Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1132 of order 128
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 4.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 4.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(t2 + t + 1) · (t6 + t5 + t4 + 4·t3 + t2 + t + 1) |
| (t + 1)2 · (t − 1)4 · (t2 + 1)3 |
- The a-invariants are -∞,-∞,-∞,-∞,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 21 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- c_1_3, a Duflot regular element of degree 1
- a_2_7, a nilpotent element of degree 2
- a_2_8, a nilpotent element of degree 2
- a_3_12, a nilpotent element of degree 3
- a_3_13, a nilpotent element of degree 3
- a_3_14, a nilpotent element of degree 3
- a_3_15, a nilpotent element of degree 3
- a_3_16, a nilpotent element of degree 3
- a_3_17, a nilpotent element of degree 3
- a_4_27, a nilpotent element of degree 4
- a_4_28, a nilpotent element of degree 4
- a_4_29, a nilpotent element of degree 4
- c_4_30, a Duflot regular element of degree 4
- c_4_31, a Duflot regular element of degree 4
- c_4_32, a Duflot regular element of degree 4
- a_5_51, a nilpotent element of degree 5
- a_5_52, a nilpotent element of degree 5
- a_5_53, a nilpotent element of degree 5
Ring relations
There are 136 minimal relations of maximal degree 10:
- a_1_1·a_1_2 + a_1_02
- a_1_12 + a_1_0·a_1_2 + a_1_02
- a_1_22 + a_1_12 + a_1_0·a_1_1 + a_1_02
- a_1_03
- a_1_02·a_1_1
- a_1_02·a_1_2
- a_2_8·a_1_1 + a_2_7·a_1_2 + a_2_7·a_1_0
- a_2_8·a_1_0 + a_2_7·a_1_1
- a_2_8·a_1_2 + a_2_7·a_1_0
- a_1_2·a_3_12 + a_1_1·a_3_13 + a_1_0·a_3_12 + a_2_7·a_1_0·a_1_2 + a_2_7·a_1_0·a_1_1
- a_1_1·a_3_12 + a_1_0·a_3_13 + a_2_7·a_1_0·a_1_2 + a_2_7·a_1_0·a_1_1 + a_2_7·a_1_02
- a_1_2·a_3_13 + a_1_0·a_3_12 + a_2_7·a_1_0·a_1_1
- a_1_1·a_3_14 + a_1_1·a_3_12 + a_1_0·a_3_12 + a_2_7·a_1_0·a_1_1 + a_2_7·a_1_02
- a_1_2·a_3_12 + a_1_0·a_3_14 + a_1_0·a_3_12 + a_2_7·a_1_0·a_1_2 + a_2_7·a_1_02
- a_1_2·a_3_14 + a_1_1·a_3_12
- a_1_2·a_3_12 + a_1_1·a_3_15 + a_1_1·a_3_12 + a_1_0·a_3_12 + a_2_82 + a_2_7·a_1_0·a_1_1
+ a_2_7·a_1_02
- a_1_1·a_3_12 + a_1_0·a_3_15 + a_1_0·a_3_12 + a_2_7·a_2_8 + a_2_7·a_1_0·a_1_1
+ a_2_7·a_1_02
- a_1_2·a_3_15 + a_1_2·a_3_12 + a_1_0·a_3_12 + a_2_72
- a_1_1·a_3_16 + a_1_0·a_3_12 + a_2_7·a_2_8 + a_2_72 + a_2_7·a_1_02
- a_1_2·a_3_12 + a_1_0·a_3_16 + a_2_82 + a_2_7·a_1_0·a_1_2 + a_2_7·a_1_0·a_1_1
+ a_2_7·a_1_02
- a_1_2·a_3_16 + a_1_2·a_3_12 + a_1_1·a_3_12 + a_2_7·a_2_8 + a_2_7·a_1_0·a_1_2
- a_1_1·a_3_17 + a_2_82 + a_2_72 + a_2_7·a_1_0·a_1_1
- a_1_0·a_3_17 + a_2_82 + a_2_7·a_2_8 + a_2_72 + a_2_7·a_1_0·a_1_1
- a_1_2·a_3_17 + a_2_82 + a_2_7·a_2_8 + a_2_7·a_1_02
- a_1_02·a_3_12
- a_1_02·a_3_13 + a_2_72·a_1_2 + a_2_72·a_1_0
- a_2_8·a_3_12 + a_2_7·a_3_13
- a_1_02·a_3_14 + a_2_72·a_1_2 + a_2_72·a_1_1 + a_2_72·a_1_0
- a_2_8·a_3_13 + a_2_7·a_3_14 + a_2_72·a_1_2
- a_2_8·a_3_14 + a_2_8·a_3_12 + a_2_7·a_3_12
- a_2_8·a_3_15 + a_2_8·a_3_12 + a_2_7·a_3_16 + a_2_7·a_3_12 + a_2_72·a_1_1
- a_2_8·a_3_16 + a_2_8·a_3_15 + a_2_8·a_3_13 + a_2_8·a_3_12 + a_2_7·a_3_17 + a_2_7·a_3_12
+ a_2_72·a_1_2 + a_2_72·a_1_0
- a_2_8·a_3_17 + a_2_8·a_3_16 + a_2_8·a_3_15 + a_2_8·a_3_13 + a_2_7·a_3_15 + a_2_72·a_1_2
- a_4_27·a_1_1 + a_2_8·a_3_12 + a_2_72·a_1_0
- a_4_27·a_1_0 + a_2_7·a_3_12 + a_2_72·a_1_1
- a_4_27·a_1_2 + a_2_8·a_3_13 + a_2_7·a_3_12
- a_4_28·a_1_1 + a_2_8·a_3_15 + a_2_8·a_3_13 + a_2_8·a_3_12 + a_2_7·a_3_12 + a_2_72·a_1_1
+ a_2_72·a_1_0
- a_4_28·a_1_0 + a_2_8·a_3_13 + a_2_8·a_3_12 + a_2_7·a_3_15 + a_2_72·a_1_0
- a_4_28·a_1_2 + a_2_8·a_3_16 + a_2_8·a_3_13 + a_2_7·a_3_15 + a_2_7·a_3_12
- a_4_29·a_1_1 + a_2_8·a_3_16 + a_2_8·a_3_15 + a_2_8·a_3_12 + a_2_7·a_3_12 + a_2_72·a_1_0
- a_4_29·a_1_0 + a_2_8·a_3_15 + a_2_8·a_3_13 + a_2_8·a_3_12 + a_2_7·a_3_15 + a_2_7·a_3_12
+ a_2_72·a_1_1
- a_4_29·a_1_2 + a_2_8·a_3_16
- a_3_132 + a_3_12·a_3_14 + a_2_7·a_1_0·a_3_14
- a_3_13·a_3_14 + a_3_12·a_3_13 + a_3_122 + a_2_7·a_1_0·a_3_12
- a_3_142 + a_3_132 + a_3_12·a_3_13 + a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13
- a_3_13·a_3_15 + a_3_12·a_3_16 + a_3_12·a_3_13 + a_3_122 + a_2_7·a_1_0·a_3_13
+ a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82 + a_2_72·a_2_8 + a_2_73
- a_3_14·a_3_15 + a_3_13·a_3_16 + a_3_132 + a_3_12·a_3_13 + a_2_7·a_1_0·a_3_13
+ a_2_7·a_2_82 + a_2_72·a_2_8
- a_3_14·a_3_16 + a_3_13·a_3_15 + a_3_132 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_3_122
+ a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_73
- a_3_14·a_3_15 + a_3_13·a_3_15 + a_3_12·a_3_17 + a_3_122 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82
- a_3_14·a_3_15 + a_3_13·a_3_17 + a_3_13·a_3_15 + a_3_12·a_3_15 + a_3_12·a_3_13
+ a_2_7·a_1_0·a_3_14 + a_2_72·a_2_8
- a_3_172 + a_3_15·a_3_16 + a_3_13·a_3_15 + a_3_12·a_3_15 + a_3_122 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82 + a_2_72·a_2_8
- a_3_16·a_3_17 + a_3_162 + a_3_15·a_3_16 + a_3_152 + a_3_132 + a_3_12·a_3_13 + a_2_73
- a_3_162 + a_3_15·a_3_17 + a_3_15·a_3_16 + a_3_13·a_3_15 + a_3_132 + a_3_122
+ a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_72·a_2_8
- a_3_14·a_3_17 + a_3_14·a_3_15 + a_3_132 + a_3_12·a_3_15 + a_2_7·a_1_0·a_3_12
+ a_2_7·a_2_82 + a_2_72·a_2_8
- a_3_132 + a_3_122 + a_2_7·a_1_0·a_3_14 + a_2_72·a_2_8 + c_4_31·a_1_0·a_1_1
+ c_4_30·a_1_0·a_1_2 + c_4_30·a_1_0·a_1_1
- a_3_132 + a_3_12·a_3_13 + a_3_122 + a_2_7·a_1_0·a_3_14 + a_2_73 + c_4_31·a_1_02
+ c_4_30·a_1_0·a_1_2 + c_4_30·a_1_0·a_1_1 + c_4_30·a_1_02
- a_3_132 + a_3_12·a_3_13 + a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12
+ a_2_7·a_2_82 + a_2_73 + c_4_31·a_1_0·a_1_2 + c_4_30·a_1_0·a_1_1 + c_4_30·a_1_02
- a_3_15·a_3_16 + a_3_13·a_3_15 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_3_122
+ a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_72·a_2_8 + a_2_73 + c_4_32·a_1_0·a_1_1 + c_4_30·a_1_0·a_1_2 + c_4_30·a_1_0·a_1_1 + c_4_30·a_1_02
- a_3_152 + a_3_132 + a_2_7·a_1_0·a_3_13 + a_2_7·a_2_82 + a_2_72·a_2_8 + a_2_73
+ c_4_32·a_1_02 + c_4_30·a_1_0·a_1_1 + c_4_30·a_1_02
- a_3_162 + a_3_152 + a_3_132 + a_3_12·a_3_13 + a_3_122 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82 + a_2_72·a_2_8 + c_4_32·a_1_0·a_1_2 + c_4_30·a_1_0·a_1_2 + c_4_30·a_1_02
- a_3_14·a_3_15 + a_3_132 + a_3_12·a_3_15 + a_2_7·a_4_27 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82 + a_2_73
- a_3_12·a_3_15 + a_3_12·a_3_13 + a_3_122 + a_2_8·a_4_27 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_13 + a_2_7·a_2_82 + a_2_73
- a_3_162 + a_3_152 + a_3_14·a_3_15 + a_3_13·a_3_15 + a_3_12·a_3_15 + a_2_7·a_4_28
+ a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82
- a_3_152 + a_3_14·a_3_15 + a_3_12·a_3_15 + a_3_122 + a_2_8·a_4_28 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82
- a_3_162 + a_3_132 + a_3_12·a_3_15 + a_2_7·a_4_29 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82
- a_3_15·a_3_16 + a_3_152 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_2_8·a_4_29
+ a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_7·a_2_82 + a_2_73
- a_3_15·a_3_16 + a_3_132 + a_3_12·a_3_15 + a_3_122 + a_1_1·a_5_51 + a_2_7·a_2_82
+ a_2_73 + c_4_30·a_1_0·a_1_1 + c_4_30·a_1_02
- a_3_152 + a_3_132 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_3_122 + a_1_0·a_5_51
+ a_2_7·a_1_0·a_3_12 + a_2_72·a_2_8 + c_4_30·a_1_0·a_1_2 + c_4_30·a_1_02
- a_3_162 + a_3_152 + a_3_14·a_3_15 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_3_122
+ a_1_2·a_5_51 + a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_72·a_2_8 + c_4_30·a_1_0·a_1_1
- a_3_162 + a_3_15·a_3_16 + a_3_152 + a_3_14·a_3_15 + a_3_13·a_3_15 + a_3_12·a_3_15
+ a_3_122 + a_1_1·a_5_52 + a_2_7·a_1_0·a_3_13 + a_2_7·a_2_82 + a_2_72·a_2_8 + a_2_73
- a_3_162 + a_3_15·a_3_16 + a_3_132 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_3_122
+ a_1_0·a_5_52 + a_2_7·a_1_0·a_3_14 + a_2_7·a_1_0·a_3_13
- a_3_15·a_3_16 + a_3_152 + a_3_13·a_3_15 + a_3_122 + a_1_2·a_5_52 + a_2_7·a_1_0·a_3_14
+ a_2_73
- a_3_162 + a_3_152 + a_3_14·a_3_15 + a_3_132 + a_3_12·a_3_15 + a_1_1·a_5_53
+ a_2_7·a_1_0·a_3_12 + a_2_73 + c_4_30·a_1_0·a_1_2 + c_4_30·a_1_02
- a_3_162 + a_3_15·a_3_16 + a_3_152 + a_3_14·a_3_15 + a_1_0·a_5_53 + a_2_7·a_1_0·a_3_14
+ a_2_7·a_1_0·a_3_12 + a_2_72·a_2_8 + a_2_73 + c_4_30·a_1_0·a_1_1
- a_3_162 + a_3_15·a_3_16 + a_3_14·a_3_15 + a_3_12·a_3_15 + a_3_12·a_3_13 + a_1_2·a_5_53
+ a_2_7·a_1_0·a_3_13 + a_2_7·a_1_0·a_3_12 + a_2_73 + c_4_30·a_1_02
- a_2_72·a_3_13
- a_4_27·a_3_12 + a_2_72·a_3_14 + a_2_72·a_3_12 + a_2_7·c_4_31·a_1_2
+ a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_2
- a_4_27·a_3_13 + a_2_72·a_3_14 + a_2_72·a_3_12 + a_2_7·c_4_31·a_1_1
+ a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_0
- a_4_27·a_3_14 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_31·a_1_1 + a_2_7·c_4_31·a_1_0
+ a_2_7·c_4_30·a_1_1
- a_4_28·a_3_12 + a_4_27·a_3_15 + a_2_72·a_3_14 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_30·a_1_1
+ a_2_7·c_4_30·a_1_0
- a_4_28·a_3_13 + a_4_27·a_3_16 + a_2_72·a_3_12 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_31·a_1_1
+ a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_1
- a_4_28·a_3_17 + a_4_27·a_3_16 + a_4_27·a_3_15 + a_2_72·a_3_12 + a_2_7·c_4_32·a_1_2
+ a_2_7·c_4_32·a_1_1 + a_2_7·c_4_32·a_1_0 + a_2_7·c_4_30·a_1_0
- a_4_28·a_3_16 + a_4_27·a_3_17 + a_4_27·a_3_16 + a_2_72·a_3_14 + a_2_7·c_4_32·a_1_1
+ a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_1 + a_2_7·c_4_30·a_1_0
- a_4_28·a_3_15 + a_4_27·a_3_17 + a_2_72·a_3_14 + a_2_7·c_4_32·a_1_0 + a_2_7·c_4_31·a_1_1
+ a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_0
- a_4_28·a_3_14 + a_4_27·a_3_17 + a_4_27·a_3_16 + a_2_72·a_3_14 + a_2_7·c_4_31·a_1_0
+ a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_1 + a_2_7·c_4_30·a_1_0
- a_4_29·a_3_12 + a_4_27·a_3_16 + a_4_27·a_3_15 + a_2_72·a_3_14 + a_2_72·a_3_12
+ a_2_7·c_4_31·a_1_2 + a_2_7·c_4_31·a_1_1 + a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_1
- a_4_29·a_3_13 + a_4_27·a_3_17 + a_2_72·a_3_14 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_31·a_1_1
+ a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_1
- a_4_29·a_3_17 + a_4_27·a_3_17 + a_4_27·a_3_15 + a_2_72·a_3_12 + a_2_7·c_4_32·a_1_0
+ a_2_7·c_4_31·a_1_1 + a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_1
- a_4_29·a_3_16 + a_2_72·a_3_14 + a_2_72·a_3_12 + a_2_7·c_4_32·a_1_2
+ a_2_7·c_4_32·a_1_1 + a_2_7·c_4_32·a_1_0 + a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_1
- a_4_29·a_3_15 + a_4_27·a_3_17 + a_4_27·a_3_15 + a_2_72·a_3_14 + a_2_72·a_3_12
+ a_2_7·c_4_32·a_1_1 + a_2_7·c_4_32·a_1_0 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_1 + a_2_7·c_4_30·a_1_0
- a_4_29·a_3_14 + a_4_27·a_3_17 + a_4_27·a_3_15 + a_2_72·a_3_12
- a_4_27·a_3_15 + a_2_7·a_5_51 + a_2_72·a_3_12 + a_2_7·c_4_32·a_1_0 + a_2_7·c_4_31·a_1_2
+ a_2_7·c_4_31·a_1_1 + a_2_7·c_4_30·a_1_1 + a_2_7·c_4_30·a_1_0
- a_4_27·a_3_16 + a_2_8·a_5_51 + a_2_72·a_3_14 + a_2_7·c_4_32·a_1_1 + a_2_7·c_4_31·a_1_1
+ a_2_7·c_4_30·a_1_1
- a_4_27·a_3_16 + a_2_7·a_5_52 + a_2_72·a_3_12 + a_2_7·c_4_32·a_1_2 + a_2_7·c_4_32·a_1_1
+ a_2_7·c_4_32·a_1_0 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_31·a_1_1 + a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_1 + a_2_7·c_4_30·a_1_0
- a_4_27·a_3_17 + a_4_27·a_3_16 + a_2_8·a_5_52 + a_2_72·a_3_12 + a_2_7·c_4_32·a_1_2
+ a_2_7·c_4_32·a_1_1 + a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_0
- a_4_27·a_3_17 + a_4_27·a_3_15 + a_2_7·a_5_53 + a_2_72·a_3_14 + a_2_72·a_3_12
+ a_2_7·c_4_32·a_1_2 + a_2_7·c_4_32·a_1_1 + a_2_7·c_4_31·a_1_1 + a_2_7·c_4_30·a_1_2 + a_2_7·c_4_30·a_1_1
- a_4_27·a_3_17 + a_4_27·a_3_16 + a_4_27·a_3_15 + a_2_8·a_5_53 + a_2_72·a_3_14
+ a_2_7·c_4_32·a_1_2 + a_2_7·c_4_31·a_1_2 + a_2_7·c_4_31·a_1_0 + a_2_7·c_4_30·a_1_2
- a_4_27·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_12
+ c_4_31·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_31 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2
- a_4_282 + a_4_272 + a_2_82·c_4_30 + a_2_72·c_4_32 + a_2_72·c_4_31 + a_2_72·c_4_30
+ a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2
- a_4_27·a_4_29 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_14
+ c_4_31·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_12 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_31 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2
- a_4_292 + a_4_272 + a_2_72·a_4_27 + a_2_82·c_4_32 + a_2_82·c_4_30 + a_2_72·c_4_32
+ a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2
- a_4_28·a_4_29 + a_2_72·a_4_28 + c_4_32·a_1_0·a_3_13 + c_4_32·a_1_0·a_3_12
+ c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_13 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_32 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_32 + a_2_72·c_4_31 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_1
- a_4_272 + a_2_72·a_4_29 + a_2_72·a_4_27 + a_2_82·c_4_31 + a_2_82·c_4_30
+ a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_12·a_5_51 + a_4_272 + c_4_32·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_14
+ c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_31 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_31 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1
- a_3_13·a_5_51 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_14
+ c_4_30·a_1_0·a_3_12 + a_2_82·c_4_31 + a_2_7·a_2_8·c_4_31 + a_2_7·a_2_8·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_02
- a_3_17·a_5_51 + a_4_272 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14
+ c_4_32·a_1_0·a_3_13 + c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_13 + a_2_82·c_4_32 + a_2_82·c_4_31 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_32 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_32 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_16·a_5_51 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_13
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_13 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_32 + a_2_82·c_4_31 + a_2_82·c_4_30 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_02
- a_3_15·a_5_51 + a_4_272 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_13
+ c_4_31·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_14 + a_2_7·a_2_8·c_4_32 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_31 + a_2_72·c_4_30 + a_2_7·c_4_31·a_1_0·a_1_2
- a_3_14·a_5_51 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14
+ c_4_30·a_1_0·a_3_12 + a_2_82·c_4_31 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_31 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_0·a_1_1
- a_3_12·a_5_52 + a_4_272 + a_2_72·a_4_28 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_13
+ c_4_31·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_14 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_31 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_0·a_1_1
- a_3_13·a_5_52 + a_4_272 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_13
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_13 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_31 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_17·a_5_52 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_13
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_14 + a_2_82·c_4_32 + a_2_72·c_4_31 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_30·a_1_02
- a_3_16·a_5_52 + a_4_272 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_13
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_32 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_32 + a_2_72·c_4_31 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_02
- a_3_15·a_5_52 + a_4_272 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_13
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_14 + a_2_82·c_4_32 + a_2_82·c_4_31 + a_2_7·a_2_8·c_4_32 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_32 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_02
- a_3_14·a_5_52 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_12
+ c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_13 + a_2_82·c_4_31 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_31 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_12·a_5_53 + a_4_272 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_13
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_31 + a_2_7·a_2_8·c_4_31 + a_2_7·a_2_8·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_13·a_5_53 + a_4_272 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14
+ c_4_32·a_1_0·a_3_12 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_13 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_17·a_5_53 + a_4_272 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_14
+ c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_32 + a_2_7·a_2_8·c_4_31 + a_2_7·a_2_8·c_4_30 + a_2_72·c_4_32 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_31·a_1_0·a_1_2 + a_2_7·c_4_31·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1
- a_3_16·a_5_53 + a_4_272 + a_2_72·a_4_28 + c_4_32·a_1_0·a_3_13 + c_4_32·a_1_0·a_3_12
+ c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_31 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_32 + a_2_72·c_4_31 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_0·a_1_1 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_31·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1 + a_2_7·c_4_30·a_1_02
- a_3_15·a_5_53 + a_4_272 + c_4_32·a_1_0·a_3_14 + c_4_32·a_1_0·a_3_12
+ c_4_31·a_1_0·a_3_14 + c_4_31·a_1_0·a_3_12 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_32 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_32 + a_2_72·c_4_31 + a_2_72·c_4_30 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_32·a_1_02 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_1
- a_3_14·a_5_53 + a_4_272 + a_2_72·a_4_28 + a_2_72·a_4_27 + c_4_32·a_1_0·a_3_12
+ c_4_31·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_14 + c_4_30·a_1_0·a_3_13 + c_4_30·a_1_0·a_3_12 + a_2_82·c_4_31 + a_2_82·c_4_30 + a_2_7·a_2_8·c_4_31 + a_2_72·c_4_31 + a_2_7·c_4_32·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_0·a_1_2 + a_2_7·c_4_30·a_1_02
- a_4_27·a_5_51 + a_2_7·c_4_32·a_3_12 + a_2_7·c_4_31·a_3_17 + a_2_7·c_4_31·a_3_16
+ a_2_7·c_4_31·a_3_14 + a_2_7·c_4_31·a_3_12 + a_2_7·c_4_30·a_3_17 + a_2_7·c_4_30·a_3_16 + a_2_7·c_4_30·a_3_15 + a_2_7·c_4_30·a_3_12 + a_2_72·c_4_31·a_1_2 + a_2_72·c_4_31·a_1_0 + a_2_72·c_4_30·a_1_1 + a_2_72·c_4_30·a_1_0
- a_4_29·a_5_51 + a_2_73·a_3_12 + a_2_7·c_4_32·a_3_16 + a_2_7·c_4_32·a_3_15
+ a_2_7·c_4_32·a_3_14 + a_2_7·c_4_32·a_3_13 + a_2_7·c_4_32·a_3_12 + a_2_7·c_4_31·a_3_16 + a_2_7·c_4_31·a_3_15 + a_2_7·c_4_31·a_3_12 + a_2_7·c_4_30·a_3_16 + a_2_7·c_4_30·a_3_15 + a_2_7·c_4_30·a_3_13 + a_2_72·c_4_32·a_1_1 + a_2_72·c_4_32·a_1_0 + a_2_72·c_4_31·a_1_2 + a_2_72·c_4_31·a_1_1 + a_2_72·c_4_31·a_1_0 + a_2_72·c_4_30·a_1_1 + a_2_72·c_4_30·a_1_0
- a_4_28·a_5_51 + a_2_73·a_3_12 + a_2_7·c_4_32·a_3_15 + a_2_7·c_4_32·a_3_14
+ a_2_7·c_4_32·a_3_13 + a_2_7·c_4_32·a_3_12 + a_2_7·c_4_31·a_3_16 + a_2_7·c_4_31·a_3_12 + a_2_72·c_4_31·a_1_2 + a_2_72·c_4_31·a_1_1 + a_2_72·c_4_31·a_1_0 + a_2_72·c_4_30·a_1_2 + a_2_72·c_4_30·a_1_1
- a_4_27·a_5_52 + a_2_7·c_4_32·a_3_14 + a_2_7·c_4_32·a_3_13 + a_2_7·c_4_31·a_3_16
+ a_2_7·c_4_31·a_3_15 + a_2_7·c_4_31·a_3_13 + a_2_7·c_4_30·a_3_15 + a_2_7·c_4_30·a_3_14 + a_2_7·c_4_30·a_3_13 + a_2_7·c_4_30·a_3_12 + a_2_72·c_4_32·a_1_2 + a_2_72·c_4_32·a_1_1 + a_2_72·c_4_32·a_1_0 + a_2_72·c_4_31·a_1_1 + a_2_72·c_4_30·a_1_2
- a_4_29·a_5_52 + a_2_7·c_4_32·a_3_15 + a_2_7·c_4_32·a_3_13 + a_2_7·c_4_31·a_3_15
+ a_2_7·c_4_31·a_3_14 + a_2_7·c_4_31·a_3_12 + a_2_7·c_4_30·a_3_17 + a_2_7·c_4_30·a_3_16 + a_2_7·c_4_30·a_3_15 + a_2_7·c_4_30·a_3_14 + a_2_7·c_4_30·a_3_13 + a_2_7·c_4_30·a_3_12 + a_2_72·c_4_32·a_1_2 + a_2_72·c_4_32·a_1_1 + a_2_72·c_4_31·a_1_2 + a_2_72·c_4_31·a_1_1
- a_4_28·a_5_52 + a_2_73·a_3_12 + a_2_7·c_4_32·a_3_17 + a_2_7·c_4_32·a_3_12
+ a_2_7·c_4_31·a_3_12 + a_2_7·c_4_30·a_3_15 + a_2_7·c_4_30·a_3_14 + a_2_7·c_4_30·a_3_13 + a_2_72·c_4_32·a_1_2 + a_2_72·c_4_31·a_1_2 + a_2_72·c_4_30·a_1_0
- a_4_27·a_5_53 + a_2_7·c_4_32·a_3_14 + a_2_7·c_4_32·a_3_13 + a_2_7·c_4_32·a_3_12
+ a_2_7·c_4_31·a_3_15 + a_2_7·c_4_31·a_3_14 + a_2_7·c_4_31·a_3_13 + a_2_7·c_4_30·a_3_17 + a_2_7·c_4_30·a_3_13 + a_2_7·c_4_30·a_3_12 + a_2_72·c_4_32·a_1_2 + a_2_72·c_4_31·a_1_2 + a_2_72·c_4_31·a_1_1 + a_2_72·c_4_31·a_1_0 + a_2_72·c_4_30·a_1_2 + a_2_72·c_4_30·a_1_0
- a_4_29·a_5_53 + a_2_73·a_3_12 + a_2_7·c_4_32·a_3_16 + a_2_7·c_4_32·a_3_13
+ a_2_7·c_4_31·a_3_17 + a_2_7·c_4_31·a_3_13 + a_2_7·c_4_30·a_3_16 + a_2_7·c_4_30·a_3_14 + a_2_72·c_4_32·a_1_2 + a_2_72·c_4_32·a_1_1 + a_2_72·c_4_32·a_1_0 + a_2_72·c_4_31·a_1_1 + a_2_72·c_4_30·a_1_2
- a_4_28·a_5_53 + a_2_73·a_3_12 + a_2_7·c_4_32·a_3_17 + a_2_7·c_4_32·a_3_15
+ a_2_7·c_4_32·a_3_13 + a_2_7·c_4_31·a_3_14 + a_2_7·c_4_31·a_3_13 + a_2_72·c_4_32·a_1_1 + a_2_72·c_4_32·a_1_0 + a_2_72·c_4_31·a_1_1 + a_2_72·c_4_31·a_1_0 + a_2_72·c_4_30·a_1_2 + a_2_72·c_4_30·a_1_1 + a_2_72·c_4_30·a_1_0
- a_5_512 + a_2_7·c_4_32·a_1_0·a_3_13 + a_2_7·c_4_32·a_1_0·a_3_12
+ a_2_7·c_4_31·a_1_0·a_3_13 + a_2_7·c_4_31·a_1_0·a_3_12 + a_2_7·c_4_30·a_1_0·a_3_14 + a_2_7·a_2_82·c_4_32 + a_2_73·c_4_31 + a_2_73·c_4_30 + c_4_322·a_1_02 + c_4_31·c_4_32·a_1_0·a_1_2 + c_4_31·c_4_32·a_1_02 + c_4_312·a_1_0·a_1_2 + c_4_312·a_1_0·a_1_1 + c_4_312·a_1_02 + c_4_30·c_4_32·a_1_0·a_1_2 + c_4_30·c_4_31·a_1_0·a_1_2 + c_4_30·c_4_31·a_1_0·a_1_1
- a_5_522 + a_2_7·c_4_32·a_1_0·a_3_14 + a_2_7·c_4_32·a_1_0·a_3_13
+ a_2_7·c_4_32·a_1_0·a_3_12 + a_2_7·c_4_31·a_1_0·a_3_14 + a_2_7·c_4_31·a_1_0·a_3_13 + a_2_7·c_4_31·a_1_0·a_3_12 + a_2_7·c_4_30·a_1_0·a_3_14 + a_2_7·c_4_30·a_1_0·a_3_13 + a_2_7·a_2_82·c_4_32 + a_2_7·a_2_82·c_4_31 + a_2_7·a_2_82·c_4_30 + a_2_72·a_2_8·c_4_32 + c_4_322·a_1_0·a_1_1 + c_4_31·c_4_32·a_1_0·a_1_2 + c_4_31·c_4_32·a_1_0·a_1_1 + c_4_31·c_4_32·a_1_02 + c_4_312·a_1_0·a_1_1 + c_4_312·a_1_02 + c_4_30·c_4_32·a_1_0·a_1_1 + c_4_30·c_4_31·a_1_02 + c_4_302·a_1_02
- a_5_51·a_5_52 + a_2_7·a_4_29·c_4_32 + a_2_7·a_4_29·c_4_31 + a_2_7·a_4_29·c_4_30
+ a_2_7·a_4_27·c_4_32 + a_2_7·a_4_27·c_4_31 + a_2_7·c_4_32·a_1_0·a_3_14 + a_2_7·c_4_32·a_1_0·a_3_12 + a_2_7·c_4_31·a_1_0·a_3_12 + a_2_7·c_4_30·a_1_0·a_3_12 + a_2_7·a_2_82·c_4_32 + a_2_72·a_2_8·c_4_31 + a_2_72·a_2_8·c_4_30 + a_2_73·c_4_31 + c_4_322·a_1_0·a_1_1 + c_4_31·c_4_32·a_1_0·a_1_2 + c_4_312·a_1_02 + c_4_30·c_4_31·a_1_0·a_1_2 + c_4_30·c_4_31·a_1_0·a_1_1 + c_4_302·a_1_0·a_1_1
- a_5_52·a_5_53 + a_2_7·a_4_29·c_4_32 + a_2_7·a_4_28·c_4_30 + a_2_7·c_4_32·a_1_0·a_3_14
+ a_2_7·c_4_31·a_1_0·a_3_14 + a_2_7·c_4_31·a_1_0·a_3_13 + a_2_7·c_4_31·a_1_0·a_3_12 + a_2_7·c_4_30·a_1_0·a_3_13 + a_2_7·a_2_82·c_4_32 + a_2_7·a_2_82·c_4_31 + a_2_7·a_2_82·c_4_30 + a_2_72·a_2_8·c_4_32 + a_2_72·a_2_8·c_4_30 + c_4_31·c_4_32·a_1_0·a_1_2 + c_4_31·c_4_32·a_1_0·a_1_1 + c_4_31·c_4_32·a_1_02 + c_4_312·a_1_02 + c_4_30·c_4_32·a_1_0·a_1_2 + c_4_30·c_4_32·a_1_0·a_1_1 + c_4_30·c_4_31·a_1_02
- a_5_51·a_5_53 + a_2_7·a_4_27·c_4_31 + a_2_7·c_4_32·a_1_0·a_3_13
+ a_2_7·c_4_31·a_1_0·a_3_13 + a_2_7·c_4_30·a_1_0·a_3_13 + a_2_7·c_4_30·a_1_0·a_3_12 + a_2_7·a_2_82·c_4_30 + a_2_72·a_2_8·c_4_31 + a_2_73·c_4_31 + c_4_322·a_1_0·a_1_2 + c_4_322·a_1_0·a_1_1 + c_4_31·c_4_32·a_1_0·a_1_2 + c_4_31·c_4_32·a_1_02 + c_4_312·a_1_0·a_1_2 + c_4_312·a_1_02 + c_4_30·c_4_32·a_1_0·a_1_2 + c_4_30·c_4_32·a_1_0·a_1_1 + c_4_30·c_4_32·a_1_02 + c_4_30·c_4_31·a_1_0·a_1_2
- a_5_532 + a_2_7·c_4_32·a_1_0·a_3_14 + a_2_7·c_4_32·a_1_0·a_3_12
+ a_2_7·c_4_31·a_1_0·a_3_14 + a_2_7·c_4_31·a_1_0·a_3_12 + a_2_7·c_4_30·a_1_0·a_3_14 + a_2_7·c_4_30·a_1_0·a_3_13 + a_2_7·c_4_30·a_1_0·a_3_12 + a_2_7·a_2_82·c_4_32 + a_2_72·a_2_8·c_4_32 + a_2_72·a_2_8·c_4_31 + a_2_72·a_2_8·c_4_30 + a_2_73·c_4_32 + a_2_73·c_4_31 + a_2_73·c_4_30 + c_4_322·a_1_0·a_1_1 + c_4_322·a_1_02 + c_4_31·c_4_32·a_1_0·a_1_2 + c_4_31·c_4_32·a_1_0·a_1_1 + c_4_312·a_1_0·a_1_2 + c_4_312·a_1_0·a_1_1 + c_4_312·a_1_02 + c_4_30·c_4_32·a_1_0·a_1_2 + c_4_30·c_4_32·a_1_02 + c_4_30·c_4_31·a_1_0·a_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_3, a Duflot regular element of degree 1
- c_4_30, a Duflot regular element of degree 4
- c_4_31, a Duflot regular element of degree 4
- c_4_32, a Duflot regular element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, -1, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- a_2_7 → 0, an element of degree 2
- a_2_8 → 0, an element of degree 2
- a_3_12 → 0, an element of degree 3
- a_3_13 → 0, an element of degree 3
- a_3_14 → 0, an element of degree 3
- a_3_15 → 0, an element of degree 3
- a_3_16 → 0, an element of degree 3
- a_3_17 → 0, an element of degree 3
- a_4_27 → 0, an element of degree 4
- a_4_28 → 0, an element of degree 4
- a_4_29 → 0, an element of degree 4
- c_4_30 → c_1_24, an element of degree 4
- c_4_31 → c_1_34 + c_1_24 + c_1_14, an element of degree 4
- c_4_32 → c_1_34 + c_1_24, an element of degree 4
- a_5_51 → 0, an element of degree 5
- a_5_52 → 0, an element of degree 5
- a_5_53 → 0, an element of degree 5
|