Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1009 of order 128
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 6.
- Its center has rank 4.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 6.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 6 and depth 4.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t2 + 1 |
| (t + 1)2 · (t − 1)6 |
- The a-invariants are -∞,-∞,-∞,-∞,-6,-6,-6. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 3:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- c_1_3, a Duflot regular element of degree 1
- b_2_7, an element of degree 2
- b_2_8, an element of degree 2
- b_2_9, an element of degree 2
- c_2_10, a Duflot regular element of degree 2
- c_2_11, a Duflot regular element of degree 2
- c_2_12, a Duflot regular element of degree 2
- b_3_31, an element of degree 3
Ring relations
There are 18 minimal relations of maximal degree 6:
- a_1_02
- a_1_0·b_1_1
- a_1_0·b_1_2
- b_2_7·a_1_0
- b_2_8·a_1_0
- b_2_8·b_1_1 + b_2_7·b_1_2
- b_2_9·a_1_0
- b_2_72 + c_2_10·b_1_12
- b_2_82 + c_2_10·b_1_22
- b_2_7·b_2_8 + c_2_10·b_1_1·b_1_2
- b_2_9·b_1_1·b_1_2 + b_2_92 + c_2_12·b_1_12 + c_2_11·b_1_22
- b_1_2·b_3_31 + b_2_8·b_2_9
- a_1_0·b_3_31
- b_1_1·b_3_31 + b_2_7·b_2_9
- b_2_9·b_3_31 + b_2_7·b_2_9·b_1_2 + b_2_8·c_2_11·b_1_2 + b_2_7·c_2_12·b_1_1
- b_2_8·b_3_31 + b_2_9·c_2_10·b_1_2
- b_2_7·b_3_31 + b_2_9·c_2_10·b_1_1
- b_3_312 + b_2_92·c_2_10
Data used for Benson′s test
- Benson′s completion test succeeded in degree 6.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_3, a Duflot regular element of degree 1
- c_2_10, a Duflot regular element of degree 2
- c_2_11, a Duflot regular element of degree 2
- c_2_12, a Duflot regular element of degree 2
- b_1_22 + b_1_1·b_1_2 + b_1_12, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, -1, 1, 3, 5].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -6, -6].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- b_2_7 → 0, an element of degree 2
- b_2_8 → 0, an element of degree 2
- b_2_9 → 0, an element of degree 2
- c_2_10 → c_1_32, an element of degree 2
- c_2_11 → c_1_12, an element of degree 2
- c_2_12 → c_1_22, an element of degree 2
- b_3_31 → 0, an element of degree 3
Restriction map to a maximal el. ab. subgp. of rank 6
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_4, an element of degree 1
- b_1_2 → c_1_5, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- b_2_7 → c_1_3·c_1_4, an element of degree 2
- b_2_8 → c_1_3·c_1_5, an element of degree 2
- b_2_9 → c_1_2·c_1_4 + c_1_1·c_1_5, an element of degree 2
- c_2_10 → c_1_32, an element of degree 2
- c_2_11 → c_1_1·c_1_4 + c_1_12, an element of degree 2
- c_2_12 → c_1_2·c_1_5 + c_1_22, an element of degree 2
- b_3_31 → c_1_2·c_1_3·c_1_4 + c_1_1·c_1_3·c_1_5, an element of degree 3
|