Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 122 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
t3 + t2 + 1 |
| (t + 1)2 · (t − 1)4 · (t2 + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_2_4, an element of degree 2
- c_2_3, a Duflot regular element of degree 2
- b_3_5, an element of degree 3
- b_3_6, an element of degree 3
- b_3_7, an element of degree 3
- b_3_8, an element of degree 3
- b_4_7, an element of degree 4
- b_4_14, an element of degree 4
- c_4_15, a Duflot regular element of degree 4
- b_5_23, an element of degree 5
Ring relations
There are 65 minimal relations of maximal degree 10:
- a_1_02
- a_1_12
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- b_2_1·a_1_1
- b_2_2·a_1_0
- b_2_4·a_1_0
- a_2_02
- b_2_1·b_2_2
- a_1_1·b_3_5
- a_1_0·b_3_5 + a_2_0·b_2_1
- a_1_1·b_3_6 + a_2_0·b_2_2
- a_1_0·b_3_6
- a_1_1·b_3_7
- a_1_0·b_3_7
- a_1_1·b_3_8 + a_2_0·b_2_4
- a_1_0·b_3_8
- b_2_2·b_3_5
- a_2_0·b_3_5 + b_2_1·c_2_3·a_1_0
- b_2_1·b_3_6
- b_2_22·a_1_1 + a_2_0·b_3_6
- b_2_2·b_3_7
- a_2_0·b_3_7
- b_2_1·b_3_8
- b_2_2·b_2_4·a_1_1 + a_2_0·b_3_8
- b_4_7·a_1_1
- b_4_7·a_1_0
- b_2_4·b_3_6 + b_2_2·b_3_8 + b_4_14·a_1_1 + b_2_42·a_1_1
- b_4_14·a_1_0
- b_3_52 + b_2_12·c_2_3
- b_3_5·b_3_6
- b_3_62 + b_2_23 + a_2_0·b_2_22
- b_3_6·b_3_7
- b_3_72 + b_2_1·b_2_42
- b_3_5·b_3_8
- b_3_7·b_3_8
- b_3_82 + b_2_2·b_2_42 + a_2_0·b_2_42
- b_3_5·b_3_7 + b_2_1·b_4_7
- b_3_6·b_3_8 + b_2_2·b_4_7 + b_2_22·b_2_4 + a_2_0·b_2_2·b_2_4
- a_2_0·b_4_7
- b_2_1·b_4_14 + b_2_1·b_2_42
- b_3_6·b_3_8 + b_2_22·b_2_4 + a_2_0·b_4_14 + a_2_0·b_2_42 + a_2_0·b_2_2·b_2_4
- b_3_6·b_3_8 + b_2_22·b_2_4 + a_1_1·b_5_23 + a_2_0·b_2_42 + a_2_0·b_2_2·b_2_4
- a_1_0·b_5_23
- b_4_7·b_3_5 + b_2_1·c_2_3·b_3_7
- b_4_7·b_3_7 + b_2_42·b_3_5
- b_4_7·b_3_6 + b_2_2·b_4_14·a_1_1 + a_2_0·b_2_4·b_3_8
- b_4_7·b_3_8 + b_2_4·b_4_14·a_1_1 + b_2_43·a_1_1
- b_4_14·b_3_5 + b_2_42·b_3_5
- b_4_14·b_3_7 + b_2_42·b_3_7
- b_2_1·b_5_23
- b_4_14·b_3_6 + b_4_7·b_3_8 + b_2_2·b_5_23 + a_2_0·b_2_4·b_3_8
- b_4_14·b_3_8 + b_4_7·b_3_8 + b_2_4·b_5_23 + b_2_2·c_4_15·a_1_1
- b_4_7·b_3_6 + a_2_0·b_5_23 + a_2_0·b_2_4·b_3_8
- b_4_72 + b_2_1·b_2_42·c_2_3
- b_4_142 + b_2_44 + b_2_2·b_2_4·b_4_14 + a_2_0·b_2_43 + b_2_22·c_4_15
- b_4_7·b_4_14 + b_2_42·b_4_7 + a_2_0·b_2_4·b_4_14 + a_2_0·b_2_2·c_4_15
- b_3_5·b_5_23
- b_3_6·b_5_23 + b_2_22·b_4_14 + a_2_0·b_2_4·b_4_14 + a_2_0·b_2_43 + a_2_0·b_2_2·b_4_14
+ a_2_0·b_2_2·b_2_42
- b_3_7·b_5_23
- b_3_8·b_5_23 + b_4_142 + b_2_44 + b_2_22·c_4_15 + a_2_0·b_2_2·c_4_15
- b_4_14·b_5_23 + b_2_43·b_3_8 + b_2_2·b_2_4·b_5_23 + b_2_42·b_4_14·a_1_1
+ b_2_44·a_1_1 + b_2_2·c_4_15·b_3_6 + a_2_0·c_4_15·b_3_8
- b_4_7·b_5_23 + b_2_42·b_4_14·a_1_1 + b_2_44·a_1_1 + a_2_0·b_2_4·b_5_23
+ a_2_0·c_4_15·b_3_6
- b_5_232 + b_2_2·b_2_44 + b_2_22·b_2_4·b_4_14 + a_2_0·b_2_44
+ a_2_0·b_2_2·b_2_4·b_4_14 + a_2_0·b_2_2·b_2_43 + b_2_23·c_4_15 + a_2_0·b_2_22·c_4_15
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_4_15, a Duflot regular element of degree 4
- b_2_4 + b_2_2 + b_2_1, an element of degree 2
- b_3_8 + b_3_7, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 4, 7].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_4 → 0, an element of degree 2
- c_2_3 → c_1_02, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_4_7 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- c_4_15 → c_1_14, an element of degree 4
- b_5_23 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- b_2_4 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- c_2_3 → c_1_02, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → c_1_23, an element of degree 3
- b_3_7 → 0, an element of degree 3
- b_3_8 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_4_7 → 0, an element of degree 4
- b_4_14 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_23
+ c_1_12·c_1_22, an element of degree 4
- c_4_15 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_23 → c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_24
+ c_1_12·c_1_23, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → c_1_22, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_4 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- c_2_3 → c_1_02, an element of degree 2
- b_3_5 → c_1_0·c_1_22, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_7 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_4_7 → c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3, an element of degree 4
- b_4_14 → c_1_34 + c_1_22·c_1_32, an element of degree 4
- c_4_15 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_23 → 0, an element of degree 5
|