Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1033 of order 128
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t3 + t + 1 |
| (t + 1) · (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-∞,-5,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 4:
- a_1_2, a nilpotent element of degree 1
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- c_2_7, a Duflot regular element of degree 2
- c_2_8, a Duflot regular element of degree 2
- b_3_15, an element of degree 3
- b_3_16, an element of degree 3
- c_4_28, a Duflot regular element of degree 4
Ring relations
There are 10 minimal relations of maximal degree 6:
- a_1_02
- b_1_1·b_1_3 + a_1_0·b_1_1 + a_1_22
- a_1_2·b_1_3 + a_1_2·a_1_0
- a_1_22·b_1_1
- a_1_2·b_3_15
- b_1_3·b_3_16 + a_1_0·b_3_16
- b_1_1·b_3_15 + a_1_2·b_3_16
- b_3_15·b_3_16 + c_2_7·a_1_2·b_1_13
- b_3_152 + b_1_33·b_3_15 + a_1_0·b_1_32·b_3_15 + c_4_28·b_1_32
- b_3_162 + a_1_2·b_1_12·b_3_16 + c_2_7·b_1_14 + c_4_28·a_1_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 6.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_7, a Duflot regular element of degree 2
- c_2_8, a Duflot regular element of degree 2
- c_4_28, a Duflot regular element of degree 4
- b_1_32 + b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 3, 6].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_2 → 0, an element of degree 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_2_7 → c_1_12, an element of degree 2
- c_2_8 → c_1_22, an element of degree 2
- b_3_15 → 0, an element of degree 3
- b_3_16 → 0, an element of degree 3
- c_4_28 → c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_2 → 0, an element of degree 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_2_7 → c_1_12, an element of degree 2
- c_2_8 → c_1_22, an element of degree 2
- b_3_15 → 0, an element of degree 3
- b_3_16 → c_1_1·c_1_32, an element of degree 3
- c_4_28 → c_1_02·c_1_32 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_2 → 0, an element of degree 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- c_2_7 → c_1_1·c_1_3 + c_1_12, an element of degree 2
- c_2_8 → c_1_32 + c_1_22, an element of degree 2
- b_3_15 → c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- b_3_16 → 0, an element of degree 3
- c_4_28 → c_1_0·c_1_33 + c_1_04, an element of degree 4
|