Cohomology of group number 127 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth exceeds the Duflot bound, which is 1.
  • The Poincaré series is
    ( − 1) · (t5  −  t4  +  2·t2  −  t  +  1)

    (t  −  1)3 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 19 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_0, a nilpotent element of degree 2
  4. b_2_1, an element of degree 2
  5. b_2_2, an element of degree 2
  6. b_2_3, an element of degree 2
  7. a_3_4, a nilpotent element of degree 3
  8. b_3_3, an element of degree 3
  9. b_3_5, an element of degree 3
  10. b_3_6, an element of degree 3
  11. b_3_7, an element of degree 3
  12. b_4_8, an element of degree 4
  13. b_4_10, an element of degree 4
  14. b_5_12, an element of degree 5
  15. b_5_13, an element of degree 5
  16. a_6_7, a nilpotent element of degree 6
  17. b_6_17, an element of degree 6
  18. b_7_19, an element of degree 7
  19. c_8_26, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 116 minimal relations of maximal degree 14:

  1. a_1_02
  2. a_1_12
  3. a_1_0·a_1_1
  4. a_2_0·a_1_1
  5. a_2_0·a_1_0
  6. b_2_2·a_1_1 + b_2_1·a_1_1
  7. b_2_2·a_1_0 + b_2_1·a_1_1
  8. b_2_3·a_1_0 + b_2_1·a_1_1
  9. a_2_02
  10. b_2_22 + b_2_1·b_2_3
  11. a_1_1·a_3_4
  12. a_2_0·b_2_2 + a_2_0·b_2_1 + a_1_0·a_3_4
  13. a_1_1·b_3_3 + a_2_0·b_2_2
  14. a_1_0·b_3_3 + a_2_0·b_2_1
  15. a_1_1·b_3_5 + a_2_0·b_2_3
  16. a_1_0·b_3_5 + a_2_0·b_2_2
  17. b_2_2·b_2_3 + b_2_22 + a_1_1·b_3_6 + a_2_0·b_2_3
  18. b_2_22 + b_2_1·b_2_2 + a_1_0·b_3_6 + a_2_0·b_2_1
  19. b_2_2·b_2_3 + b_2_22 + a_1_0·b_3_7
  20. a_2_0·a_3_4
  21. b_2_3·b_3_3 + b_2_1·b_3_3 + b_2_2·a_3_4 + b_2_1·a_3_4
  22. b_2_2·b_3_3 + b_2_1·b_3_3 + b_2_1·a_3_4 + b_2_12·a_1_1
  23. b_2_12·a_1_1 + a_2_0·b_3_3
  24. b_2_1·b_3_5 + b_2_1·b_3_3 + b_2_1·a_3_4 + b_2_12·a_1_1
  25. b_2_2·b_3_5 + b_2_1·b_3_3 + b_2_2·a_3_4 + b_2_1·a_3_4
  26. b_2_32·a_1_1 + a_2_0·b_3_5
  27. b_2_3·b_3_6 + b_2_3·b_3_5 + b_2_2·b_3_6 + b_2_1·b_3_3 + b_2_3·a_3_4 + b_2_1·a_3_4
       + b_2_12·a_1_1
  28. b_2_32·a_1_1 + b_2_2·a_3_4 + b_2_12·a_1_1 + a_2_0·b_3_6
  29. b_2_3·b_3_6 + b_2_3·b_3_5 + b_2_1·b_3_7 + b_2_3·a_3_4 + b_2_12·a_1_1
  30. b_2_3·b_3_6 + b_2_3·b_3_5 + b_2_2·b_3_7 + b_2_3·a_3_4
  31. b_2_3·a_3_4 + b_2_12·a_1_1 + a_2_0·b_3_7
  32. b_4_8·a_1_1 + b_2_3·a_3_4 + b_2_12·a_1_1
  33. b_4_8·a_1_0 + b_2_2·a_3_4 + b_2_12·a_1_1
  34. b_4_10·a_1_0 + b_2_12·a_1_1
  35. b_3_32 + b_2_12·b_2_2 + a_2_0·b_2_12
  36. b_3_3·b_3_5 + b_2_12·b_2_2 + a_3_4·b_3_3 + b_2_1·a_1_0·a_3_4
  37. b_3_52 + b_2_33 + a_3_4·b_3_3 + a_2_0·b_2_32 + a_2_0·b_2_12 + a_3_42
       + b_2_1·a_1_0·a_3_4
  38. a_3_4·b_3_3 + b_2_1·a_1_0·b_3_6
  39. b_3_5·b_3_6 + b_3_3·b_3_6 + b_2_33 + b_2_12·b_2_2 + a_3_4·b_3_6 + a_2_0·b_2_32
       + a_3_42 + b_2_1·a_1_0·a_3_4
  40. a_3_4·b_3_3 + b_2_1·a_1_0·b_3_7 + a_2_0·b_2_12 + a_3_42 + b_2_1·a_1_0·a_3_4
  41. a_3_4·b_3_5 + b_2_3·a_1_1·b_3_7 + a_2_0·b_2_12 + b_2_1·a_1_0·a_3_4
  42. b_3_3·b_3_7 + b_3_3·b_3_6 + b_2_12·b_2_2 + a_3_4·b_3_6 + a_3_4·b_3_5 + a_3_4·b_3_3
       + a_2_0·b_2_12
  43. b_3_3·b_3_6 + b_2_1·b_4_8 + b_2_12·b_2_2 + a_3_42 + b_2_1·a_1_0·a_3_4
  44. b_3_5·b_3_7 + b_2_3·b_4_8 + a_3_4·b_3_5 + a_3_4·b_3_3 + a_3_42
  45. b_3_3·b_3_6 + b_2_2·b_4_8 + b_2_12·b_2_2 + a_3_4·b_3_6 + a_3_4·b_3_5 + a_3_4·b_3_3
       + a_2_0·b_2_12
  46. a_3_4·b_3_5 + a_2_0·b_4_8 + a_2_0·b_2_12 + b_2_1·a_1_0·a_3_4
  47. b_3_62 + b_2_33 + b_2_1·b_4_10 + a_2_0·b_2_32 + a_3_42
  48. b_3_72 + b_2_3·b_4_10 + a_3_4·b_3_7 + a_2_0·b_2_12 + b_2_1·a_1_0·a_3_4
  49. b_3_6·b_3_7 + b_3_5·b_3_7 + b_2_2·b_4_10 + a_3_4·b_3_7 + a_3_4·b_3_3 + a_2_0·b_2_12
       + a_3_42 + b_2_1·a_1_0·a_3_4
  50. a_3_4·b_3_7 + a_3_4·b_3_3 + a_2_0·b_4_10 + a_2_0·b_2_12 + a_3_42 + b_2_1·a_1_0·a_3_4
  51. a_1_1·b_5_12
  52. a_1_0·b_5_12 + a_3_42
  53. a_3_4·b_3_7 + a_3_4·b_3_5 + a_1_1·b_5_13 + a_2_0·b_2_12 + b_2_1·a_1_0·a_3_4
  54. a_1_0·b_5_13 + a_2_0·b_2_12 + b_2_1·a_1_0·a_3_4
  55. b_4_8·b_3_3 + b_2_12·b_3_7 + a_2_0·b_2_1·b_3_6 + a_2_0·b_2_1·b_3_3 + a_1_0·a_3_4·b_3_6
  56. b_4_8·b_3_5 + b_2_32·b_3_7 + a_2_0·b_2_1·b_3_6 + a_1_0·a_3_4·b_3_6
  57. b_4_8·a_3_4 + b_2_3·b_4_10·a_1_1 + a_2_0·b_2_1·b_3_6 + a_2_0·b_2_1·b_3_3
       + a_1_0·a_3_4·b_3_6
  58. b_4_10·b_3_3 + b_4_8·b_3_6 + b_2_32·b_3_7 + b_4_8·a_3_4 + a_2_0·b_2_1·b_3_3
       + a_1_0·a_3_4·b_3_6
  59. b_4_10·b_3_5 + b_4_8·b_3_7 + a_2_0·b_2_1·b_3_6 + a_2_0·b_2_1·b_3_3 + a_1_0·a_3_4·b_3_6
  60. b_2_3·b_5_12 + b_2_2·b_5_12 + b_4_8·a_3_4 + a_2_0·b_2_3·b_3_7 + a_2_0·b_2_1·b_3_3
       + a_1_0·a_3_4·b_3_6
  61. a_2_0·b_5_12 + a_1_0·a_3_4·b_3_6
  62. b_2_3·b_5_12 + b_2_1·b_5_13 + b_2_1·b_5_12 + b_2_12·b_3_7 + b_2_12·b_3_6 + b_4_8·a_3_4
       + a_2_0·b_2_3·b_3_7 + a_1_0·a_3_4·b_3_6
  63. b_2_2·b_5_13 + b_2_12·b_3_3 + b_2_12·a_3_4 + a_1_0·a_3_4·b_3_6
  64. b_4_8·a_3_4 + a_2_0·b_5_13 + a_2_0·b_2_3·b_3_7
  65. a_6_7·a_1_1
  66. a_1_0·a_3_4·b_3_6 + a_6_7·a_1_0
  67. b_4_8·b_3_7 + b_4_8·b_3_6 + b_2_3·b_5_13 + b_2_12·b_3_7 + b_2_12·b_3_3 + b_6_17·a_1_1
       + b_4_10·a_3_4 + b_4_8·a_3_4 + b_2_12·a_3_4
  68. b_6_17·a_1_0 + a_1_0·a_3_4·b_3_6
  69. b_4_82 + b_2_32·b_4_10 + a_2_0·b_2_13 + b_2_12·a_1_0·a_3_4
  70. b_3_5·b_5_12 + b_3_3·b_5_12 + a_3_4·b_5_12 + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_8
       + a_2_0·b_2_1·b_4_8 + a_2_0·b_2_13 + b_2_12·a_1_0·a_3_4
  71. a_3_4·b_5_13 + a_3_4·b_5_12 + b_4_10·a_1_1·b_3_7 + b_2_1·a_3_4·b_3_6
       + a_2_0·b_2_3·b_4_10
  72. b_3_3·b_5_13 + b_2_13·b_2_2 + a_3_4·b_5_12 + b_2_1·a_3_4·b_3_6 + b_2_1·a_3_42
       + b_2_12·a_1_0·a_3_4
  73. b_3_7·b_5_12 + b_3_6·b_5_13 + b_3_6·b_5_12 + b_3_5·b_5_13 + b_3_3·b_5_12
       + b_2_1·b_2_2·b_4_10 + b_2_12·b_4_10 + b_2_12·b_4_8 + a_3_4·b_5_12 + b_2_1·a_3_4·b_3_6
       + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_8 + b_2_1·a_3_42
  74. b_3_3·b_5_12 + b_2_1·b_2_2·b_4_10 + b_2_13·b_2_2 + b_2_1·a_6_7 + a_2_0·b_2_1·b_4_8
       + a_2_0·b_2_13
  75. b_3_5·b_5_13 + b_3_3·b_5_12 + b_4_82 + b_2_32·b_4_8 + b_2_12·b_4_8 + a_3_4·b_5_12
       + b_2_3·a_6_7 + b_2_1·a_3_4·b_3_6 + a_2_0·b_2_33 + a_2_0·b_2_1·b_4_8 + a_2_0·b_2_13
       + b_2_12·a_1_0·a_3_4
  76. b_3_3·b_5_12 + b_2_1·b_2_2·b_4_10 + b_2_13·b_2_2 + a_3_4·b_5_12 + b_2_2·a_6_7
       + a_2_0·b_2_1·b_4_8 + a_2_0·b_2_13 + b_2_1·a_3_42
  77. a_2_0·a_6_7
  78. b_3_6·b_5_12 + b_2_1·b_6_17 + b_2_12·b_4_10 + b_2_13·b_2_2 + b_2_1·a_3_4·b_3_6
       + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_8 + a_2_0·b_2_13 + b_2_12·a_1_0·a_3_4
  79. b_3_7·b_5_12 + b_3_3·b_5_12 + b_2_2·b_6_17 + b_2_1·b_2_2·b_4_10 + b_2_13·b_2_2
       + a_3_4·b_5_12 + b_4_10·a_1_1·b_3_7 + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_1·b_4_8
       + a_2_0·b_2_13 + b_2_1·a_3_42
  80. b_3_5·b_5_13 + b_4_82 + b_2_32·b_4_8 + b_2_1·b_2_2·b_4_10 + b_2_12·b_4_8
       + b_2_13·b_2_2 + b_4_10·a_1_1·b_3_7 + b_2_1·a_3_4·b_3_6 + a_2_0·b_6_17
       + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_8 + b_2_1·a_3_42 + b_2_12·a_1_0·a_3_4
  81. b_3_5·b_5_13 + b_4_82 + b_2_32·b_4_8 + b_2_1·b_2_2·b_4_10 + b_2_12·b_4_8
       + b_2_13·b_2_2 + a_1_1·b_7_19 + b_4_10·a_1_1·b_3_7 + b_2_1·a_3_4·b_3_6
       + a_2_0·b_2_3·b_4_10 + a_2_0·b_2_3·b_4_8 + a_2_0·b_2_33 + a_2_0·b_2_13
       + b_2_1·a_3_42
  82. a_1_0·b_7_19
  83. a_6_7·a_3_4 + a_3_43
  84. b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_6 + b_2_13·b_3_3
       + a_6_7·b_3_3 + b_2_1·b_4_10·a_3_4 + b_2_13·a_3_4
  85. b_4_8·b_5_12 + b_2_1·b_4_10·b_3_7 + b_2_13·b_3_7 + a_6_7·b_3_6 + a_6_7·b_3_5
       + a_2_0·b_4_10·b_3_7 + a_2_0·b_2_3·b_5_13 + a_2_0·b_2_32·b_3_7 + a_2_0·b_2_12·b_3_6
       + a_2_0·b_2_12·b_3_3 + a_3_43
  86. b_4_8·b_5_13 + b_4_8·b_5_12 + b_2_3·b_4_10·b_3_7 + b_2_32·b_5_13 + b_2_33·b_3_7
       + b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_7 + b_2_13·b_3_6
       + a_6_7·b_3_7 + a_6_7·b_3_5 + a_2_0·b_2_3·b_5_13 + a_2_0·b_2_32·b_3_7
       + a_2_0·b_2_32·b_3_5 + a_3_43
  87. b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_6 + b_2_13·b_3_3
       + a_6_7·b_3_5 + b_2_3·b_6_17·a_1_1 + b_2_1·b_4_10·a_3_4 + b_2_13·a_3_4
       + a_2_0·b_4_10·b_3_7 + a_2_0·b_2_3·b_5_13 + a_2_0·b_2_32·b_3_5 + a_2_0·b_2_12·b_3_6
       + a_2_0·b_2_12·b_3_3
  88. b_4_8·b_5_13 + b_2_3·b_4_10·b_3_7 + b_2_32·b_5_13 + b_2_33·b_3_7 + b_2_1·b_4_10·b_3_7
       + b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_6 + b_6_17·a_3_4
       + a_6_7·b_3_5 + b_4_102·a_1_1 + b_2_1·b_4_10·a_3_4 + a_2_0·b_2_3·b_5_13
       + a_2_0·b_2_32·b_3_5 + a_2_0·b_2_12·b_3_6 + a_3_43
  89. b_6_17·b_3_3 + b_4_8·b_5_12 + b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12
       + b_2_13·b_3_6 + b_2_13·b_3_3 + b_2_13·a_3_4 + a_2_0·b_4_10·b_3_7 + a_2_0·b_2_3·b_5_13
       + a_2_0·b_2_32·b_3_7 + a_2_0·b_2_12·b_3_3
  90. b_6_17·b_3_6 + b_6_17·b_3_5 + b_4_10·b_5_12 + b_4_8·b_5_13 + b_4_8·b_5_12
       + b_2_3·b_4_10·b_3_7 + b_2_32·b_5_13 + b_2_33·b_3_7 + b_2_1·b_4_10·b_3_7
       + b_2_1·b_4_10·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_6 + a_6_7·b_3_5
       + a_2_0·b_2_32·b_3_7 + a_2_0·b_2_32·b_3_5
  91. b_2_1·b_7_19 + b_2_1·b_4_10·b_3_7 + b_2_1·b_4_10·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12
       + b_2_13·b_3_7 + b_2_13·b_3_6 + b_2_13·b_3_3 + b_2_1·b_4_10·a_3_4 + b_2_13·a_3_4
  92. b_6_17·b_3_5 + b_4_8·b_5_13 + b_4_8·b_5_12 + b_2_3·b_7_19 + b_2_3·b_4_10·b_3_7
       + b_2_32·b_5_13 + b_2_33·b_3_7 + b_2_33·b_3_5 + b_2_1·b_4_10·b_3_7
       + b_2_1·b_4_10·a_3_4 + a_2_0·b_2_32·b_3_5 + a_3_43
  93. b_2_2·b_7_19 + b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_6
       + b_2_13·b_3_3 + b_2_1·b_4_10·a_3_4 + b_2_13·a_3_4 + a_2_0·b_2_12·b_3_6
       + a_2_0·b_2_12·b_3_3
  94. b_2_1·b_4_8·b_3_6 + b_2_12·b_5_13 + b_2_12·b_5_12 + b_2_13·b_3_6 + b_2_13·b_3_3
       + a_6_7·b_3_5 + b_2_1·b_4_10·a_3_4 + b_2_13·a_3_4 + a_2_0·b_7_19 + a_2_0·b_4_10·b_3_7
       + a_2_0·b_2_3·b_5_13 + a_2_0·b_2_12·b_3_6
  95. b_5_122 + b_2_1·b_4_102 + b_2_12·b_2_2·b_4_10 + b_2_13·b_4_10 + b_2_14·b_2_2
       + b_2_13·a_1_0·a_3_4
  96. b_5_132 + b_2_3·b_4_102 + b_2_33·b_4_10 + b_2_1·b_4_102 + b_2_12·b_2_2·b_4_10
       + b_2_14·b_2_2 + a_2_0·b_4_102 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_12·b_4_8
       + a_2_0·b_2_14 + b_2_12·a_3_42
  97. b_5_12·b_5_13 + b_2_2·b_4_102 + b_2_1·b_4_102 + b_2_1·b_2_2·b_6_17 + b_2_12·b_6_17
       + b_2_12·b_2_2·b_4_10 + b_2_14·b_2_2 + b_2_1·b_2_2·a_6_7 + b_2_12·a_3_4·b_3_6
       + a_2_0·b_4_102 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_14 + b_2_12·a_3_42
       + b_2_13·a_1_0·a_3_4
  98. b_5_12·b_5_13 + b_2_2·b_4_102 + b_2_1·b_4_102 + b_2_1·b_4_8·b_4_10 + b_2_12·b_6_17
       + b_2_12·b_2_2·b_4_10 + b_2_13·b_4_8 + b_2_14·b_2_2 + b_6_17·a_1_1·b_3_7
       + b_4_10·a_3_4·b_3_6 + b_4_8·a_6_7 + a_2_0·b_2_32·b_4_8 + a_2_0·b_2_12·b_4_8
       + a_2_0·b_2_14 + b_2_12·a_3_42 + b_2_13·a_1_0·a_3_4
  99. b_5_12·b_5_13 + b_2_2·b_4_102 + b_2_1·b_4_102 + b_2_1·b_4_8·b_4_10 + b_2_12·b_6_17
       + b_2_12·b_2_2·b_4_10 + b_2_13·b_4_8 + b_2_14·b_2_2 + a_3_4·b_7_19 + b_4_8·a_6_7
       + a_2_0·b_4_8·b_4_10 + a_2_0·b_2_12·b_4_8 + a_2_0·b_2_14 + b_2_12·a_3_42
       + b_2_13·a_1_0·a_3_4
  100. b_3_3·b_7_19 + b_4_10·a_3_4·b_3_6 + b_2_1·b_2_2·a_6_7 + a_2_0·b_4_8·b_4_10
  101. b_3_5·b_7_19 + b_2_32·b_6_17 + b_2_35 + b_2_1·b_4_8·b_4_10 + b_2_13·b_4_8
       + b_2_14·b_2_2 + b_4_10·a_3_4·b_3_6 + b_4_8·a_6_7 + b_2_12·a_3_4·b_3_6
       + a_2_0·b_2_32·b_4_8 + a_2_0·b_2_12·b_4_8 + b_2_12·a_3_42 + b_2_13·a_1_0·a_3_4
  102. b_3_6·b_7_19 + b_2_32·b_6_17 + b_2_35 + b_2_2·b_4_102 + b_2_1·b_4_102
       + b_2_1·b_4_8·b_4_10 + b_2_13·b_4_8 + b_2_14·b_2_2 + b_2_12·a_3_4·b_3_6
       + a_2_0·b_4_102 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_32·b_4_8 + a_2_0·b_2_14
       + b_2_12·a_3_42
  103. b_3_7·b_7_19 + b_4_8·b_6_17 + b_2_33·b_4_8 + b_2_2·b_4_102 + b_2_12·b_2_2·b_4_10
       + b_2_13·b_4_8 + b_4_10·a_3_4·b_3_6 + b_4_10·a_6_7 + b_2_12·a_3_4·b_3_6
       + a_2_0·b_4_102 + a_2_0·b_4_8·b_4_10 + a_2_0·b_2_32·b_4_10 + a_2_0·b_2_12·b_4_8
       + a_2_0·b_2_14 + b_2_13·a_1_0·a_3_4
  104. b_4_8·b_4_10·b_3_6 + b_2_32·b_4_10·b_3_7 + b_2_1·b_4_10·b_5_13 + b_2_1·b_4_10·b_5_12
       + b_2_12·b_4_10·b_3_7 + b_2_12·b_4_10·b_3_6 + b_2_13·b_5_13 + b_2_13·b_5_12
       + b_2_14·b_3_7 + b_2_14·b_3_6 + b_2_14·b_3_3 + a_6_7·b_5_12 + b_2_12·b_4_10·a_3_4
       + b_2_14·a_3_4 + a_2_0·b_4_10·b_5_13 + a_2_0·b_2_3·b_4_10·b_3_7 + a_2_0·b_2_13·b_3_3
       + b_2_1·a_3_43
  105. b_6_17·b_5_12 + b_4_102·b_3_6 + b_2_3·b_4_10·b_5_13 + b_2_32·b_4_10·b_3_7
       + b_2_1·b_4_10·b_5_12 + b_2_12·b_4_10·b_3_6 + b_2_13·b_5_13 + b_2_13·b_5_12
       + b_2_14·b_3_6 + b_2_14·b_3_3 + b_2_1·a_6_7·b_3_7 + b_2_1·a_6_7·b_3_6
       + b_2_1·a_6_7·b_3_3 + b_2_14·a_3_4 + a_2_0·b_6_17·b_3_7 + a_2_0·b_2_13·b_3_6
       + b_2_1·a_3_43
  106. b_6_17·b_5_12 + b_4_102·b_3_6 + b_2_3·b_4_10·b_5_13 + b_2_32·b_4_10·b_3_7
       + b_2_1·b_4_10·b_5_12 + b_2_12·b_4_10·b_3_6 + b_2_13·b_5_13 + b_2_13·b_5_12
       + b_2_14·b_3_6 + b_2_14·b_3_3 + a_6_7·b_5_13 + b_4_10·b_6_17·a_1_1 + b_4_102·a_3_4
       + b_2_1·a_6_7·b_3_3 + b_2_12·b_4_10·a_3_4 + b_2_14·a_3_4 + a_2_0·b_2_33·b_3_7
       + a_2_0·b_2_13·b_3_3 + b_2_1·a_3_43
  107. b_4_8·b_7_19 + b_2_3·b_6_17·b_3_7 + b_2_34·b_3_7 + b_2_1·b_4_10·b_5_13
       + b_2_1·b_4_10·b_5_12 + b_2_12·b_4_10·b_3_7 + b_2_12·b_4_10·b_3_6 + b_2_14·b_3_7
       + a_6_7·b_5_13 + b_2_1·a_6_7·b_3_7 + b_2_1·a_6_7·b_3_6 + b_2_12·b_4_10·a_3_4
       + a_2_0·b_2_3·b_4_10·b_3_7 + a_2_0·b_2_13·b_3_6 + a_2_0·b_2_13·b_3_3
  108. b_6_17·b_5_13 + b_4_10·b_7_19 + b_4_8·b_4_10·b_3_6 + b_2_3·b_6_17·b_3_7
       + b_2_32·b_4_10·b_3_7 + b_2_33·b_5_13 + b_2_34·b_3_7 + b_2_12·b_4_10·b_3_7
       + b_2_13·b_5_13 + b_2_13·b_5_12 + b_2_14·b_3_7 + b_2_14·b_3_6 + b_2_1·a_6_7·b_3_7
       + b_2_1·a_6_7·b_3_6 + b_2_1·a_6_7·b_3_3 + b_2_12·b_4_10·a_3_4 + a_2_0·b_4_10·b_5_13
       + a_2_0·b_2_3·b_7_19 + a_2_0·b_2_3·b_4_10·b_3_7 + a_2_0·b_2_32·b_5_13
       + a_2_0·b_2_13·b_3_6 + a_2_0·b_2_13·b_3_3 + b_2_3·c_8_26·a_1_1 + b_2_1·c_8_26·a_1_1
  109. a_6_72
  110. b_5_13·b_7_19 + b_4_10·b_3_7·b_5_13 + b_4_8·b_4_102 + b_2_3·b_4_10·b_6_17
       + b_2_3·b_4_8·b_6_17 + b_2_32·b_4_102 + b_2_34·b_4_10 + b_2_34·b_4_8
       + b_2_2·b_4_10·b_6_17 + b_2_1·b_4_10·b_6_17 + b_2_14·b_4_8 + a_6_7·b_6_17
       + b_2_1·b_4_10·a_3_4·b_3_6 + b_2_12·b_2_2·a_6_7 + b_2_13·a_3_4·b_3_6
       + a_2_0·b_4_8·b_6_17 + a_2_0·b_2_15 + b_2_14·a_1_0·a_3_4
  111. b_5_12·b_7_19 + b_2_2·b_4_10·b_6_17 + b_2_1·b_4_10·b_6_17 + b_2_1·b_2_2·b_4_102
       + b_2_12·b_4_102 + b_2_1·b_4_10·a_3_4·b_3_6 + b_2_1·b_4_10·a_6_7
       + b_2_12·b_2_2·a_6_7 + a_2_0·b_4_10·b_6_17 + a_2_0·b_4_8·b_6_17 + a_2_0·b_2_33·b_4_10
       + a_2_0·b_2_33·b_4_8 + a_2_0·b_2_15 + b_2_14·a_1_0·a_3_4
  112. b_4_10·b_3_7·b_5_13 + b_4_8·b_4_102 + b_2_32·b_4_102 + b_2_2·b_4_10·b_6_17
       + b_2_1·b_2_2·b_4_102 + a_6_7·b_6_17 + b_2_3·b_4_10·a_6_7 + b_2_2·b_4_10·a_6_7
       + b_2_1·b_4_10·a_3_4·b_3_6 + b_2_1·b_4_10·a_6_7 + b_2_1·b_4_8·a_6_7
       + a_2_0·b_4_10·b_6_17 + a_2_0·b_4_8·b_6_17 + a_2_0·b_2_3·b_4_102
       + a_2_0·b_2_32·b_6_17 + a_2_0·b_2_33·b_4_10 + a_2_0·b_2_33·b_4_8 + a_2_0·b_2_35
       + a_2_0·b_2_13·b_4_8 + a_2_0·b_2_3·c_8_26 + a_2_0·b_2_1·c_8_26 + c_8_26·a_1_0·a_3_4
  113. b_6_172 + b_4_103 + b_2_3·b_4_10·b_6_17 + b_2_32·b_4_102 + b_2_32·b_4_8·b_4_10
       + b_2_34·b_4_8 + b_2_36 + b_2_2·b_4_10·b_6_17 + b_2_1·b_2_2·b_4_102
       + b_2_12·b_2_2·b_6_17 + b_2_13·b_2_2·b_4_10 + b_2_15·b_2_2 + b_2_1·b_4_8·a_6_7
       + b_2_12·b_2_2·a_6_7 + a_2_0·b_4_10·b_6_17 + a_2_0·b_4_8·b_6_17
       + a_2_0·b_2_3·b_4_8·b_4_10 + a_2_0·b_2_32·b_6_17 + a_2_0·b_2_33·b_4_10
       + a_2_0·b_2_15 + b_2_13·a_3_42 + b_2_32·c_8_26 + b_2_1·b_2_2·c_8_26
       + c_8_26·a_1_0·b_3_6 + a_2_0·b_2_1·c_8_26
  114. a_6_7·b_7_19 + b_4_10·a_6_7·b_3_7 + b_4_10·a_6_7·b_3_6 + b_2_1·a_6_7·b_5_12
       + b_2_1·b_4_102·a_3_4 + b_2_12·a_6_7·b_3_3 + b_2_13·b_4_10·a_3_4
       + a_2_0·b_4_10·b_7_19 + a_2_0·b_2_3·b_6_17·b_3_7 + a_2_0·b_2_3·b_4_10·b_5_13
       + a_2_0·b_2_32·b_4_10·b_3_7 + a_2_0·b_2_33·b_5_13 + a_2_0·b_2_34·b_3_7
       + a_2_0·c_8_26·b_3_5 + a_2_0·c_8_26·b_3_3
  115. b_6_17·b_7_19 + b_4_102·b_5_13 + b_2_3·b_4_10·b_7_19 + b_2_3·b_4_102·b_3_7
       + b_2_32·b_4_10·b_5_13 + b_2_33·b_7_19 + b_2_34·b_5_13 + b_2_1·b_4_102·b_3_7
       + b_2_12·b_4_10·b_5_13 + b_2_12·b_4_10·b_5_12 + b_2_13·b_4_10·b_3_7
       + b_2_13·b_4_10·b_3_6 + b_2_15·b_3_3 + b_4_10·a_6_7·b_3_6 + b_2_1·a_6_7·b_5_12
       + b_2_1·b_4_102·a_3_4 + b_2_12·a_6_7·b_3_7 + b_2_13·b_4_10·a_3_4 + b_2_15·a_3_4
       + a_2_0·b_4_102·b_3_7 + a_2_0·b_2_3·b_4_10·b_5_13 + a_2_0·b_2_32·b_4_10·b_3_7
       + a_2_0·b_2_33·b_5_13 + a_2_0·b_2_34·b_3_7 + a_2_0·b_2_14·b_3_6
       + a_2_0·b_2_14·b_3_3 + b_2_12·a_3_43 + b_2_3·c_8_26·b_3_5 + b_2_1·c_8_26·b_3_3
       + b_2_1·c_8_26·a_3_4 + a_2_0·c_8_26·b_3_7 + a_2_0·c_8_26·b_3_6
  116. b_7_192 + b_2_3·b_4_103 + b_2_32·b_4_10·b_6_17 + b_2_33·b_4_102
       + b_2_33·b_4_8·b_4_10 + b_2_35·b_4_8 + b_2_1·b_4_103 + b_2_1·b_2_2·b_4_10·b_6_17
       + b_2_12·b_2_2·b_4_102 + b_2_13·b_2_2·b_6_17 + b_2_12·b_4_8·a_6_7
       + b_2_13·b_2_2·a_6_7 + a_2_0·b_4_103 + a_2_0·b_2_3·b_4_8·b_6_17
       + a_2_0·b_2_32·b_4_102 + a_2_0·b_2_33·b_6_17 + a_2_0·b_2_34·b_4_10
       + a_2_0·b_2_34·b_4_8 + a_2_0·b_2_16 + b_2_15·a_1_0·a_3_4 + b_2_33·c_8_26
       + b_2_12·b_2_2·c_8_26 + b_2_1·c_8_26·a_1_0·b_3_6 + a_2_0·b_2_32·c_8_26
       + b_2_1·c_8_26·a_1_0·a_3_4


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 14.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_26, a Duflot regular element of degree 8
    2. b_4_10 + b_2_32 + b_2_12, an element of degree 4
    3. b_2_3·b_4_10 + b_2_2·b_4_10 + b_2_1·b_4_10 + b_2_12·b_2_2, an element of degree 6
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 15].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
  • We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 4.


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_10, an element of degree 2
  5. b_2_20, an element of degree 2
  6. b_2_30, an element of degree 2
  7. a_3_40, an element of degree 3
  8. b_3_30, an element of degree 3
  9. b_3_50, an element of degree 3
  10. b_3_60, an element of degree 3
  11. b_3_70, an element of degree 3
  12. b_4_80, an element of degree 4
  13. b_4_100, an element of degree 4
  14. b_5_120, an element of degree 5
  15. b_5_130, an element of degree 5
  16. a_6_70, an element of degree 6
  17. b_6_170, an element of degree 6
  18. b_7_190, an element of degree 7
  19. c_8_26c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_1c_1_12, an element of degree 2
  5. b_2_20, an element of degree 2
  6. b_2_30, an element of degree 2
  7. a_3_40, an element of degree 3
  8. b_3_30, an element of degree 3
  9. b_3_50, an element of degree 3
  10. b_3_6c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  11. b_3_70, an element of degree 3
  12. b_4_80, an element of degree 4
  13. b_4_10c_1_24 + c_1_12·c_1_22, an element of degree 4
  14. b_5_12c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  15. b_5_13c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
  16. a_6_70, an element of degree 6
  17. b_6_17c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23, an element of degree 6
  18. b_7_19c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23, an element of degree 7
  19. c_8_26c_1_28 + c_1_16·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_1c_1_22, an element of degree 2
  5. b_2_2c_1_22, an element of degree 2
  6. b_2_3c_1_22, an element of degree 2
  7. a_3_40, an element of degree 3
  8. b_3_3c_1_23, an element of degree 3
  9. b_3_5c_1_23, an element of degree 3
  10. b_3_6c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  11. b_3_7c_1_23 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  12. b_4_8c_1_24 + c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
  13. b_4_10c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  14. b_5_12c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
  15. b_5_13c_1_25, an element of degree 5
  16. a_6_70, an element of degree 6
  17. b_6_17c_1_12·c_1_24 + c_1_13·c_1_23 + c_1_15·c_1_2 + c_1_16, an element of degree 6
  18. b_7_190, an element of degree 7
  19. c_8_26c_1_28 + c_1_1·c_1_27 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
       + c_1_16·c_1_22 + c_1_18 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_10, an element of degree 2
  5. b_2_20, an element of degree 2
  6. b_2_3c_1_22, an element of degree 2
  7. a_3_40, an element of degree 3
  8. b_3_30, an element of degree 3
  9. b_3_5c_1_23, an element of degree 3
  10. b_3_6c_1_23, an element of degree 3
  11. b_3_7c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  12. b_4_8c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
  13. b_4_10c_1_12·c_1_22 + c_1_14, an element of degree 4
  14. b_5_120, an element of degree 5
  15. b_5_13c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  16. a_6_70, an element of degree 6
  17. b_6_17c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_16 + c_1_02·c_1_24
       + c_1_04·c_1_22, an element of degree 6
  18. b_7_19c_1_27 + c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_16·c_1_2
       + c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
  19. c_8_26c_1_28 + c_1_1·c_1_27 + c_1_18 + c_1_02·c_1_12·c_1_24
       + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_14 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009