Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1126 of order 128
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 4.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 4.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t4 + 2·t3 + t2 + 2·t + 1 |
| (t + 1)2 · (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-∞,-∞,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 10 minimal generators of maximal degree 4:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- c_1_3, a Duflot regular element of degree 1
- c_2_7, a Duflot regular element of degree 2
- c_2_8, a Duflot regular element of degree 2
- a_3_15, a nilpotent element of degree 3
- a_3_16, a nilpotent element of degree 3
- a_3_17, a nilpotent element of degree 3
- c_4_30, a Duflot regular element of degree 4
Ring relations
There are 16 minimal relations of maximal degree 6:
- a_1_1·a_1_2
- a_1_12 + a_1_0·a_1_2
- a_1_22 + a_1_12 + a_1_0·a_1_1 + a_1_02
- a_1_02·a_1_1
- a_1_2·a_3_15 + a_1_1·a_3_16 + a_1_1·a_3_15 + c_2_8·a_1_0·a_1_2 + c_2_8·a_1_0·a_1_1
+ c_2_8·a_1_02 + c_2_7·a_1_0·a_1_2 + c_2_7·a_1_0·a_1_1
- a_1_1·a_3_15 + a_1_0·a_3_16 + a_1_0·a_3_15 + c_2_7·a_1_0·a_1_1 + c_2_7·a_1_02
- a_1_2·a_3_16 + a_1_2·a_3_15 + c_2_7·a_1_0·a_1_2
- a_1_1·a_3_17
- a_1_2·a_3_15 + a_1_0·a_3_17 + c_2_8·a_1_0·a_1_2 + c_2_8·a_1_0·a_1_1 + c_2_8·a_1_02
- a_1_2·a_3_17 + a_1_2·a_3_15 + a_1_1·a_3_15 + a_1_0·a_3_15 + c_2_8·a_1_0·a_1_1
+ c_2_8·a_1_02
- a_3_172 + a_3_162 + a_3_15·a_3_16 + a_3_152 + c_2_7·a_1_0·a_3_16
+ c_2_82·a_1_0·a_1_2 + c_2_82·a_1_0·a_1_1 + c_2_82·a_1_02 + c_2_72·a_1_0·a_1_2 + c_2_72·a_1_0·a_1_1
- a_3_162 + a_3_15·a_3_17 + a_3_152 + c_2_8·a_1_0·a_3_17 + c_2_8·a_1_0·a_3_16
+ c_2_82·a_1_0·a_1_2 + c_2_7·c_2_8·a_1_0·a_1_1 + c_2_7·c_2_8·a_1_02 + c_2_72·a_1_0·a_1_2 + c_2_72·a_1_02
- a_3_16·a_3_17 + a_3_162 + a_3_152 + c_2_8·a_1_0·a_3_17 + c_2_8·a_1_0·a_3_16
+ c_2_7·a_1_0·a_3_17 + c_2_82·a_1_0·a_1_2 + c_2_7·c_2_8·a_1_0·a_1_1 + c_2_7·c_2_8·a_1_02 + c_2_72·a_1_0·a_1_2 + c_2_72·a_1_02
- a_3_15·a_3_16 + a_3_152 + c_4_30·a_1_0·a_1_1 + c_2_7·a_1_0·a_3_16
+ c_2_72·a_1_0·a_1_1 + c_2_72·a_1_02
- a_3_152 + c_4_30·a_1_02 + c_2_82·a_1_0·a_1_2 + c_2_82·a_1_0·a_1_1
+ c_2_82·a_1_02
- a_3_162 + a_3_152 + c_4_30·a_1_0·a_1_2 + c_2_72·a_1_0·a_1_2 + c_2_72·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 6.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_3, a Duflot regular element of degree 1
- c_2_7, a Duflot regular element of degree 2
- c_2_8, a Duflot regular element of degree 2
- c_4_30, a Duflot regular element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, -1, 5].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- c_2_7 → c_1_32, an element of degree 2
- c_2_8 → c_1_12, an element of degree 2
- a_3_15 → 0, an element of degree 3
- a_3_16 → 0, an element of degree 3
- a_3_17 → 0, an element of degree 3
- c_4_30 → c_1_24, an element of degree 4
|