Kompaktheit

Def. Sei (X, d) ein metrischer Raum. Er heißt kompakt, falls jede Folge eine konvergente Teilfolge hat.

Bemerkung. In der Literatur heißt diese Bedingung oft Folgen-Kompaktheit. Die alternative (topologische) Definition von Kompaktheit, welche für metrischen Räumen äquivalent zur Definition oben ist (Satz 22), wird später eingeführt.

Bsp. Jeder metrische Raum (X, d) aus endlich vielen Punkten ist kompakt.

Bsp. Eine unendliche Menge mit der diskreten Metrik ist nicht kompakt.

Bsp. Die reelle Gerade \mathbb{R} ist nicht kompakt.

Allgemeiner: Jede unbeschränkte Menge ist nicht kompakt.

Beweis. Sei (X, d) unbeschränkt und x_0 sei ein fest gewählter Punkt. Wir konstruieren eine Folge y_k , die keine konvergente Teilfolge besitzt.

Nach Definition von "unbeschränkt" existieren für jedes $k \in \mathbb{N}$ Punkte x_k und x_k' sodass $d(x_k, x_k') > 2k$.Nach Dreiecksunglechung ist dann $d(x_0, x_k) > k$ oder $d(x_0, x_k') > k$.

Wir nehmen als y_k den Punkt x_k , falls $d(x_0, x_k) > k$, und sonst den Punkt x'_k .

Angenommen, die Folge von Punkten y_k hat eine konvergente Teilfolge mit Grenzwert y. Dann wäre $d(y_{k_\ell},y)<\varepsilon$ für alle genügend großen ℓ . Aber

$$\underbrace{d(x_0,y_{k_\ell})}_{>k_\ell} \leq d(x_0,y) + \underbrace{d(y,y_{k_\ell})}_{<\varepsilon},$$

was uns einen Widerspruch gibt.

(Abgeschlossenes) Intervall ist kompakt

Def. (X, d) heißt kompakt, falls jede Folge eine konvergente Teilfolge hat.

Beweis. O.B.d.A. beweisen wir die Aussage für [0,1] mit der Standard-Metrik. Sei x_k eine Folge. Wir betrachten die Zahl

$$x_0 := \sup\{x \in [0,1] \mid \underbrace{\forall \, N \in \mathbb{N} \, \exists n > N \, \operatorname{sodass} \quad x_n \geq x}_{\text{``rechts von } x \, \operatorname{liegen \, unendlich \, viel \, Folgenelementen''}}\}$$

In Worten: *x* liegt in der Menge über welche wir das Supremum nehmen, g.d.w. "rechts" von *x* unendlich viele Elementen der Folge landen.

Bemerkung. Da die Ungleichung $x_n \ge x$ nicht streng ist, liegt x = 0 immer in der Menge, über welche wir das Supremum nehmen; also ist $x_0 \in [0, 1]$).

Wir beweisen Existenz einer Teilfolge, welche gegen x_0 konvergiert. Dazu nehmen wir die Folge von Radien $r_1 = \frac{1}{2}, \dots, r_k = \frac{1}{2^k}, \dots$

Wir zeigen jetzt mittels Induktion, dass eine Folge $k_1 < k_2 < ... < k_\ell < ...$ von Elementen von $\mathbb N$ existiert, sodass $x_{k_\ell} \in (x_0 - r_\ell, x_0 + r_\ell)$.

Induktionsanfang ist $\ell=1$: Wir zeigen jetzt, durch die Widerspruchsbeweismethode, dass es ein $k_1\in\mathbb{N}$ gibt, sodass $x_{k_1}\in(x_0-r_1,x_0+r_1)$. Angenommen, es sei nicht der Fall. Da x_0 Supremum, also die kleinste obere Schranke ist, existiert ein $x'\in(x_0-r_1,x_0]$ sodass "rechts" von x' unendlich viel Elementen von x_k liegen. Wenn keines davon in (x_0-r_1,x_0+r_1) liegt, dann enthält die Menge, über welche wir das Supremum nehmen, noch alle Punkten des Intervalls (x_0-r_1,x_0+r_1) ; deswegen ist Supremum mindestens x_0+r_1 , was uns einen Widerspruch gibt.Also, $\exists k_1\in\mathbb{N}$ mit $x_{k_1}\in(x_0-r_1,x_0+r_1)$.

Induktionsschritt ist $\ell \mapsto \ell+1$: wir müssen Existenz von $k_{\ell+1}$ zeigen, sodass $k_{\ell+1} > k_\ell$ und sodass $x_{k_{\ell+1}} \in (x_0 - r_{\ell+1}, x_0 + r_{\ell+1})$. Angenommen, es ist nicht der Fall. Dann enthält die Menge $(x_0 - r_{\ell+1}, x_0 + r_{\ell+1})$ höchstens endlich viel (höchstens k_ℓ) Elemente der Folge. Dann ist das Supremum mindestens $x_0 + r_{\ell+1}$, was uns wieder einen Widerspruch gibt.

Damit haben wir die Existenz einer Teilfolge $x_{k_{\ell}}$, sodass $x_{k_{\ell}} \in (x_0 - r_{\ell}, x_0 + r_{\ell})$, gezeigt; sie konvergiert gegen x_0 .

Weitere Konstruktionen von kompakten Räumen: das Produkt kompakter Räume ist kompakt

Seien (X, d_X) und (Y, d_Y) kompakt. Dann ist der metrische Raum $X \times Y$ mit der Produktmetrik kompakt.

Beweis. Sei $\begin{pmatrix} x_k \\ y_k \end{pmatrix}$ eine Folge von Elementen von $X \times Y$. Weil X kompakt ist, existiert eine Teilfolge x_{k_ℓ} , die konvergiert:

$$x_{k_\ell} \overset{\ell \to \infty}{\to} x$$
. Wir betrachten die Folge: $\ell \mapsto \begin{pmatrix} x_{k_\ell} \\ y_{k_\ell} \end{pmatrix}$. Die zweite

Komponente davon, y_{k_ℓ} , hat eine konvergente Teilfolge, also existiert ein $y \in Y$ und $\ell_1,...,\ell_m,... \in \mathbb{N}$ sodass $y_{k_{\ell_m}} \overset{m \to \infty}{\longrightarrow} y.\mathsf{Dann}$

konvergiert die Teilfolge
$$m \mapsto \begin{pmatrix} x_{k_{\ell_m}} \\ y_{k_{\ell_m}} \end{pmatrix}$$
 gegen $\begin{pmatrix} x \\ y \end{pmatrix}$.

Da Konvergenz in der Produktmetrik und komponentweise Konvergenz dasselbe ist, ist $X \times Y$ kompakt.

Weitere Konstruktionen: Abgeschlossene Teilmenge von kompakten Räumen sind kompakt

Satz 20. Sei (X, d) ein kompakter metrischer Raum und $A \subseteq X$ ist eine nichtleere Teilmenge. Dann ist A mit der induzierten Metrik genau dann kompakt, wenn A abgeschlossen ist.

Beweis in Richtung \iff : A sei abgeschlossen. Sei a_k eine Folge von Elementen von A. Dann ist sie auch eine Folge von Elementen von X, deswegen existiert eine in X konvergente Teilfolge $a_{k_\ell} \stackrel{\ell \to \infty}{\to} x$. Da A abgeschlossen ist, ist $x \in A$. Also, konvergiert a_{k_ℓ} auch in der induzierten Metrik gegen das Element $x \in A$.

Beweis in Richtung \Longrightarrow : A sei kompakt (mit der induzierten Metrik) und $a_k \in A$ eine in X konvergierende Folge $a_k \stackrel{k \to \infty}{\to} x$. Dann hat sie eine in A konvergierende Teilfolge $a_{k_\ell} \stackrel{\ell \to \infty}{\to} a \in A$. Da der Grenzwert einer konvergierenden Folge eindeutig und gleich dem Grenzwert jeder Teilfolge ist (Hausaufgabe), folgt x = a. Daher ist A abgeschlossen.

Beschreibung von kompakten Teilmengen in \mathbb{R}^n

Folgerung (vermutlich in Analysis 2 gehört). Eine Teilmenge $A \subseteq \mathbb{R}^n$ (mit der induzierten Metrik) ist genau dann kompakt, wenn sie abgeschlossen und beschränkt ist.

Beweis. Kompakten Teilmengen sind immer beschränkt (siehe Beispiel direkt nach der Definition der Kompaktheit) und abgeschlossen (in \Longrightarrow von Satz 20 haben wir nicht benutzt, dass X kompakt ist).

Um die andere Richtung zu zeigen, überlegen wir uns, dass eine beliebige beschränkte Menge in einen großen Würfel (= Produkt von kompakten Intervallen) liegt. Dieser Würfel ist kompakt und wegen Satz 20 ist jede abgeschlossene Teilmenge des Würfels auch kompakt.