Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 3 of order 125
General information on the group
- The group is also known as E125, the Extraspecial 5-group of order 125 and exponent 5.
- The group has 2 minimal generators and exponent 5.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 6 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(t2 + 1) · (t6 + t2 + 1) |
| (t − 1)2 · (t4 − t3 + t2 − t + 1) · (t4 + t3 + t2 + t + 1) |
- The a-invariants are -∞,-4,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_7_8, a nilpotent element of degree 7
- b_8_9, an element of degree 8
- a_9_11, a nilpotent element of degree 9
- c_10_12, a Duflot regular element of degree 10
Ring relations
There are 6 "obvious" relations:
a_1_02, a_1_12, a_3_42, a_3_52, a_7_82, a_9_112
Apart from that, there are 44 minimal relations of maximal degree 17:
- a_1_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_1
- a_2_1·a_1_0 − a_2_0·a_1_1
- b_2_3·a_1_0 − b_2_2·a_1_1
- a_2_02
- a_2_0·a_2_1
- a_2_12
- − 2·a_2_1·b_2_2 − a_2_0·b_2_3 + a_1_1·a_3_4
- a_2_0·b_2_2 + a_1_0·a_3_4
- − a_2_1·b_2_3 + a_1_1·a_3_5
- a_2_1·b_2_2 + 2·a_2_0·b_2_3 + a_1_0·a_3_5
- a_2_0·a_3_4
- − b_2_3·a_3_4 + b_2_2·a_3_5 + 2·b_2_2·b_2_3·a_1_1 + 2·b_2_22·a_1_1
- − a_2_1·a_3_4 + a_2_0·a_3_5
- a_2_1·a_3_5
- a_1_1·a_7_8 + 2·b_2_2·b_2_3·a_1_1·a_3_5 − 2·b_2_22·a_1_1·a_3_5
+ 2·b_2_22·a_1_0·a_3_5
- a_1_0·a_7_8 + 2·b_2_22·a_1_1·a_3_5 − 2·b_2_22·a_1_0·a_3_5 + 2·b_2_22·a_1_0·a_3_4
- b_2_2·a_7_8 + 2·b_2_2·b_2_33·a_1_1 + 2·b_2_22·b_2_3·a_3_5 + b_2_22·b_2_32·a_1_1
− 2·b_2_23·a_3_5 + 2·b_2_23·a_3_4 + 2·b_2_23·b_2_3·a_1_1 − b_2_24·a_1_1
- a_2_0·a_7_8
- a_2_1·a_7_8
- b_2_3·a_7_8 + 2·b_2_2·b_2_32·a_3_5 + b_2_2·b_2_33·a_1_1 − 2·b_2_22·b_2_3·a_3_5
+ 2·b_2_22·b_2_32·a_1_1 + 2·b_2_23·a_3_5 − 2·b_2_23·b_2_3·a_1_1 + b_2_24·a_1_1
- b_8_9·a_1_1 + b_2_2·b_2_33·a_1_1 − 2·b_2_22·b_2_32·a_1_1 − b_2_24·a_1_1
- b_8_9·a_1_0 − b_2_2·b_2_33·a_1_1 + b_2_22·b_2_32·a_1_1 − 2·b_2_23·b_2_3·a_1_1
- a_3_5·a_7_8 − b_2_2·b_2_32·a_1_1·a_3_5 − 2·b_2_22·b_2_3·a_1_1·a_3_5
+ 2·b_2_23·a_1_1·a_3_5 − b_2_23·a_1_0·a_3_5
- a_3_4·a_7_8 − 2·b_2_2·b_2_32·a_1_1·a_3_5 − 2·b_2_22·b_2_3·a_1_1·a_3_5
− 2·b_2_23·a_1_1·a_3_5 + 2·b_2_23·a_1_0·a_3_5
- b_2_2·b_8_9 − b_2_2·b_2_34 + b_2_22·b_2_33 − 2·b_2_23·b_2_32
+ b_2_22·b_2_3·a_1_1·a_3_5 + b_2_23·a_1_1·a_3_5 + 2·b_2_23·a_1_0·a_3_4
- a_2_0·b_8_9 + b_2_2·b_2_32·a_1_1·a_3_5 − b_2_22·b_2_3·a_1_1·a_3_5
+ 2·b_2_23·a_1_1·a_3_5
- a_2_1·b_8_9 + b_2_2·b_2_32·a_1_1·a_3_5 − 2·b_2_22·b_2_3·a_1_1·a_3_5
− b_2_23·a_1_0·a_3_5
- b_2_3·b_8_9 + b_2_2·b_2_34 − 2·b_2_22·b_2_33 − b_2_24·b_2_3
+ b_2_2·b_2_32·a_1_1·a_3_5 + b_2_22·b_2_3·a_1_1·a_3_5 + 2·b_2_23·a_1_0·a_3_5
- a_1_1·a_9_11 − b_2_33·a_1_1·a_3_5 − 2·b_2_2·b_2_32·a_1_1·a_3_5
− 2·b_2_23·a_1_0·a_3_5
- a_1_0·a_9_11 − 2·b_2_22·b_2_3·a_1_1·a_3_5 + 2·b_2_23·a_1_0·a_3_4
- b_8_9·a_3_5 + b_2_2·b_2_33·a_3_5 − 2·b_2_22·b_2_32·a_3_5 − b_2_24·a_3_5
- b_8_9·a_3_4 − b_2_2·b_2_33·a_3_5 + b_2_22·b_2_32·a_3_5 − 2·b_2_23·b_2_3·a_3_5
− 2·b_2_23·b_2_32·a_1_1 + b_2_24·b_2_3·a_1_1 − 2·b_2_25·a_1_1
- b_2_2·a_9_11 − 2·b_2_22·b_2_32·a_3_5 + b_2_22·b_2_33·a_1_1
− 2·b_2_23·b_2_32·a_1_1 + 2·b_2_24·a_3_4 − b_2_24·b_2_3·a_1_1 − b_2_25·a_1_1
- a_2_0·a_9_11
- a_2_1·a_9_11
- b_2_3·a_9_11 − b_2_34·a_3_5 − 2·b_2_2·b_2_33·a_3_5 − 2·b_2_22·b_2_33·a_1_1
− b_2_23·b_2_32·a_1_1 − 2·b_2_24·a_3_5 − 2·b_2_24·b_2_3·a_1_1
- a_3_5·a_9_11 + 2·b_2_22·b_2_32·a_1_1·a_3_5 + b_2_23·b_2_3·a_1_1·a_3_5
+ 2·b_2_24·a_1_1·a_3_5
- a_3_4·a_9_11 − 2·b_2_23·b_2_3·a_1_1·a_3_5 + b_2_24·a_1_1·a_3_5 + b_2_24·a_1_0·a_3_5
- b_8_9·a_7_8 − 2·b_2_23·b_2_33·a_3_5 − b_2_24·b_2_32·a_3_5
+ 2·b_2_24·b_2_33·a_1_1 + b_2_25·b_2_3·a_3_5 + b_2_25·b_2_32·a_1_1 + b_2_26·a_3_5 − 2·b_2_26·b_2_3·a_1_1 − 2·b_2_27·a_1_1
- b_8_92 + 2·b_2_25·b_2_33 − b_2_27·b_2_3 − 2·b_2_24·b_2_32·a_1_1·a_3_5
− 2·b_2_25·b_2_3·a_1_1·a_3_5 − 2·b_2_26·a_1_1·a_3_5 + 2·b_2_26·a_1_0·a_3_5
- a_7_8·a_9_11 + b_2_24·b_2_32·a_1_1·a_3_5 − b_2_25·b_2_3·a_1_1·a_3_5
- b_8_9·a_9_11 + 2·b_2_24·b_2_33·a_3_5 + b_2_25·b_2_32·a_3_5 + b_2_26·b_2_3·a_3_5
− b_2_26·b_2_32·a_1_1 + b_2_27·a_3_5 + b_2_27·b_2_3·a_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 17.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_10_12, a Duflot regular element of degree 10
- − b_8_9 + b_2_34 − b_2_2·b_2_33 + 2·b_2_22·b_2_32 + b_2_24, an element of degree 8
- The Raw Filter Degree Type of that HSOP is [-1, 6, 16].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_7_8 → 0, an element of degree 7
- b_8_9 → 0, an element of degree 8
- a_9_11 → 0, an element of degree 9
- c_10_12 → − c_2_05, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → − a_1_0·a_1_1, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_4 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_7_8 → 2·c_2_23·a_1_0 − 2·c_2_1·c_2_22·a_1_1, an element of degree 7
- b_8_9 → − 2·c_2_23·a_1_0·a_1_1, an element of degree 8
- a_9_11 → 2·c_2_24·a_1_0 − 2·c_2_1·c_2_23·a_1_1, an element of degree 9
- c_10_12 → − 2·c_2_24·a_1_0·a_1_1 + c_2_1·c_2_24 − c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → a_1_0·a_1_1, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → 0, an element of degree 3
- a_3_5 → − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_7_8 → 0, an element of degree 7
- b_8_9 → 0, an element of degree 8
- a_9_11 → − c_2_24·a_1_0 + c_2_1·c_2_23·a_1_1, an element of degree 9
- c_10_12 → − 2·c_2_24·a_1_0·a_1_1 + c_2_1·c_2_24 − c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_0 → − a_1_0·a_1_1, an element of degree 2
- a_2_1 → a_1_0·a_1_1, an element of degree 2
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → 2·c_2_2·a_1_1 − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_5 → − 2·c_2_2·a_1_1 − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_7_8 → 2·c_2_23·a_1_1 + 2·c_2_23·a_1_0 − 2·c_2_1·c_2_22·a_1_1, an element of degree 7
- b_8_9 → c_2_23·a_1_0·a_1_1 + 2·c_2_24, an element of degree 8
- a_9_11 → 0, an element of degree 9
- c_10_12 → 2·c_2_24·a_1_0·a_1_1 + c_2_1·c_2_24 − c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 2·a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_0 → − 2·a_1_0·a_1_1, an element of degree 2
- a_2_1 → a_1_0·a_1_1, an element of degree 2
- b_2_2 → 2·c_2_2, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → − c_2_2·a_1_1 − 2·c_2_2·a_1_0 + 2·c_2_1·a_1_1, an element of degree 3
- a_3_5 → c_2_2·a_1_1 − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_7_8 → − 2·c_2_23·a_1_1 + 2·c_2_23·a_1_0 − 2·c_2_1·c_2_22·a_1_1, an element of degree 7
- b_8_9 → 2·c_2_23·a_1_0·a_1_1 + 2·c_2_24, an element of degree 8
- a_9_11 → − 2·c_2_24·a_1_0 + 2·c_2_1·c_2_23·a_1_1, an element of degree 9
- c_10_12 → 2·c_2_24·a_1_0·a_1_1 − 2·c_2_25 + c_2_1·c_2_24 − c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → a_1_1, an element of degree 1
- a_1_1 → 2·a_1_1, an element of degree 1
- a_2_0 → − a_1_0·a_1_1, an element of degree 2
- a_2_1 → 2·a_1_0·a_1_1, an element of degree 2
- b_2_2 → c_2_2, an element of degree 2
- b_2_3 → 2·c_2_2, an element of degree 2
- a_3_4 → − c_2_2·a_1_1 − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_3_5 → c_2_2·a_1_1 − 2·c_2_2·a_1_0 + 2·c_2_1·a_1_1, an element of degree 3
- a_7_8 → − c_2_23·a_1_1 + c_2_23·a_1_0 − c_2_1·c_2_22·a_1_1, an element of degree 7
- b_8_9 → c_2_23·a_1_0·a_1_1 + c_2_24, an element of degree 8
- a_9_11 → c_2_24·a_1_1 + c_2_24·a_1_0 − c_2_1·c_2_23·a_1_1, an element of degree 9
- c_10_12 → c_2_25 + c_2_1·c_2_24 − c_2_15, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → − a_1_1, an element of degree 1
- a_1_1 → a_1_1, an element of degree 1
- a_2_0 → a_1_0·a_1_1, an element of degree 2
- a_2_1 → a_1_0·a_1_1, an element of degree 2
- b_2_2 → − c_2_2, an element of degree 2
- b_2_3 → c_2_2, an element of degree 2
- a_3_4 → − 2·c_2_2·a_1_1 + c_2_2·a_1_0 − c_2_1·a_1_1, an element of degree 3
- a_3_5 → 2·c_2_2·a_1_1 − c_2_2·a_1_0 + c_2_1·a_1_1, an element of degree 3
- a_7_8 → − 2·c_2_23·a_1_1 − c_2_23·a_1_0 + c_2_1·c_2_22·a_1_1, an element of degree 7
- b_8_9 → − 2·c_2_23·a_1_0·a_1_1 − c_2_24, an element of degree 8
- a_9_11 → − c_2_24·a_1_0 + c_2_1·c_2_23·a_1_1, an element of degree 9
- c_10_12 → − 2·c_2_24·a_1_0·a_1_1 − c_2_25 + c_2_1·c_2_24 − c_2_15, an element of degree 10
|