Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 126 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 − t4 + 2·t2 − t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 19 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- a_2_2, a nilpotent element of degree 2
- c_2_3, a Duflot regular element of degree 2
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_3_7, a nilpotent element of degree 3
- a_4_8, a nilpotent element of degree 4
- b_4_9, an element of degree 4
- a_5_10, a nilpotent element of degree 5
- a_5_12, a nilpotent element of degree 5
- a_6_13, a nilpotent element of degree 6
- b_6_16, an element of degree 6
- a_7_20, a nilpotent element of degree 7
- c_8_26, a Duflot regular element of degree 8
Ring relations
There are 116 minimal relations of maximal degree 14:
- a_1_02
- a_1_12
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_0
- a_2_2·a_1_1
- a_2_2·a_1_0 + a_2_1·a_1_1
- a_2_02
- a_2_22 + a_2_1·a_2_2 + a_2_12 + a_2_0·a_2_1
- a_1_1·a_3_3 + a_2_0·a_2_1
- a_1_0·a_3_3
- a_1_1·a_3_4 + a_2_0·a_2_2 + a_2_0·a_2_1
- a_1_0·a_3_4 + a_2_0·a_2_1
- a_1_1·a_3_5
- a_1_0·a_3_5 + a_2_0·a_2_2
- a_1_1·a_3_6 + a_2_22 + a_2_0·a_2_2
- a_1_0·a_3_6 + a_2_12 + a_2_0·a_2_1
- a_1_0·a_3_7 + a_2_22 + a_2_0·a_2_2
- a_2_2·a_3_3
- a_2_0·a_3_3
- a_2_1·a_3_3 + a_2_1·c_2_3·a_1_1
- a_2_0·a_3_4
- a_2_2·a_3_5 + a_2_2·a_3_4 + a_2_1·a_3_4
- a_2_0·a_3_5 + a_2_1·c_2_3·a_1_1
- a_2_2·a_3_4 + a_2_1·a_3_5 + a_2_1·c_2_3·a_1_1
- a_2_1·a_3_4 + a_2_0·a_3_6
- a_2_1·a_3_6 + a_2_1·a_3_4
- a_2_2·a_3_7 + a_2_1·c_2_3·a_1_1
- a_2_2·a_3_4 + a_2_1·a_3_4 + a_2_0·a_3_7 + a_2_1·c_2_3·a_1_1
- a_2_2·a_3_6 + a_2_1·a_3_7 + a_2_1·a_3_4 + a_2_1·c_2_3·a_1_1
- a_4_8·a_1_1 + a_2_2·a_3_4 + a_2_1·a_3_4 + a_2_1·c_2_3·a_1_1
- a_4_8·a_1_0 + a_2_1·a_3_4 + a_2_1·c_2_3·a_1_1
- b_4_9·a_1_0 + a_2_1·a_3_4
- a_3_32
- a_3_3·a_3_4 + a_2_0·a_2_2·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_42 + a_2_12·c_2_3
- a_3_3·a_3_5 + a_2_0·a_2_1·c_2_3
- a_3_52 + a_2_1·a_2_2·c_2_3 + a_2_12·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_4·a_3_5 + a_2_1·a_2_2·c_2_3 + a_2_0·a_2_2·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_3·a_3_6 + a_2_1·a_2_2·c_2_3 + a_2_12·c_2_3 + a_2_0·a_2_2·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_72 + a_3_6·a_3_7 + a_3_62 + a_2_1·a_2_2·c_2_3 + a_2_12·c_2_3 + a_2_0·a_2_2·c_2_3
+ a_2_0·a_2_1·c_2_3
- a_3_5·a_3_7 + a_3_4·a_3_6 + a_3_3·a_3_7 + a_2_12·c_2_3 + a_2_0·a_2_2·c_2_3
+ a_2_0·a_2_1·c_2_3
- a_3_5·a_3_6 + a_3_4·a_3_7 + a_3_4·a_3_6 + a_2_1·a_2_2·c_2_3 + a_2_12·c_2_3
+ a_2_0·a_2_1·c_2_3
- a_3_5·a_3_6 + a_2_2·a_4_8
- a_2_0·a_4_8 + a_2_12·c_2_3 + a_2_0·a_2_2·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_4·a_3_6 + a_2_1·a_4_8 + a_2_1·a_2_2·c_2_3 + a_2_0·a_2_1·c_2_3
- a_2_2·b_4_9 + a_3_72 + a_3_5·a_3_6
- a_2_0·b_4_9 + a_3_4·a_3_6 + a_3_3·a_3_7 + c_2_3·a_1_1·a_3_7
- a_2_1·b_4_9 + a_3_62 + a_3_4·a_3_6 + a_2_12·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_4·a_3_6 + a_3_3·a_3_7 + a_1_1·a_5_10 + c_2_3·a_1_1·a_3_7 + a_2_12·c_2_3
+ a_2_0·a_2_2·c_2_3
- a_1_0·a_5_10 + a_2_0·a_2_2·c_2_3 + a_2_0·a_2_1·c_2_3
- a_3_4·a_3_6 + a_3_3·a_3_7 + a_1_1·a_5_12 + c_2_3·a_1_1·a_3_7 + a_2_1·a_2_2·c_2_3
+ a_2_0·a_2_2·c_2_3
- a_1_0·a_5_12 + a_2_12·c_2_3 + a_2_0·a_2_1·c_2_3
- a_4_8·a_3_3 + a_2_0·c_2_3·a_3_7
- a_4_8·a_3_5 + a_2_1·c_2_3·a_3_7 + a_2_0·c_2_3·a_3_6 + a_2_1·c_2_32·a_1_1
- a_4_8·a_3_4 + a_2_0·c_2_3·a_3_7 + a_2_1·c_2_32·a_1_1
- b_4_9·a_3_5 + b_4_9·a_3_3 + a_4_8·a_3_7 + a_4_8·a_3_6 + a_2_0·a_2_1·a_3_7
+ a_2_0·c_2_3·a_3_7 + a_2_0·c_2_3·a_3_6 + a_2_1·c_2_32·a_1_1
- b_4_9·a_3_4 + a_4_8·a_3_6 + a_2_0·a_2_1·a_3_7 + a_2_1·c_2_3·a_3_7 + a_2_1·c_2_32·a_1_1
- a_2_0·a_5_10 + a_2_1·c_2_32·a_1_1
- a_2_2·a_5_10 + a_2_1·a_5_10 + a_2_0·c_2_3·a_3_7 + a_2_0·c_2_3·a_3_6
+ a_2_1·c_2_32·a_1_1
- a_2_2·a_5_12 + a_2_0·a_2_1·a_3_7 + a_2_1·c_2_3·a_3_7 + a_2_0·c_2_3·a_3_6
- a_2_0·a_5_12 + a_2_0·c_2_3·a_3_6
- a_2_2·a_5_10 + a_2_1·a_5_12 + a_2_0·a_2_1·a_3_7
- a_6_13·a_1_1
- a_6_13·a_1_0 + a_2_0·a_2_1·a_3_7
- b_6_16·a_1_1 + b_4_9·a_3_3 + a_2_2·a_5_10 + a_2_0·c_2_3·a_3_7 + a_2_0·c_2_3·a_3_6
+ a_2_1·c_2_32·a_1_1
- b_6_16·a_1_0 + a_2_0·a_2_1·a_3_7 + a_2_1·c_2_32·a_1_1
- a_4_82 + c_2_3·a_3_62 + a_2_1·a_2_2·c_2_32 + a_2_12·c_2_32
+ a_2_0·a_2_1·c_2_32
- a_3_5·a_5_10 + a_3_4·a_5_10 + b_4_9·a_1_1·a_3_7 + c_2_3·a_1_1·a_5_10
+ a_2_1·a_2_2·c_2_32 + a_2_0·a_2_1·c_2_32
- a_3_3·a_5_12 + a_3_3·a_5_10 + a_2_1·a_2_2·c_2_32 + a_2_12·c_2_32
- a_3_7·a_5_12 + a_3_7·a_5_10 + a_3_6·a_5_12 + a_3_5·a_5_10 + a_3_4·a_5_10
+ c_2_3·a_3_6·a_3_7 + c_2_3·a_3_62 + a_2_2·c_2_3·a_4_8 + a_2_1·c_2_3·a_4_8 + a_2_12·c_2_32 + a_2_0·a_2_2·c_2_32
- a_3_5·a_5_12 + a_3_5·a_5_10 + a_3_4·a_5_10 + a_2_2·c_2_3·a_4_8 + a_2_1·a_2_2·c_2_32
- a_3_5·a_5_10 + a_3_4·a_5_12 + a_3_3·a_5_10 + a_2_1·c_2_3·a_4_8 + a_2_1·a_2_2·c_2_32
+ a_2_12·c_2_32 + a_2_0·a_2_1·c_2_32
- a_3_4·a_5_10 + a_2_2·a_6_13 + a_2_1·a_2_2·c_2_32 + a_2_12·c_2_32
+ a_2_0·a_2_2·c_2_32
- a_2_0·a_6_13
- a_3_5·a_5_10 + a_3_4·a_5_10 + a_3_3·a_5_10 + a_2_1·a_6_13 + a_2_1·a_2_2·c_2_32
- a_2_2·b_6_16 + a_3_6·a_5_10 + a_3_4·a_5_10 + c_2_3·a_3_6·a_3_7 + c_2_3·a_3_62
+ a_2_2·c_2_3·a_4_8 + a_2_1·c_2_3·a_4_8 + a_2_1·a_2_2·c_2_32 + a_2_12·c_2_32 + a_2_0·a_2_1·c_2_32
- a_2_0·b_6_16 + a_3_3·a_5_10
- a_2_1·b_6_16 + a_3_7·a_5_12 + a_3_7·a_5_10 + a_3_6·a_5_10 + a_3_3·a_5_10
+ c_2_3·a_3_6·a_3_7 + c_2_3·a_3_62 + a_2_12·c_2_32
- a_3_3·a_5_10 + a_1_1·a_7_20 + c_2_32·a_1_1·a_3_7 + a_2_0·a_2_2·c_2_32
+ a_2_0·a_2_1·c_2_32
- a_1_0·a_7_20 + a_2_1·a_2_2·c_2_32 + a_2_12·c_2_32 + a_2_0·a_2_1·c_2_32
- a_6_13·a_3_3 + a_2_1·a_4_8·a_3_7 + a_2_0·a_2_1·c_2_3·a_3_7
- a_6_13·a_3_7 + a_4_8·a_5_12 + a_3_62·a_3_7 + c_2_3·a_4_8·a_3_6
+ a_2_0·a_2_1·c_2_3·a_3_7 + a_2_0·c_2_32·a_3_7 + a_2_0·c_2_32·a_3_6 + a_2_1·c_2_33·a_1_1
- a_6_13·a_3_6 + a_4_8·a_5_12 + a_4_8·a_5_10 + c_2_3·a_4_8·a_3_6 + a_2_1·c_2_3·a_5_10
+ a_2_0·a_2_1·c_2_3·a_3_7 + a_2_1·c_2_32·a_3_7 + a_2_0·c_2_32·a_3_7 + a_2_0·c_2_32·a_3_6
- a_6_13·a_3_5 + a_2_1·c_2_3·a_5_10 + a_2_0·c_2_32·a_3_7
- a_6_13·a_3_4 + a_2_0·a_2_1·c_2_3·a_3_7
- b_6_16·a_3_3 + b_4_92·a_1_1 + a_3_62·a_3_7 + a_2_1·a_4_8·a_3_7 + a_2_1·c_2_3·a_5_10
+ c_2_32·b_4_9·a_1_1
- b_6_16·a_3_6 + b_4_9·a_5_12 + b_4_9·a_5_10 + b_4_92·a_1_1 + a_3_62·a_3_7
+ a_2_1·a_4_8·a_3_7 + c_2_3·b_4_9·a_3_3 + c_2_3·a_4_8·a_3_7 + c_2_3·a_4_8·a_3_6 + c_2_32·b_4_9·a_1_1 + a_2_1·c_2_32·a_3_7 + a_2_0·c_2_32·a_3_7 + a_2_0·c_2_32·a_3_6
- b_6_16·a_3_5 + b_4_92·a_1_1 + a_4_8·a_5_10 + a_3_62·a_3_7 + c_2_3·a_4_8·a_3_7
+ c_2_3·a_4_8·a_3_6 + a_2_1·c_2_3·a_5_10 + a_2_0·a_2_1·c_2_3·a_3_7 + c_2_32·b_4_9·a_1_1 + a_2_0·c_2_32·a_3_7 + a_2_1·c_2_33·a_1_1
- b_6_16·a_3_4 + a_4_8·a_5_12 + a_4_8·a_5_10 + a_2_1·c_2_3·a_5_10
+ a_2_0·a_2_1·c_2_3·a_3_7 + a_2_0·c_2_32·a_3_6
- a_2_2·a_7_20 + a_3_62·a_3_7 + a_2_1·c_2_3·a_5_10
- a_2_0·a_7_20 + a_2_0·c_2_32·a_3_7 + a_2_1·c_2_33·a_1_1
- a_2_1·a_7_20 + a_3_62·a_3_7 + a_2_1·c_2_3·a_5_10 + a_2_1·c_2_32·a_3_7
+ a_2_0·c_2_32·a_3_6
- a_5_102 + b_4_9·a_3_6·a_3_7 + a_4_8·a_3_6·a_3_7 + a_2_1·a_2_2·c_2_33
+ a_2_0·a_2_1·c_2_33
- a_5_122 + b_4_9·a_3_6·a_3_7 + b_4_9·a_3_62 + a_4_8·a_3_6·a_3_7 + a_4_8·a_3_62
+ c_2_32·a_3_62
- a_4_8·a_6_13 + a_4_8·a_3_62 + c_2_3·a_3_6·a_5_12 + c_2_3·a_3_6·a_5_10
+ a_2_2·c_2_3·a_6_13 + c_2_32·a_3_62 + a_2_2·c_2_32·a_4_8 + a_2_1·c_2_32·a_4_8 + a_2_12·c_2_33 + a_2_0·a_2_2·c_2_33
- a_5_10·a_5_12 + b_4_9·a_3_62 + b_4_9·a_1_1·a_5_10 + a_4_8·a_6_13 + c_2_3·a_3_6·a_5_12
+ c_2_3·b_4_9·a_1_1·a_3_7 + a_2_1·c_2_3·a_6_13 + c_2_32·a_3_62 + a_2_2·c_2_32·a_4_8 + a_2_1·c_2_32·a_4_8 + a_2_12·c_2_33 + a_2_0·a_2_2·c_2_33
- a_3_3·a_7_20 + b_4_9·a_1_1·a_5_10 + a_2_1·c_2_32·a_4_8 + c_2_33·a_1_1·a_3_7
+ a_2_1·a_2_2·c_2_33 + a_2_12·c_2_33
- b_4_9·a_6_13 + a_4_8·b_6_16 + a_5_10·a_5_12 + a_3_7·a_7_20 + b_4_9·a_3_62
+ b_4_9·a_1_1·a_5_10 + a_4_8·a_3_62 + c_2_3·a_4_8·b_4_9 + c_2_3·a_3_7·a_5_10 + c_2_32·a_3_6·a_3_7 + c_2_32·a_1_1·a_5_10 + a_2_1·c_2_32·a_4_8 + a_2_1·a_2_2·c_2_33 + a_2_0·a_2_2·c_2_33
- a_3_6·a_7_20 + b_4_9·a_3_6·a_3_7 + b_4_9·a_3_62 + a_4_8·a_3_6·a_3_7 + a_4_8·a_3_62
+ c_2_3·a_3_6·a_5_10 + c_2_32·a_3_6·a_3_7 + a_2_1·c_2_32·a_4_8 + a_2_1·a_2_2·c_2_33 + a_2_12·c_2_33
- a_5_10·a_5_12 + a_3_5·a_7_20 + b_4_9·a_3_62 + a_4_8·a_3_6·a_3_7 + a_4_8·a_3_62
+ c_2_3·a_3_6·a_5_10 + c_2_3·b_4_9·a_1_1·a_3_7 + c_2_33·a_1_1·a_3_7 + a_2_1·a_2_2·c_2_33 + a_2_12·c_2_33 + a_2_0·a_2_2·c_2_33
- a_3_4·a_7_20 + a_4_8·a_6_13 + a_4_8·a_3_6·a_3_7 + c_2_3·a_3_6·a_5_12
+ c_2_3·a_3_6·a_5_10 + c_2_32·a_3_62 + a_2_1·a_2_2·c_2_33 + a_2_0·a_2_1·c_2_33
- a_6_13·a_5_12 + a_4_8·b_4_9·a_3_7 + a_3_62·a_5_10 + c_2_3·a_4_8·a_5_12
+ c_2_3·a_4_8·a_5_10 + c_2_3·a_3_62·a_3_7 + c_2_32·a_4_8·a_3_6 + a_2_1·c_2_32·a_5_10 + a_2_1·c_2_33·a_3_7 + a_2_0·c_2_33·a_3_7 + a_2_0·c_2_33·a_3_6
- a_6_13·a_5_10 + a_4_8·b_4_9·a_3_7 + a_4_8·b_4_9·a_3_6 + a_3_62·a_5_10
+ a_2_1·a_4_8·a_5_10 + a_2_1·c_2_3·a_4_8·a_3_7 + a_2_1·c_2_32·a_5_10 + a_2_0·c_2_33·a_3_7
- b_6_16·a_5_12 + b_6_16·a_5_10 + b_4_92·a_3_6 + b_4_92·a_3_3 + a_4_8·b_4_9·a_3_6
+ c_2_3·b_4_92·a_1_1 + c_2_3·a_4_8·a_5_10 + c_2_3·a_3_62·a_3_7 + c_2_32·b_4_9·a_3_6 + c_2_32·b_4_9·a_3_3 + c_2_32·a_4_8·a_3_7 + c_2_32·a_4_8·a_3_6 + a_2_1·c_2_32·a_5_10 + c_2_33·b_4_9·a_1_1 + a_2_1·c_2_33·a_3_7 + a_2_0·c_2_33·a_3_7 + a_2_1·c_2_34·a_1_1
- a_4_8·a_7_20 + a_4_8·b_4_9·a_3_7 + a_4_8·b_4_9·a_3_6 + a_2_1·a_4_8·a_5_10
+ c_2_3·a_4_8·a_5_10 + c_2_3·a_3_62·a_3_7 + c_2_32·a_4_8·a_3_7 + a_2_0·c_2_33·a_3_7 + a_2_0·c_2_33·a_3_6
- b_6_16·a_5_12 + b_4_9·a_7_20 + b_4_92·a_3_6 + b_4_92·a_3_3 + a_4_8·b_4_9·a_3_6
+ a_3_62·a_5_10 + c_2_3·b_4_92·a_1_1 + c_2_3·a_4_8·a_5_12 + a_2_1·c_8_26·a_1_1 + c_2_32·b_4_9·a_3_7 + c_2_32·b_4_9·a_3_6 + c_2_32·b_4_9·a_3_3 + c_2_32·a_4_8·a_3_7 + c_2_32·a_4_8·a_3_6 + a_2_1·c_2_32·a_5_10 + c_2_33·b_4_9·a_1_1 + a_2_1·c_2_34·a_1_1
- a_6_132 + c_2_3·b_4_9·a_3_62 + c_2_3·a_4_8·a_3_62
- a_6_13·b_6_16 + a_4_8·b_4_92 + a_5_12·a_7_20 + b_4_9·a_3_7·a_5_10 + b_4_9·a_3_6·a_5_12
+ b_4_9·a_3_6·a_5_10 + b_4_92·a_1_1·a_3_7 + c_2_3·a_4_8·b_6_16 + c_2_3·a_3_7·a_7_20 + c_2_3·b_4_9·a_3_62 + c_2_3·b_4_9·a_1_1·a_5_10 + c_2_32·a_4_8·b_4_9 + c_2_32·a_3_6·a_5_10 + a_2_1·c_2_32·a_6_13 + a_2_1·a_2_2·c_2_34 + a_2_12·c_2_34
- a_5_12·a_7_20 + a_5_10·a_7_20 + b_4_9·a_3_6·a_5_10 + b_4_92·a_1_1·a_3_7
+ a_4_8·a_3_6·a_5_12 + c_2_3·a_4_8·a_3_6·a_3_7 + c_2_32·a_3_6·a_5_12 + c_2_32·a_3_6·a_5_10 + a_2_2·c_2_32·a_6_13 + c_2_33·a_3_6·a_3_7 + c_2_33·a_3_62 + c_2_33·a_1_1·a_5_10 + a_2_2·c_2_33·a_4_8 + a_2_12·c_2_34 + a_2_0·a_2_1·c_2_34
- a_5_12·a_7_20 + b_4_9·a_3_6·a_5_12 + b_4_9·a_3_6·a_5_10 + b_4_92·a_1_1·a_3_7
+ c_2_3·b_4_9·a_3_6·a_3_7 + c_2_3·b_4_9·a_3_62 + a_2_0·a_2_1·c_8_26 + c_2_32·a_3_7·a_5_10 + c_2_32·a_3_6·a_5_12 + c_2_32·a_3_6·a_5_10 + c_2_33·a_3_6·a_3_7 + c_2_33·a_3_62 + c_2_33·a_1_1·a_5_10 + a_2_2·c_2_33·a_4_8
- b_6_162 + b_4_93 + a_4_8·b_4_92 + b_4_9·a_3_6·a_5_12 + b_4_9·a_3_6·a_5_10
+ c_2_3·b_4_9·a_3_6·a_3_7 + c_2_3·b_4_9·a_3_62 + a_2_12·c_8_26 + c_2_32·b_4_92 + c_2_33·a_3_62 + a_2_1·a_2_2·c_2_34 + a_2_12·c_2_34 + a_2_0·a_2_1·c_2_34
- a_6_13·a_7_20 + a_4_8·b_4_9·a_5_10 + b_4_9·a_3_62·a_3_7 + c_2_3·a_4_8·b_4_9·a_3_7
+ c_2_3·a_4_8·b_4_9·a_3_6 + c_2_3·a_3_62·a_5_10 + c_2_32·a_4_8·a_5_12 + c_2_33·a_4_8·a_3_6 + a_2_1·c_2_33·a_5_10 + a_2_0·a_2_1·c_2_33·a_3_7 + a_2_0·c_2_34·a_3_6 + a_2_1·c_2_35·a_1_1
- b_6_16·a_7_20 + b_4_92·a_5_10 + a_4_8·b_4_9·a_5_10 + c_2_3·a_4_8·b_4_9·a_3_6
+ a_2_1·c_2_3·a_4_8·a_5_10 + c_2_32·b_6_16·a_3_7 + c_2_32·b_4_9·a_5_10 + a_2_1·c_2_3·c_8_26·a_1_1 + c_2_32·a_3_62·a_3_7 + c_2_33·a_4_8·a_3_6 + a_2_1·c_2_33·a_5_10 + a_2_0·c_2_34·a_3_7
- a_7_202 + b_4_92·a_3_6·a_3_7 + c_2_32·b_4_9·a_3_6·a_3_7
+ c_2_32·a_4_8·a_3_6·a_3_7 + c_2_34·a_3_6·a_3_7 + c_2_34·a_3_62 + a_2_0·a_2_2·c_2_35
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_3, a Duflot regular element of degree 2
- c_8_26, a Duflot regular element of degree 8
- b_4_9, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- c_2_3 → c_1_12, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- a_4_8 → 0, an element of degree 4
- b_4_9 → 0, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_12 → 0, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_6_16 → 0, an element of degree 6
- a_7_20 → 0, an element of degree 7
- c_8_26 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- c_2_3 → c_1_22 + c_1_12, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- a_4_8 → 0, an element of degree 4
- b_4_9 → c_1_24, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_12 → 0, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_6_16 → c_1_12·c_1_24, an element of degree 6
- a_7_20 → 0, an element of degree 7
- c_8_26 → c_1_14·c_1_24 + c_1_04·c_1_24 + c_1_08, an element of degree 8
|