Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 132 of order 128
General information on the group
- The group has 2 minimal generators and exponent 32.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t4 − t3 + t2 − t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-5,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- a_3_3, a nilpotent element of degree 3
- a_4_3, a nilpotent element of degree 4
- a_5_4, a nilpotent element of degree 5
- b_5_6, an element of degree 5
- a_6_7, a nilpotent element of degree 6
- a_7_10, a nilpotent element of degree 7
- a_8_8, a nilpotent element of degree 8
- c_8_13, a Duflot regular element of degree 8
Ring relations
There are 52 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- b_2_2·a_1_0 + a_2_1·b_1_1
- a_2_12
- a_1_0·a_3_3
- b_1_1·a_3_3 + a_2_1·b_2_2
- a_2_1·b_2_2·b_1_1
- a_2_1·a_3_3
- a_4_3·a_1_0
- a_3_32
- a_2_1·a_4_3
- a_1_0·a_5_4
- b_1_1·a_5_4
- a_1_0·b_5_6
- a_4_3·a_3_3
- a_2_1·a_5_4
- b_2_2·a_5_4 + a_2_1·b_5_6
- a_6_7·a_1_0
- a_6_7·b_1_1 + b_2_2·a_5_4
- a_4_32
- a_3_3·a_5_4
- a_3_3·b_5_6 + b_2_2·a_6_7 + a_2_1·b_2_23
- a_2_1·a_6_7
- a_1_0·a_7_10
- a_3_3·b_5_6 + b_1_1·a_7_10 + b_2_22·a_4_3 + a_2_1·b_2_23
- a_4_3·a_5_4
- a_6_7·a_3_3
- a_2_1·a_7_10
- a_8_8·a_1_0
- a_8_8·b_1_1 + a_4_3·b_5_6 + b_2_22·a_4_3·b_1_1 + b_2_23·a_3_3
- a_5_42
- a_5_4·b_5_6 + a_2_1·b_2_24
- a_4_3·a_6_7
- a_3_3·a_7_10
- b_5_62 + b_1_15·b_5_6 + b_2_2·b_1_13·b_5_6 + b_2_22·b_1_1·b_5_6 + b_2_22·b_1_16
+ b_2_23·b_1_14 + b_2_24·b_1_12 + b_2_25 + b_2_2·a_4_3·b_1_14 + c_8_13·b_1_12
- a_2_1·a_8_8
- a_6_7·a_5_4
- a_4_3·a_7_10
- a_6_7·b_5_6 + b_2_24·a_3_3 + a_2_1·c_8_13·b_1_1
- a_8_8·a_3_3
- a_6_72
- a_5_4·a_7_10
- a_4_3·a_8_8
- b_5_6·a_7_10 + b_2_22·a_8_8 + b_2_24·a_4_3 + a_2_1·b_2_25 + a_2_1·b_2_2·c_8_13
- a_6_7·a_7_10
- a_8_8·a_5_4
- a_8_8·b_5_6 + a_4_3·b_1_14·b_5_6 + b_2_2·a_4_3·b_1_12·b_5_6 + b_2_22·a_4_3·b_1_15
+ b_2_23·a_7_10 + b_2_23·a_4_3·b_1_13 + b_2_24·a_4_3·b_1_1 + b_2_25·a_3_3 + a_4_3·c_8_13·b_1_1
- a_7_102
- a_6_7·a_8_8
- a_8_8·a_7_10
- a_8_82
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_13, a Duflot regular element of degree 8
- b_1_12 + b_2_2, an element of degree 2
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, 3, 7, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_6 → 0, an element of degree 5
- a_6_7 → 0, an element of degree 6
- a_7_10 → 0, an element of degree 7
- a_8_8 → 0, an element of degree 8
- c_8_13 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- a_5_4 → 0, an element of degree 5
- b_5_6 → c_1_25 + c_1_12·c_1_23 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- a_6_7 → 0, an element of degree 6
- a_7_10 → 0, an element of degree 7
- a_8_8 → 0, an element of degree 8
- c_8_13 → c_1_28 + c_1_1·c_1_27 + c_1_13·c_1_25 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_08, an element of degree 8
|