \circ (f - \bar{\mu}Id)^{\gamma} = \mathbf{0}$, also den ursprünglichen Endomorphismus f beschränkt auf V_{p+1} u.s.w., und konstruieren eine Basis sodass in der Basis die Matrix (also, der Block A_{p+1} u.s.w.) die Form wie im Satz 8' hat Wir denkon ders $V = \mathbb{R}^n$ dann ist $V = \mathbb{C}^n$

hat. Wir denken dass $V = \mathbb{R}^n$, dann ist $V_{\mathbb{C}} = \mathbb{C}^n$. Wir betrachten den veralg. Eigenraum V_{μ} , und die Basis

$$\left(\underbrace{b_1 + ia_1, ..., b_{n/2} + ia_{n/2}}_{V_1}\right) \text{ sodass in der Basis die Beschränkung von } f$$

auf V_{μ} in Jordannormalform ist. Dass bedeutet, die Basisvektoren sind in "Gruppen" zerlegt,

$$\left(\underbrace{V_1^1,...,V_1^{k_1},...,\underbrace{V_\ell^1,...,V_\ell^{k_\ell}}_{\text{Gruppe }\ell}}\right),$$

und in jeder Gruppe gilt: $V_m^{k_m}$ ist Eigenvektor zu μ und für k>1 ist $(A-\mu Id)V_k=V_{k-1}$. Wir betrachten das "konjugierten" Tupel

$$\left(\underbrace{\bar{V}_1^1,...,\bar{V}_1^{k_1}}_{\text{Gruppe 1}},...,\underbrace{\bar{V}_\ell^1,...,\bar{V}_\ell^{k_\ell}}_{\text{Gruppe }\ell}\right),$$

Wir betrachten das "konjugierten" Tupel

$$\left(\underbrace{\bar{V}_1^1,...,\bar{V}_1^{k_1}}_{\text{Gruppe 1}},...,\underbrace{\bar{V}_\ell^1,...,\bar{V}_\ell^{k_\ell}}_{\text{Gruppe }\ell}\right),$$

Wir zeigen dass das Tupel eine Basis in $V_{ar{\mu}}$ bildet .

- Die Vektoren des Tupels liegen in $V_{\bar{\mu}}$, weil $(A \mu Id)^{\gamma}V = \vec{0}$ impliziert $(A \bar{\mu}Id)^{\gamma}\bar{V} = \vec{0}$.
- ▶ Um Linearunabhängigkeit zu bekommen muss man die "Unabhängigkeitsgleichung" $\sum_s \xi_s \bar{V}_s = \vec{0}$ konjugieren. Man bekommt sofort die "Unabhängigkeitsgleichung" für die Vektoren V_s .
- Um zu zeigen, dass die Anzahl von Vektoren gleich Dimension des Raumes ist machen wir Widerspruchsbeweis: wenn die Anzahl kleiner ist, gibt es noch einen von diesen Vektoren linear unabhängigen Vektor $V' \in V_{\bar{\mu}}$. Der Vektor \bar{V}' liegt dann in V_{μ} und ist von Vektoren in der Basis von V_{μ} auch linear unabhängig, was Widerspruch liefert.

Die Vektoren V_m^j seien gleich $b_m^j + ia_m^j$. Die Vektoren

$$(b_1^1, a_1^1, b_1^2, ..., a_\ell^{k_\ell})$$

Bilden eine Basis und die Matrix von f in dieser Basis ist wie in Satz 8' angekündigt. Dieser Teil vom Beweis lasse ich als eine Übung für Sie; sie muüssen die Bedingung benutzen, dass

$$(A - (\alpha + i\beta)Id)V_m = V_{m+1}$$
 oder = $\vec{0}$

um zu zeigen, dass man die V-Vektoren erzeugen kann. Weil die Anzahl von Vektoren gleich Dimension des Raumes ist, ist es dann eine Basis. Dann muss man überlegen, was Bild von Vektoren b_m und a_m ist und dann die Matrix konstruieren.