Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 123 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t5 − t4 + 2·t2 − t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 19 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- b_3_5, an element of degree 3
- b_3_6, an element of degree 3
- b_3_7, an element of degree 3
- b_4_9, an element of degree 4
- b_4_10, an element of degree 4
- b_5_11, an element of degree 5
- b_5_13, an element of degree 5
- a_6_8, a nilpotent element of degree 6
- b_6_17, an element of degree 6
- b_7_18, an element of degree 7
- c_8_26, a Duflot regular element of degree 8
Ring relations
There are 116 minimal relations of maximal degree 14:
- a_1_02
- a_1_12
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- b_2_2·a_1_1 + b_2_1·a_1_1
- b_2_2·a_1_0 + b_2_1·a_1_1
- b_2_3·a_1_0
- a_2_02
- b_2_22 + b_2_1·b_2_3 + b_2_1·b_2_2
- a_2_0·b_2_2 + a_1_1·a_3_3
- a_2_0·b_2_1 + a_1_0·a_3_3
- a_1_1·a_3_4
- a_2_0·b_2_2 + a_2_0·b_2_1 + a_1_0·a_3_4
- a_1_1·b_3_5 + a_2_0·b_2_3
- a_1_0·b_3_5 + a_2_0·b_2_2 + a_2_0·b_2_1
- b_2_2·b_2_3 + a_1_1·b_3_6 + a_2_0·b_2_3
- b_2_22 + b_2_1·b_2_2 + a_1_0·b_3_6
- b_2_2·b_2_3 + a_1_0·b_3_7 + a_2_0·b_2_1
- a_2_0·a_3_3
- b_2_2·a_3_3 + b_2_1·a_3_4 + b_2_1·a_3_3 + b_2_12·a_1_1
- b_2_3·a_3_3 + b_2_2·a_3_4 + b_2_12·a_1_1
- a_2_0·a_3_4
- b_2_1·b_3_5 + b_2_2·a_3_3 + b_2_1·a_3_3
- b_2_2·b_3_5 + b_2_3·a_3_3
- b_2_32·a_1_1 + a_2_0·b_3_5
- b_2_3·b_3_6 + b_2_3·b_3_5 + b_2_3·a_3_4
- b_2_3·a_3_3 + b_2_32·a_1_1 + a_2_0·b_3_6
- b_2_2·b_3_6 + b_2_1·b_3_7 + b_2_1·a_3_3
- b_2_2·b_3_7 + b_2_2·b_3_6 + b_2_2·a_3_3
- b_2_3·a_3_4 + b_2_3·a_3_3 + a_2_0·b_3_7
- b_4_9·a_1_1 + b_2_3·a_3_4 + b_2_3·a_3_3 + b_2_32·a_1_1 + b_2_12·a_1_1
- b_4_9·a_1_0 + b_2_3·a_3_3 + b_2_12·a_1_1
- b_4_10·a_1_0 + b_2_12·a_1_1
- a_3_42 + a_3_3·a_3_4 + b_2_1·a_1_0·a_3_4 + b_2_1·a_1_0·a_3_3
- a_3_3·b_3_5 + a_3_42
- b_3_52 + b_2_33 + a_2_0·b_2_32 + a_3_42
- b_2_1·a_1_0·b_3_6 + a_3_32
- b_3_5·b_3_6 + b_2_33 + a_3_4·b_3_6 + a_2_0·b_2_32 + a_3_42 + a_3_32
- b_2_1·a_1_0·b_3_7 + a_3_42 + a_3_32 + b_2_1·a_1_0·a_3_3
- a_3_4·b_3_5 + b_2_3·a_1_1·b_3_7 + a_3_42
- a_3_4·b_3_6 + a_3_4·b_3_5 + a_3_3·b_3_7 + a_3_3·b_3_6
- b_2_1·b_4_9 + b_2_12·b_2_2 + a_3_3·b_3_6 + a_3_42
- b_3_5·b_3_7 + b_2_3·b_4_9 + b_2_33 + a_3_4·b_3_5 + a_3_42 + a_3_32
- b_2_2·b_4_9 + b_2_12·b_2_2 + a_3_4·b_3_6 + a_3_4·b_3_5 + a_3_3·b_3_6
- a_3_4·b_3_5 + a_2_0·b_4_9 + a_2_0·b_2_32 + a_3_42 + b_2_1·a_1_0·a_3_4
+ b_2_1·a_1_0·a_3_3
- b_3_62 + b_2_33 + b_2_1·b_4_10 + b_2_12·b_2_2 + a_2_0·b_2_32 + a_3_32
+ b_2_1·a_1_0·a_3_4 + b_2_1·a_1_0·a_3_3
- b_3_72 + b_3_6·b_3_7 + b_3_5·b_3_7 + b_2_3·b_4_10 + b_2_33 + a_3_3·b_3_6
+ a_2_0·b_2_32
- b_3_6·b_3_7 + b_3_5·b_3_7 + b_2_2·b_4_10 + b_2_12·b_2_2 + a_3_4·b_3_7 + a_3_3·b_3_6
+ a_3_32
- a_3_4·b_3_7 + a_2_0·b_4_10 + a_2_0·b_2_32 + a_3_32
- a_3_4·b_3_7 + a_1_1·b_5_11 + a_2_0·b_2_32 + a_3_42
- a_1_0·b_5_11 + a_3_32 + b_2_1·a_1_0·a_3_4 + b_2_1·a_1_0·a_3_3
- a_3_4·b_3_5 + a_1_1·b_5_13 + a_2_0·b_2_32 + a_3_42 + b_2_1·a_1_0·a_3_4
+ b_2_1·a_1_0·a_3_3
- a_1_0·b_5_13 + b_2_1·a_1_0·a_3_4 + b_2_1·a_1_0·a_3_3
- b_4_9·a_3_3 + b_2_12·a_3_4 + b_2_12·a_3_3 + b_2_13·a_1_1 + a_1_0·a_3_3·b_3_7
+ a_1_0·a_3_3·b_3_6
- b_4_9·b_3_5 + b_2_32·b_3_7 + b_2_32·b_3_5 + a_1_0·a_3_3·b_3_7
- b_4_9·a_3_4 + b_2_3·b_4_10·a_1_1 + b_2_13·a_1_1 + a_2_0·b_2_3·b_3_7 + a_2_0·b_2_3·b_3_5
- b_4_9·b_3_6 + b_2_32·b_3_7 + b_2_32·b_3_5 + b_2_12·b_3_7 + b_4_10·a_3_3 + b_4_9·a_3_4
+ b_2_12·a_3_4 + a_1_0·a_3_3·b_3_6
- b_4_10·b_3_5 + b_4_9·b_3_7 + b_4_9·b_3_6 + b_4_9·a_3_4 + b_2_12·a_3_4 + b_2_12·a_3_3
+ a_2_0·b_2_3·b_3_5 + a_1_0·a_3_3·b_3_6
- b_2_2·b_5_11 + b_2_12·b_3_7 + b_2_12·a_3_4 + b_2_13·a_1_1 + a_1_0·a_3_3·b_3_6
- b_4_9·a_3_4 + b_2_13·a_1_1 + a_2_0·b_5_11 + a_2_0·b_2_3·b_3_7 + a_2_0·b_2_3·b_3_5
+ a_1_0·a_3_3·b_3_6
- b_2_3·b_5_13 + b_2_32·b_3_7 + b_2_32·b_3_5 + a_2_0·b_2_3·b_3_7 + a_2_0·b_2_3·b_3_5
+ a_1_0·a_3_3·b_3_7
- b_2_2·b_5_13 + b_2_1·b_5_13 + b_2_1·b_5_11 + b_2_12·b_3_6 + b_2_12·a_3_4 + b_2_12·a_3_3
+ b_2_13·a_1_1 + a_1_0·a_3_3·b_3_6
- a_2_0·b_5_13 + a_2_0·b_2_3·b_3_7 + a_2_0·b_2_3·b_3_5
- a_1_0·a_3_3·b_3_7 + a_6_8·a_1_1
- a_1_0·a_3_3·b_3_7 + a_6_8·a_1_0
- b_4_9·b_3_7 + b_4_9·b_3_6 + b_2_3·b_5_11 + b_6_17·a_1_1 + b_4_10·a_3_4 + b_2_12·a_3_4
+ b_2_12·a_3_3 + b_2_13·a_1_1 + a_2_0·b_2_3·b_3_7 + a_1_0·a_3_3·b_3_6
- b_6_17·a_1_0 + b_2_13·a_1_1 + a_1_0·a_3_3·b_3_7
- b_4_92 + b_2_32·b_4_10 + b_2_13·b_2_2 + a_2_0·b_2_33 + b_2_1·a_3_32
- a_3_4·b_5_11 + a_3_3·b_5_11 + b_4_10·a_1_1·b_3_7 + b_2_1·a_3_3·b_3_7 + b_2_1·a_3_3·a_3_4
+ b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- a_3_4·b_5_13 + a_3_4·b_5_11 + b_4_10·a_1_1·b_3_7 + b_2_1·a_3_3·b_3_7 + b_2_1·a_3_3·b_3_6
+ a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_9 + b_2_1·a_3_32 + b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- b_3_5·b_5_13 + b_2_32·b_4_9 + a_3_4·b_5_11 + b_4_10·a_1_1·b_3_7 + b_2_1·a_3_3·b_3_7
+ b_2_1·a_3_3·b_3_6 + b_2_1·a_3_32
- b_3_7·b_5_13 + b_3_6·b_5_13 + b_3_6·b_5_11 + b_3_5·b_5_11 + b_4_92 + b_2_12·b_4_10
+ a_3_4·b_5_11 + a_3_3·b_5_13 + b_2_1·a_3_3·b_3_7 + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_9 + b_2_1·a_3_3·a_3_4 + b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- a_3_3·b_5_13 + b_2_1·a_3_3·b_3_7 + b_2_1·a_6_8 + b_2_12·a_1_0·a_3_4
- b_3_5·b_5_11 + b_4_92 + b_2_13·b_2_2 + a_3_4·b_5_11 + b_4_10·a_1_1·b_3_7 + b_2_3·a_6_8
+ a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_9 + b_2_1·a_3_32
- a_3_4·b_5_11 + a_3_3·b_5_13 + b_4_10·a_1_1·b_3_7 + b_2_2·a_6_8 + b_2_1·a_3_3·b_3_6
+ b_2_1·a_3_3·a_3_4 + b_2_1·a_3_32 + b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- a_2_0·a_6_8
- b_3_6·b_5_13 + b_2_32·b_4_9 + b_2_1·b_6_17 + b_2_13·b_2_2 + a_2_0·b_2_3·b_4_10
+ a_2_0·b_2_3·b_4_9 + b_2_1·a_3_3·a_3_4 + b_2_1·a_3_32 + b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- b_3_6·b_5_13 + b_3_6·b_5_11 + b_3_5·b_5_11 + b_2_32·b_4_9 + b_2_2·b_6_17 + b_2_12·b_4_10
+ a_3_4·b_5_11 + b_2_1·a_3_3·b_3_7 + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_9 + b_2_1·a_3_32
- b_3_5·b_5_11 + b_4_92 + b_2_13·b_2_2 + a_3_4·b_5_11 + a_2_0·b_6_17 + a_2_0·b_2_33
+ b_2_1·a_3_3·a_3_4 + b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- b_3_5·b_5_11 + b_4_92 + b_2_13·b_2_2 + a_3_4·b_5_11 + a_1_1·b_7_18 + b_2_1·a_3_3·a_3_4
+ b_2_12·a_1_0·a_3_4 + b_2_12·a_1_0·a_3_3
- a_1_0·b_7_18 + b_2_12·a_1_0·a_3_3
- a_6_8·a_3_4 + a_3_33
- a_6_8·a_3_3 + a_3_32·a_3_4
- b_4_9·b_5_13 + b_2_32·b_5_11 + b_2_12·b_5_13 + b_2_12·b_5_11 + b_2_13·b_3_6
+ a_6_8·b_3_6 + b_2_1·b_4_10·a_3_4 + b_2_1·b_4_10·a_3_3 + b_2_14·a_1_1 + a_2_0·b_2_3·b_5_11 + a_2_0·b_2_32·b_3_7 + a_2_0·b_2_32·b_3_5 + a_3_33
- b_4_9·b_5_13 + b_4_9·b_5_11 + b_2_3·b_4_10·b_3_7 + b_2_12·b_5_13 + b_2_12·b_5_11
+ b_2_13·b_3_7 + b_2_13·b_3_6 + a_6_8·b_3_7 + a_6_8·b_3_5 + b_2_1·b_4_10·a_3_4 + b_2_13·a_3_3 + b_2_14·a_1_1 + a_2_0·b_2_32·b_3_7
- a_6_8·b_3_5 + b_2_3·b_6_17·a_1_1 + a_2_0·b_4_10·b_3_7 + a_2_0·b_2_3·b_5_11
+ a_2_0·b_2_32·b_3_7 + a_3_33
- b_4_9·b_5_11 + b_2_3·b_4_10·b_3_7 + b_2_32·b_5_11 + b_2_13·b_3_7 + b_6_17·a_3_4
+ b_4_102·a_1_1 + b_2_1·b_4_10·a_3_3 + b_2_13·a_3_3 + a_2_0·b_4_10·b_3_7 + a_2_0·b_2_3·b_5_11 + a_3_32·a_3_4
- b_4_9·b_5_13 + b_2_32·b_5_11 + b_2_12·b_5_13 + b_2_12·b_5_11 + b_2_13·b_3_6
+ b_6_17·a_3_3 + a_6_8·b_3_5 + a_2_0·b_2_3·b_5_11 + a_2_0·b_2_32·b_3_7 + a_2_0·b_2_32·b_3_5
- b_6_17·b_3_6 + b_6_17·b_3_5 + b_4_10·b_5_13 + b_4_9·b_5_11 + b_2_12·b_5_13
+ b_2_12·b_5_11 + b_2_13·b_3_6 + a_6_8·b_3_5 + b_4_102·a_1_1 + b_2_1·b_4_10·a_3_3 + b_2_13·a_3_4 + b_2_13·a_3_3 + a_2_0·b_2_32·b_3_7 + a_3_33
- b_2_1·b_7_18 + b_2_1·b_4_10·b_3_7 + b_2_1·b_4_10·b_3_6 + b_2_12·b_5_11 + b_2_13·b_3_6
+ b_2_1·b_4_10·a_3_3 + b_2_13·a_3_4 + b_2_14·a_1_1 + a_3_32·a_3_4 + a_3_33
- b_6_17·b_3_5 + b_4_9·b_5_11 + b_2_3·b_7_18 + b_2_3·b_4_10·b_3_7 + b_2_32·b_5_11
+ b_2_33·b_3_5 + b_2_13·b_3_7 + a_6_8·b_3_5 + b_2_1·b_4_10·a_3_3 + b_2_13·a_3_3 + a_2_0·b_2_32·b_3_7 + a_3_33
- b_2_2·b_7_18 + b_2_13·a_3_4 + b_2_13·a_3_3 + b_2_14·a_1_1 + a_3_32·a_3_4 + a_3_33
- a_6_8·b_3_5 + a_2_0·b_7_18 + a_2_0·b_4_10·b_3_7 + a_2_0·b_2_3·b_5_11
+ a_2_0·b_2_32·b_3_7 + a_2_0·b_2_32·b_3_5 + a_3_33
- b_5_112 + b_2_3·b_4_102 + b_2_2·b_4_102 + b_2_1·b_4_102 + b_2_13·b_4_10
+ b_2_14·b_2_2 + a_2_0·b_4_102 + b_2_12·a_3_3·a_3_4 + b_2_13·a_1_0·a_3_4 + b_2_13·a_1_0·a_3_3
- b_5_132 + b_2_33·b_4_10 + b_2_1·b_4_102 + b_2_14·b_2_2 + a_2_0·b_2_32·b_4_10
+ a_2_0·b_2_34 + b_2_12·a_3_3·a_3_4 + b_2_13·a_1_0·a_3_4 + b_2_13·a_1_0·a_3_3
- b_5_11·b_5_13 + b_2_3·b_4_9·b_4_10 + b_2_2·b_4_102 + b_2_1·b_4_102 + b_2_12·b_6_17
+ b_2_14·b_2_2 + b_4_9·a_6_8 + b_2_12·a_3_3·b_3_7 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_32·b_4_9 + b_2_12·a_3_32
- b_6_17·a_1_1·b_3_7 + b_4_9·a_6_8 + b_2_1·b_2_2·a_6_8 + a_2_0·b_4_102
+ a_2_0·b_2_3·b_6_17 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_32·b_4_9 + b_2_12·a_3_3·a_3_4 + b_2_12·a_3_32 + b_2_13·a_1_0·a_3_4 + b_2_13·a_1_0·a_3_3
- a_3_4·b_7_18 + b_4_10·a_3_3·b_3_7 + b_4_10·a_3_3·b_3_6 + b_4_9·a_6_8 + b_2_12·a_6_8
+ a_2_0·b_4_102 + a_2_0·b_2_3·b_6_17 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_34 + b_2_12·a_3_3·a_3_4 + b_2_12·a_3_32 + b_2_13·a_1_0·a_3_3
- a_3_3·b_7_18 + b_4_10·a_3_3·b_3_7 + b_4_10·a_3_3·b_3_6 + b_2_1·b_2_2·a_6_8
+ b_2_12·a_6_8 + b_2_13·a_1_0·a_3_4
- b_3_5·b_7_18 + b_2_32·b_6_17 + b_2_35 + b_4_10·a_3_3·b_3_7 + b_4_10·a_3_3·b_3_6
+ b_4_9·a_6_8 + b_2_12·a_6_8 + a_2_0·b_2_3·b_6_17 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_32·b_4_9 + a_2_0·b_2_34 + b_2_12·a_3_3·a_3_4 + b_2_12·a_3_32 + b_2_13·a_1_0·a_3_3
- b_5_11·b_5_13 + b_3_6·b_7_18 + b_2_3·b_4_9·b_4_10 + b_2_32·b_6_17 + b_2_35
+ b_2_1·b_2_2·b_6_17 + b_2_14·b_2_2 + b_4_9·a_6_8 + b_2_12·a_3_3·b_3_7 + b_2_12·a_3_3·b_3_6 + a_2_0·b_4_102 + a_2_0·b_2_32·b_4_10 + b_2_12·a_3_3·a_3_4 + b_2_12·a_3_32
- b_3_7·b_7_18 + b_4_9·b_6_17 + b_2_32·b_6_17 + b_2_33·b_4_9 + b_2_35
+ b_2_1·b_2_2·b_6_17 + b_4_10·a_3_3·b_3_6 + b_4_10·a_6_8 + b_2_12·a_3_3·b_3_7 + b_2_12·a_6_8 + a_2_0·b_4_102 + a_2_0·b_4_9·b_4_10 + a_2_0·b_2_3·b_6_17 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_32·b_4_9 + a_2_0·b_2_34 + b_2_12·a_3_3·a_3_4 + b_2_13·a_1_0·a_3_3
- a_6_8·b_5_11 + b_4_10·b_6_17·a_1_1 + b_4_102·a_3_4 + b_2_1·a_6_8·b_3_6
+ a_2_0·b_4_10·b_5_11 + a_2_0·b_2_3·b_4_10·b_3_7 + b_2_1·a_3_32·a_3_4 + b_2_1·a_3_33
- b_6_17·b_5_13 + b_4_102·b_3_6 + b_2_3·b_6_17·b_3_7 + b_2_3·b_4_10·b_5_11
+ b_2_32·b_7_18 + b_2_34·b_3_5 + b_2_13·b_5_13 + b_2_13·b_5_11 + b_2_14·b_3_7 + b_2_14·b_3_6 + a_6_8·b_5_11 + b_4_102·a_3_4 + b_2_1·a_6_8·b_3_6 + b_2_14·a_3_4 + a_2_0·b_4_10·b_5_11 + a_2_0·b_2_3·b_4_10·b_3_7 + b_2_1·a_3_32·a_3_4
- a_6_8·b_5_13 + b_4_102·a_3_3 + b_2_1·a_6_8·b_3_7 + b_2_12·b_4_10·a_3_4
+ b_2_12·b_4_10·a_3_3 + b_2_15·a_1_1 + a_2_0·b_6_17·b_3_7 + a_2_0·b_4_10·b_5_11 + a_2_0·b_2_3·b_7_18 + a_2_0·b_2_32·b_5_11 + a_2_0·b_2_33·b_3_7 + b_2_1·a_3_33
- b_6_17·b_5_13 + b_4_102·b_3_6 + b_4_9·b_7_18 + b_2_3·b_4_10·b_5_11 + b_2_34·b_3_7
+ b_2_34·b_3_5 + b_2_13·b_5_13 + b_2_13·b_5_11 + b_2_14·b_3_7 + b_2_14·b_3_6 + a_6_8·b_5_13 + b_4_102·a_3_4 + b_4_102·a_3_3 + b_2_1·a_6_8·b_3_6 + b_2_12·b_4_10·a_3_4 + b_2_12·b_4_10·a_3_3 + b_2_14·a_3_3 + a_2_0·b_4_10·b_5_11 + a_2_0·b_2_32·b_5_11 + a_2_0·b_2_33·b_3_7 + a_2_0·b_2_33·b_3_5 + b_2_1·a_3_33
- b_6_17·b_5_11 + b_4_10·b_7_18 + b_2_33·b_5_11 + b_2_1·b_4_10·b_5_13
+ b_2_1·b_4_10·b_5_11 + b_2_12·b_4_10·b_3_6 + b_2_13·b_5_13 + b_2_13·b_5_11 + b_2_14·b_3_7 + b_2_14·b_3_6 + a_6_8·b_5_13 + a_6_8·b_5_11 + b_4_102·a_3_4 + b_4_102·a_3_3 + b_2_1·a_6_8·b_3_6 + b_2_12·b_4_10·a_3_4 + b_2_14·a_3_4 + b_2_15·a_1_1 + a_2_0·b_6_17·b_3_7 + a_2_0·b_4_10·b_5_11 + a_2_0·b_2_3·b_4_10·b_3_7 + a_2_0·b_2_33·b_3_7 + b_2_1·a_3_33 + b_2_3·c_8_26·a_1_1
- a_6_82
- b_5_11·b_7_18 + b_4_10·b_3_7·b_5_11 + b_4_9·b_4_102 + b_2_3·b_4_10·b_6_17
+ b_2_32·b_4_102 + b_2_34·b_4_10 + b_2_2·b_4_10·b_6_17 + b_2_1·b_4_10·b_6_17 + b_2_12·b_2_2·b_6_17 + b_2_13·b_6_17 + b_2_13·b_2_2·b_4_10 + a_6_8·b_6_17 + b_2_1·b_4_10·a_3_3·b_3_6 + b_2_1·b_4_10·a_6_8 + b_2_12·b_2_2·a_6_8 + b_2_13·a_3_3·b_3_6 + b_2_13·a_6_8 + a_2_0·b_4_9·b_6_17 + a_2_0·b_2_3·b_4_102 + a_2_0·b_2_3·b_4_9·b_4_10 + a_2_0·b_2_33·b_4_10 + b_2_13·a_3_3·a_3_4 + b_2_13·a_3_32 + b_2_14·a_1_0·a_3_3
- b_5_13·b_7_18 + b_2_3·b_4_9·b_6_17 + b_2_34·b_4_9 + b_2_2·b_4_10·b_6_17
+ b_2_1·b_4_10·b_6_17 + b_2_1·b_2_2·b_4_102 + b_2_12·b_4_102 + b_2_3·b_4_10·a_6_8 + b_2_13·a_3_3·b_3_7 + b_2_13·a_6_8 + a_2_0·b_2_3·b_4_9·b_4_10 + a_2_0·b_2_33·b_4_10 + b_2_13·a_3_3·a_3_4 + b_2_13·a_3_32 + b_2_14·a_1_0·a_3_3
- b_6_172 + b_4_103 + b_2_3·b_4_10·b_6_17 + b_2_32·b_4_102 + b_2_32·b_4_9·b_4_10
+ b_2_34·b_4_10 + b_2_36 + b_2_1·b_2_2·b_4_102 + b_2_13·b_2_2·b_4_10 + b_2_3·b_4_10·a_6_8 + a_2_0·b_4_10·b_6_17 + a_2_0·b_4_9·b_6_17 + a_2_0·b_2_3·b_4_102 + a_2_0·b_2_3·b_4_9·b_4_10 + a_2_0·b_2_32·b_6_17 + a_2_0·b_2_33·b_4_9 + b_2_13·a_3_3·a_3_4 + b_2_13·a_3_32 + b_2_14·a_1_0·a_3_4 + b_2_14·a_1_0·a_3_3 + b_2_32·c_8_26
- b_4_10·b_3_7·b_5_11 + b_4_9·b_4_102 + b_2_32·b_4_102 + b_2_13·b_2_2·b_4_10
+ a_6_8·b_6_17 + b_2_1·b_4_10·a_3_3·b_3_6 + b_2_1·b_4_10·a_6_8 + a_2_0·b_4_9·b_6_17 + a_2_0·b_2_3·b_4_9·b_4_10 + a_2_0·b_2_32·b_6_17 + a_2_0·b_2_33·b_4_10 + a_2_0·b_2_35 + b_2_13·a_3_3·a_3_4 + b_2_13·a_3_32 + b_2_14·a_1_0·a_3_4 + b_2_14·a_1_0·a_3_3 + a_2_0·b_2_3·c_8_26
- a_6_8·b_7_18 + b_4_10·a_6_8·b_3_7 + b_4_10·a_6_8·b_3_6 + b_2_1·b_4_102·a_3_4
+ b_2_16·a_1_1 + a_2_0·b_4_10·b_7_18 + a_2_0·b_2_3·b_6_17·b_3_7 + a_2_0·b_2_32·b_7_18 + a_2_0·b_2_32·b_4_10·b_3_7 + a_2_0·b_2_33·b_5_11 + a_2_0·b_2_34·b_3_7 + b_2_12·a_3_33 + a_2_0·c_8_26·b_3_5
- b_6_17·b_7_18 + b_4_102·b_5_11 + b_2_3·b_4_10·b_7_18 + b_2_32·b_4_10·b_5_11
+ b_2_33·b_7_18 + b_2_33·b_4_10·b_3_7 + b_2_34·b_5_11 + b_2_1·b_4_102·b_3_7 + b_4_103·a_1_1 + b_2_1·b_4_102·a_3_4 + b_2_12·a_6_8·b_3_6 + b_2_13·b_4_10·a_3_4 + b_2_13·b_4_10·a_3_3 + b_2_16·a_1_1 + a_2_0·b_4_10·b_7_18 + a_2_0·b_4_102·b_3_7 + b_2_3·c_8_26·b_3_5 + a_2_0·c_8_26·b_3_7 + a_2_0·c_8_26·b_3_6
- b_7_182 + b_2_3·b_4_103 + b_2_32·b_4_10·b_6_17 + b_2_33·b_4_102
+ b_2_33·b_4_9·b_4_10 + b_2_35·b_4_10 + b_2_2·b_4_103 + b_2_1·b_4_103 + b_2_12·b_2_2·b_4_102 + b_2_13·b_4_102 + a_2_0·b_4_103 + a_2_0·b_4_9·b_4_102 + a_2_0·b_2_3·b_4_10·b_6_17 + a_2_0·b_2_3·b_4_9·b_6_17 + a_2_0·b_2_32·b_4_9·b_4_10 + a_2_0·b_2_33·b_6_17 + a_2_0·b_2_34·b_4_9 + b_2_14·a_3_3·a_3_4 + b_2_15·a_1_0·a_3_4 + b_2_15·a_1_0·a_3_3 + b_2_33·c_8_26 + a_2_0·b_2_32·c_8_26
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_26, a Duflot regular element of degree 8
- b_4_10 + b_2_1·b_2_2 + b_2_12, an element of degree 4
- b_2_3·b_4_10 + b_2_33 + b_2_1·b_4_10 + b_2_12·b_2_2, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 15].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 4.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_10 → 0, an element of degree 4
- b_5_11 → 0, an element of degree 5
- b_5_13 → 0, an element of degree 5
- a_6_8 → 0, an element of degree 6
- b_6_17 → 0, an element of degree 6
- b_7_18 → 0, an element of degree 7
- c_8_26 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → c_1_12, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- b_3_5 → c_1_13, an element of degree 3
- b_3_6 → c_1_13, an element of degree 3
- b_3_7 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_9 → c_1_12·c_1_22 + c_1_13·c_1_2 + c_1_14, an element of degree 4
- b_4_10 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_1·c_1_24 + c_1_13·c_1_22 + c_1_15, an element of degree 5
- b_5_13 → c_1_13·c_1_22 + c_1_14·c_1_2 + c_1_15, an element of degree 5
- a_6_8 → 0, an element of degree 6
- b_6_17 → c_1_26 + c_1_15·c_1_2 + c_1_16 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_7_18 → c_1_1·c_1_26 + c_1_16·c_1_2 + c_1_02·c_1_15 + c_1_04·c_1_13, an element of degree 7
- c_8_26 → c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_18 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → c_1_12, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- b_3_5 → 0, an element of degree 3
- b_3_6 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_7 → 0, an element of degree 3
- b_4_9 → 0, an element of degree 4
- b_4_10 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_11 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_5_13 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- a_6_8 → 0, an element of degree 6
- b_6_17 → c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23, an element of degree 6
- b_7_18 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_15·c_1_22, an element of degree 7
- c_8_26 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → c_1_22, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- b_3_5 → 0, an element of degree 3
- b_3_6 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_7 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_9 → c_1_24, an element of degree 4
- b_4_10 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_11 → c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
- b_5_13 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_8 → 0, an element of degree 6
- b_6_17 → c_1_26 + c_1_13·c_1_23 + c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_16, an element of degree 6
- b_7_18 → 0, an element of degree 7
- c_8_26 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|