Cohomology of group number 1323 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 3.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    (t3  +  2·t  +  1) · (t3  +  t2  +  1)

    (t  +  1)2 · (t  −  1)4 · (t2  +  1)2
  • The a-invariants are -∞,-∞,-∞,-5,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 15 minimal generators of maximal degree 5:

  1. a_1_0, a nilpotent element of degree 1
  2. b_1_1, an element of degree 1
  3. b_1_2, an element of degree 1
  4. b_1_3, an element of degree 1
  5. c_2_7, a Duflot regular element of degree 2
  6. a_3_0, a nilpotent element of degree 3
  7. b_3_11, an element of degree 3
  8. b_3_12, an element of degree 3
  9. b_3_13, an element of degree 3
  10. b_3_14, an element of degree 3
  11. b_3_15, an element of degree 3
  12. c_4_26, a Duflot regular element of degree 4
  13. c_4_27, a Duflot regular element of degree 4
  14. b_5_43, an element of degree 5
  15. b_5_44, an element of degree 5

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 57 minimal relations of maximal degree 10:

  1. a_1_0·b_1_2 + a_1_02
  2. b_1_1·b_1_2 + b_1_12 + a_1_02
  3. b_1_2·b_1_3 + a_1_0·b_1_3 + a_1_0·b_1_1 + a_1_02
  4. a_1_03
  5. a_1_0·b_1_1·b_1_3 + a_1_02·b_1_3
  6. b_1_2·a_3_0 + a_1_0·a_3_0
  7. b_1_1·a_3_0 + a_1_0·b_3_11 + c_2_7·a_1_0·b_1_3 + c_2_7·a_1_0·b_1_1 + c_2_7·a_1_02
  8. b_1_2·b_3_11 + b_1_1·b_3_11 + b_1_2·a_3_0 + c_2_7·b_1_22 + c_2_7·b_1_1·b_1_3
       + c_2_7·b_1_12 + c_2_7·a_1_0·b_1_3 + c_2_7·a_1_0·b_1_1 + c_2_7·a_1_02
  9. b_1_3·b_3_12 + b_1_3·a_3_0 + b_1_2·a_3_0 + b_1_1·a_3_0
  10. b_1_2·a_3_0 + a_1_0·b_3_12
  11. b_1_2·b_3_11 + b_1_1·b_3_12 + b_1_14 + c_2_7·b_1_22 + c_2_7·b_1_12
       + c_2_7·a_1_0·b_1_3 + c_2_7·a_1_0·b_1_1
  12. b_1_2·a_3_0 + a_1_0·b_3_13 + c_2_7·a_1_0·b_1_3
  13. b_1_2·b_3_14 + b_1_2·b_3_12 + b_1_2·b_3_11 + b_1_1·b_3_13 + b_1_1·a_3_0 + a_1_0·b_3_14
       + c_2_7·b_1_22 + c_2_7·b_1_1·b_1_3 + c_2_7·b_1_12 + c_2_7·a_1_0·b_1_3
       + c_2_7·a_1_02
  14. b_1_3·b_3_13 + b_1_3·b_3_11 + b_1_1·b_3_14 + b_1_1·b_3_13 + b_1_14 + b_1_3·a_3_0
       + b_1_2·a_3_0 + b_1_1·a_3_0 + c_2_7·b_1_1·b_1_3 + c_2_7·a_1_0·b_1_3 + c_2_7·a_1_0·b_1_1
       + c_2_7·a_1_02
  15. b_1_3·b_3_13 + b_1_2·b_3_15 + b_1_2·b_3_14 + b_1_2·b_3_13 + b_1_2·b_3_11 + b_1_24
       + b_1_1·b_3_13 + b_1_14 + b_1_2·a_3_0 + c_2_7·b_1_32 + c_2_7·b_1_1·b_1_3
       + c_2_7·b_1_12
  16. b_1_3·b_3_13 + b_1_2·b_3_14 + b_1_2·b_3_12 + b_1_2·b_3_11 + b_1_1·b_3_13 + b_1_2·a_3_0
       + a_1_0·b_3_15 + c_2_7·b_1_32 + c_2_7·b_1_22 + c_2_7·b_1_1·b_1_3 + c_2_7·b_1_12
       + c_2_7·a_1_0·b_1_3 + c_2_7·a_1_02
  17. b_1_2·b_3_14 + b_1_2·b_3_12 + b_1_1·b_3_15 + b_1_14 + b_1_3·a_3_0 + b_1_2·a_3_0
       + c_2_7·b_1_1·b_1_3 + c_2_7·b_1_12 + c_2_7·a_1_0·b_1_3
  18. a_1_0·b_1_1·b_3_14 + a_1_02·b_3_14
  19. a_3_0·b_3_12 + a_3_02
  20. b_3_11·b_3_12 + b_3_112 + b_1_13·b_3_11 + a_3_02 + c_2_7·b_1_2·b_3_12
       + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_14 + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_0·b_3_11
       + c_2_72·b_1_32 + c_2_72·b_1_22 + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12
       + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_0·b_1_1
  21. a_3_0·b_3_13 + a_3_02 + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_02·b_1_32
  22. b_3_12·b_3_14 + b_3_122 + b_3_11·b_3_13 + b_3_112 + b_1_13·b_3_13 + b_1_13·b_3_11
       + a_3_0·b_3_14 + a_3_0·b_3_11 + a_3_02 + c_2_7·b_1_2·b_3_13 + c_2_7·b_1_1·b_3_14
       + c_2_7·b_1_14 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·a_3_0 + c_2_72·b_1_22
       + c_2_72·b_1_12 + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_0·b_1_1 + c_2_72·a_1_02
  23. b_3_12·b_3_15 + b_3_12·b_3_13 + b_3_122 + b_3_11·b_3_12 + b_3_112 + b_1_23·b_3_12
       + b_1_16 + a_3_0·b_3_15 + a_3_02 + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_14
       + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·a_3_0 + c_2_72·b_1_32 + c_2_72·b_1_22
       + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12 + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_0·b_1_1
  24. b_3_13·b_3_15 + b_3_132 + b_3_12·b_3_15 + b_3_122 + b_3_11·b_3_12 + b_3_112
       + b_1_23·b_3_13 + b_1_23·b_3_12 + b_1_13·b_3_13 + b_1_16 + a_3_02
       + c_2_7·b_1_3·b_3_15 + c_2_7·b_1_2·b_3_13 + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_1·b_1_33
       + c_2_7·b_1_14 + c_2_7·a_1_0·b_3_15 + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·b_3_11
       + c_2_7·a_1_0·b_1_33 + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_22
       + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12 + c_2_72·a_1_02
  25. b_3_11·b_3_15 + b_3_11·b_3_13 + b_3_11·b_3_12 + a_3_0·b_3_14 + a_3_0·b_3_11
       + a_1_0·b_1_32·b_3_15 + a_3_02 + a_1_02·b_1_3·b_3_15 + a_1_02·b_1_3·b_3_14
       + c_2_7·b_1_3·b_3_15 + c_2_7·b_1_24 + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_1·b_1_33
       + c_2_7·b_1_14 + c_4_26·a_1_0·b_1_3 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·a_3_0
       + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_32 + c_2_72·b_1_22 + c_2_72·b_1_1·b_1_3
       + c_2_72·b_1_12
  26. b_3_13·b_3_15 + b_3_132 + b_3_12·b_3_14 + b_3_12·b_3_13 + b_3_122 + b_3_11·b_3_15
       + b_3_11·b_3_14 + b_3_11·b_3_13 + b_1_23·b_3_13 + b_1_13·b_3_11 + a_3_0·b_3_14
       + b_1_33·a_3_0 + a_1_0·b_1_32·b_3_14 + a_3_02 + a_1_02·b_1_3·b_3_15
       + a_1_02·b_1_3·b_3_14 + c_4_26·b_1_1·b_1_3 + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_2·b_3_13
       + c_2_7·b_1_24 + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_1·b_1_33 + c_2_7·b_1_14
       + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·b_1_33
       + c_2_7·a_1_0·a_3_0 + c_2_72·b_1_22 + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12
  27. b_3_122 + b_1_23·b_3_13 + b_1_26 + b_1_13·b_3_11 + b_1_16 + a_1_02·b_1_3·b_3_15
       + c_4_26·b_1_22 + c_2_7·b_1_24 + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_22
  28. a_3_02 + a_1_02·b_1_3·b_3_15 + c_4_26·a_1_02 + c_2_7·a_1_02·b_1_32
       + c_2_72·a_1_02
  29. a_3_0·b_3_11 + a_1_02·b_1_3·b_3_15 + c_4_26·a_1_0·b_1_1 + c_2_7·b_1_3·a_3_0
       + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·a_3_0 + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_02
  30. b_3_112 + b_1_13·b_3_13 + b_1_13·b_3_11 + b_1_16 + c_4_26·b_1_12 + c_2_7·b_1_14
       + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_32 + c_2_72·b_1_22
  31. b_3_152 + b_3_122 + b_1_23·b_3_13 + b_1_13·b_3_13 + b_1_16 + a_1_0·b_1_32·b_3_15
       + a_3_02 + a_1_02·b_1_3·b_3_15 + c_4_27·b_1_22 + c_2_7·b_1_34 + c_2_7·b_1_24
       + c_2_7·b_1_14 + c_2_7·a_1_0·b_1_33 + c_2_72·b_1_32 + c_2_72·b_1_22
       + c_2_72·a_1_02
  32. b_3_152 + b_3_132 + b_3_122 + b_1_26 + b_1_16 + a_1_0·b_1_32·b_3_15
       + a_1_02·b_1_3·b_3_15 + c_2_7·b_1_34 + c_2_7·a_1_0·b_1_33 + c_4_27·a_1_02
       + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_22 + c_2_72·a_1_02
  33. b_3_152 + b_3_142 + b_3_13·b_3_15 + b_3_13·b_3_14 + b_3_12·b_3_14 + b_3_122
       + b_3_11·b_3_15 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_1_33·b_3_15 + b_1_23·b_3_13
       + b_1_26 + b_1_13·b_3_11 + b_1_16 + b_1_33·a_3_0 + a_1_0·b_1_32·b_3_15
       + a_1_02·b_1_3·b_3_15 + c_4_26·b_1_32 + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_2·b_3_13
       + c_2_7·b_1_24 + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_1·b_1_33 + c_2_7·b_1_14
       + c_4_27·a_1_0·b_1_1 + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·b_1_33
       + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12 + c_2_72·a_1_0·b_1_1
  34. b_3_142 + b_3_122 + b_3_112 + b_1_33·b_3_15 + b_1_16 + b_1_33·a_3_0
       + a_1_02·b_1_3·b_3_15 + c_4_27·b_1_12 + c_4_26·b_1_32 + c_2_7·b_1_34
       + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_32 + c_2_72·b_1_22 + c_2_72·b_1_12
  35. b_3_11·b_3_15 + b_3_11·b_3_14 + b_3_112 + b_1_3·b_5_43 + b_1_33·b_3_15 + a_3_0·b_3_14
       + a_1_0·b_1_32·b_3_15 + a_1_0·b_1_32·b_3_14 + a_3_02 + a_1_02·b_1_3·b_3_15
       + a_1_02·b_1_3·b_3_14 + c_4_27·b_1_32 + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_34
       + c_2_7·b_1_2·b_3_13 + c_2_7·b_1_24 + c_2_7·b_1_1·b_3_13 + c_2_7·b_1_1·b_3_11
       + c_2_7·b_1_1·b_1_33 + c_2_7·b_1_14 + c_4_27·a_1_0·b_1_3 + c_2_7·b_1_3·a_3_0
       + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·b_1_33
       + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_1·b_1_3
  36. b_3_152 + b_3_142 + b_3_13·b_3_14 + b_3_132 + b_3_12·b_3_15 + b_3_12·b_3_14
       + b_3_12·b_3_13 + b_3_11·b_3_15 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_112
       + b_1_33·b_3_15 + b_1_2·b_5_43 + b_1_23·b_3_12 + b_1_26 + b_1_13·b_3_11 + b_1_16
       + b_1_33·a_3_0 + a_3_02 + a_1_02·b_1_3·b_3_14 + c_4_26·b_1_32 + c_2_7·b_1_3·b_3_15
       + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_2·b_3_13 + c_4_27·a_1_0·b_1_3 + c_2_7·b_1_3·a_3_0
       + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·b_1_33 + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_22
       + c_2_72·b_1_12
  37. b_3_152 + b_3_13·b_3_15 + b_3_12·b_3_15 + b_3_11·b_3_12 + b_3_112 + b_1_23·b_3_13
       + b_1_23·b_3_12 + b_1_26 + b_1_13·b_3_13 + a_3_0·b_3_11 + a_1_0·b_5_43
       + a_1_02·b_1_3·b_3_14 + c_2_7·b_1_3·b_3_15 + c_2_7·b_1_34 + c_2_7·b_1_2·b_3_13
       + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_1·b_1_33 + c_2_7·b_1_14 + c_4_27·a_1_0·b_1_3
       + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·b_1_33
       + c_2_7·a_1_0·a_3_0 + c_2_7·a_1_02·b_1_32 + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12
       + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_0·b_1_1 + c_2_72·a_1_02
  38. b_3_152 + b_3_142 + b_3_13·b_3_15 + b_3_13·b_3_14 + b_3_11·b_3_15 + b_3_11·b_3_13
       + b_3_11·b_3_12 + b_1_33·b_3_15 + b_1_23·b_3_13 + b_1_26 + b_1_1·b_5_43
       + b_1_13·b_3_13 + b_1_13·b_3_11 + a_3_0·b_3_14 + a_3_0·b_3_11 + a_1_0·b_1_32·b_3_15
       + a_1_0·b_1_32·b_3_14 + a_3_02 + a_1_02·b_1_3·b_3_14 + c_4_27·b_1_1·b_1_3
       + c_4_26·b_1_32 + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_2·b_3_13 + c_2_7·b_1_24
       + c_2_7·b_1_1·b_3_13 + c_2_7·b_1_1·b_3_11 + c_2_7·b_1_1·b_1_33 + c_2_7·b_1_3·a_3_0
       + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_02·b_1_32 + c_2_72·a_1_0·b_1_1 + c_2_72·a_1_02
  39. b_3_152 + b_3_14·b_3_15 + b_3_13·b_3_15 + b_3_13·b_3_14 + b_3_12·b_3_14 + b_3_12·b_3_13
       + b_3_122 + b_3_11·b_3_14 + b_3_11·b_3_13 + b_1_3·b_5_44 + b_1_23·b_3_13
       + b_1_23·b_3_12 + b_1_26 + b_1_1·b_1_32·b_3_14 + b_1_13·b_3_13 + a_3_0·b_3_14
       + a_1_0·b_1_32·b_3_15 + c_4_27·b_1_32 + c_4_27·b_1_1·b_1_3 + c_2_7·b_1_34
       + c_2_7·b_1_14 + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·a_3_0 + c_2_7·a_1_02·b_1_32
       + c_2_72·b_1_32 + c_2_72·b_1_22 + c_2_72·b_1_1·b_1_3 + c_2_72·a_1_0·b_1_1
  40. b_3_152 + b_3_13·b_3_15 + b_3_13·b_3_14 + b_3_132 + b_3_12·b_3_15 + b_3_12·b_3_14
       + b_3_122 + b_3_11·b_3_15 + b_3_11·b_3_13 + b_3_112 + b_1_2·b_5_44 + b_1_13·b_3_11
       + b_1_16 + a_1_0·b_1_32·b_3_15 + a_3_02 + a_1_02·b_1_3·b_3_15
       + a_1_02·b_1_3·b_3_14 + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_34 + c_2_7·b_1_2·b_3_13
       + c_2_7·b_1_1·b_3_13 + c_4_27·a_1_0·b_1_3 + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_0·b_3_14
       + c_2_7·a_1_0·b_1_33 + c_2_7·a_1_0·a_3_0 + c_2_7·a_1_02·b_1_32
       + c_2_72·b_1_1·b_1_3 + c_2_72·b_1_12 + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_0·b_1_1
  41. b_3_152 + b_3_142 + b_3_13·b_3_15 + b_3_13·b_3_14 + b_3_12·b_3_15 + b_3_12·b_3_14
       + b_3_12·b_3_13 + b_3_11·b_3_15 + b_3_11·b_3_13 + b_3_112 + b_1_33·b_3_15
       + b_1_23·b_3_13 + b_1_23·b_3_12 + b_1_26 + b_1_13·b_3_11 + a_3_0·b_3_11
       + b_1_33·a_3_0 + a_1_0·b_5_44 + a_1_0·b_1_32·b_3_15 + a_1_02·b_1_3·b_3_14
       + c_4_26·b_1_32 + c_2_7·b_1_3·b_3_14 + c_2_7·b_1_2·b_3_13 + c_2_7·b_1_24
       + c_4_27·a_1_0·b_1_3 + c_2_7·b_1_3·a_3_0 + c_2_7·a_1_0·b_3_14 + c_2_7·a_1_0·b_1_33
       + c_2_72·b_1_32 + c_2_72·b_1_22 + c_2_72·a_1_0·b_1_3 + c_2_72·a_1_0·b_1_1
       + c_2_72·a_1_02
  42. b_3_142 + b_3_13·b_3_15 + b_3_13·b_3_14 + b_3_132 + b_3_12·b_3_14 + b_3_11·b_3_13
       + b_3_112 + b_1_33·b_3_15 + b_1_23·b_3_13 + b_1_1·b_5_44 + b_1_16 + b_1_33·a_3_0
       + c_4_27·b_1_1·b_1_3 + c_4_26·b_1_32 + c_2_7·b_1_3·b_3_15 + c_2_7·b_1_3·b_3_14
       + c_2_7·b_1_34 + c_2_7·b_1_14 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·b_1_33
       + c_2_72·b_1_32 + c_2_72·b_1_22 + c_2_72·b_1_12 + c_2_72·a_1_02
  43. b_3_15·b_5_43 + b_3_13·b_5_43 + b_3_12·b_5_43 + b_3_11·b_5_43 + b_1_23·b_5_43
       + b_1_13·b_5_43 + b_1_15·b_3_13 + b_1_18 + a_3_0·b_5_43 + b_1_32·a_3_0·b_3_14
       + a_1_02·b_1_33·b_3_14 + c_4_27·b_1_3·b_3_15 + c_4_27·b_1_1·b_3_14
       + c_4_27·b_1_1·b_3_13 + c_4_26·b_1_1·b_3_13 + c_4_26·b_1_1·b_3_11
       + c_2_7·b_1_33·b_3_15 + c_2_7·b_1_36 + c_2_7·b_1_1·b_1_32·b_3_14
       + c_4_27·b_1_3·a_3_0 + c_4_27·a_1_0·b_3_15 + c_4_27·a_1_0·b_3_11 + c_4_26·b_1_3·a_3_0
       + c_4_26·a_1_0·b_3_15 + c_4_26·a_1_0·b_3_14 + c_4_26·a_1_0·b_1_33
       + c_2_7·a_3_0·b_3_14 + c_2_7·b_1_33·a_3_0 + c_2_7·a_1_0·b_1_32·b_3_15
       + c_4_27·a_1_0·a_3_0 + c_4_27·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_14
       + c_2_7·c_4_27·b_1_1·b_1_3 + c_2_7·c_4_26·b_1_1·b_1_3 + c_2_7·c_4_26·b_1_12
       + c_2_72·b_1_3·b_3_15 + c_2_72·b_1_1·b_3_14 + c_2_72·b_1_1·b_3_13
       + c_2_72·b_1_1·b_1_33 + c_2_72·b_1_14 + c_2_7·c_4_27·a_1_0·b_1_1
       + c_2_7·c_4_26·a_1_0·b_1_1 + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_11
       + c_2_72·a_1_0·b_1_33 + c_2_73·b_1_32 + c_2_73·a_1_0·b_1_1
  44. b_3_12·b_5_43 + b_1_28 + b_1_13·b_5_43 + b_1_15·b_3_13 + a_3_0·b_5_43
       + c_4_27·b_1_24 + c_4_26·b_1_2·b_3_13 + c_4_26·b_1_1·b_3_11 + c_2_7·b_1_2·b_5_43
       + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_13·b_3_11 + c_2_7·b_1_16 + c_4_27·a_1_0·b_3_11
       + c_4_26·a_1_0·b_3_11 + c_2_7·a_1_0·b_1_32·b_3_15 + c_4_27·a_1_0·a_3_0
       + c_2_7·a_1_02·b_1_3·b_3_15 + c_2_7·a_1_02·b_1_3·b_3_14 + c_2_7·a_1_02·b_1_34
       + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_1·b_1_3 + c_2_72·b_1_2·b_3_12
       + c_2_72·b_1_1·b_3_11 + c_2_72·b_1_14 + c_2_7·c_4_26·a_1_0·b_1_1
       + c_2_72·a_1_0·b_3_15 + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_27·a_1_02
       + c_2_7·c_4_26·a_1_02 + c_2_72·a_1_02·b_1_32 + c_2_73·b_1_22
       + c_2_73·b_1_1·b_1_3 + c_2_73·b_1_12 + c_2_73·a_1_0·b_1_3 + c_2_73·a_1_0·b_1_1
       + c_2_73·a_1_02
  45. b_3_14·b_5_43 + b_3_13·b_5_43 + b_3_11·b_5_44 + b_3_11·b_5_43 + b_1_33·b_5_44
       + b_1_23·b_5_43 + b_1_25·b_3_12 + b_1_28 + b_1_1·b_1_34·b_3_14 + b_1_15·b_3_11
       + b_1_32·a_3_0·b_3_14 + b_1_35·a_3_0 + a_1_0·b_1_34·b_3_15 + a_1_0·b_1_34·b_3_14
       + c_4_27·b_1_3·b_3_14 + c_4_27·b_1_34 + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_24
       + c_4_27·b_1_1·b_3_11 + c_4_27·b_1_1·b_1_33 + c_4_26·b_1_2·b_3_13
       + c_4_26·b_1_1·b_3_14 + c_4_26·b_1_1·b_1_33 + c_4_26·b_1_14 + c_2_7·b_1_33·b_3_15
       + c_2_7·b_1_33·b_3_14 + c_2_7·b_1_23·b_3_13 + c_2_7·b_1_1·b_1_32·b_3_14
       + c_2_7·b_1_1·b_1_35 + c_2_7·b_1_13·b_3_13 + c_4_27·a_1_0·b_3_15
       + c_4_26·a_1_0·b_3_15 + c_4_26·a_1_0·b_3_14 + c_4_26·a_1_0·b_3_11
       + c_4_26·a_1_0·b_1_33 + c_2_7·b_1_33·a_3_0 + c_2_7·a_1_0·b_1_32·b_3_15
       + c_2_7·a_1_0·b_1_35 + c_4_27·a_1_0·a_3_0 + c_4_27·a_1_02·b_1_32
       + c_4_26·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_14 + c_2_7·a_1_02·b_1_34
       + c_2_7·c_4_27·b_1_32 + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_1·b_1_3
       + c_2_7·c_4_26·b_1_12 + c_2_72·b_1_3·b_3_15 + c_2_72·b_1_3·b_3_14
       + c_2_72·b_1_34 + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_24 + c_2_72·b_1_1·b_1_33
       + c_2_7·c_4_27·a_1_0·b_1_1 + c_2_7·c_4_26·a_1_0·b_1_1 + c_2_72·a_1_0·b_3_15
       + c_2_72·a_1_0·b_3_14 + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_26·a_1_02
       + c_2_73·b_1_32 + c_2_73·b_1_1·b_1_3 + c_2_73·a_1_0·b_1_3 + c_2_73·a_1_0·b_1_1
  46. b_3_13·b_5_43 + b_3_12·b_5_43 + b_1_23·b_5_43 + b_1_25·b_3_12 + b_1_28
       + b_1_15·b_3_13 + a_3_0·b_5_43 + a_1_0·b_1_32·b_5_44 + a_1_02·b_1_33·b_3_14
       + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_24 + c_4_26·b_1_2·b_3_13 + c_4_26·b_1_1·b_3_13
       + c_4_26·b_1_1·b_3_11 + c_2_7·b_1_33·b_3_15 + c_2_7·b_1_23·b_3_13
       + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_1·b_5_43 + c_2_7·b_1_13·b_3_13
       + c_2_7·b_1_13·b_3_11 + c_4_27·a_1_0·b_3_15 + c_4_27·a_1_0·b_3_14
       + c_4_27·a_1_0·b_1_33 + c_4_26·a_1_0·b_3_11 + c_2_7·a_3_0·b_3_14
       + c_2_7·a_1_0·b_1_32·b_3_15 + c_2_7·a_1_0·b_1_35 + c_4_27·a_1_02·b_1_32
       + c_4_26·a_1_0·a_3_0 + c_4_26·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_15
       + c_2_7·a_1_02·b_1_34 + c_2_7·c_4_27·b_1_32 + c_2_7·c_4_27·b_1_22
       + c_2_7·c_4_27·b_1_1·b_1_3 + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_1·b_1_3
       + c_2_72·b_1_3·b_3_15 + c_2_72·b_1_34 + c_2_72·b_1_2·b_3_13 + c_2_72·b_1_1·b_3_14
       + c_2_72·b_1_14 + c_2_7·c_4_27·a_1_0·b_1_3 + c_2_7·c_4_27·a_1_0·b_1_1
       + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_15 + c_2_72·a_1_0·b_3_11
       + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_27·a_1_02 + c_2_72·a_1_0·a_3_0
       + c_2_72·a_1_02·b_1_32 + c_2_73·b_1_32 + c_2_73·b_1_22 + c_2_73·b_1_1·b_1_3
       + c_2_73·b_1_12
  47. b_3_13·b_5_43 + b_3_11·b_5_43 + b_1_23·b_5_43 + b_1_25·b_3_12 + b_1_13·b_5_43
       + b_1_15·b_3_13 + b_1_18 + a_3_0·b_5_43 + b_1_32·a_3_0·b_3_14 + a_1_0·b_1_34·b_3_15
       + a_1_02·b_1_3·b_5_44 + a_1_02·b_1_33·b_3_14 + c_4_27·b_1_2·b_3_12
       + c_4_27·b_1_1·b_3_14 + c_4_27·b_1_1·b_3_13 + c_4_26·b_1_1·b_3_11
       + c_2_7·b_1_23·b_3_13 + c_2_7·b_1_1·b_5_43 + c_2_7·b_1_13·b_3_13 + c_2_7·b_1_16
       + c_4_26·a_1_0·b_3_11 + c_4_26·a_1_0·b_1_33 + c_2_7·a_3_0·b_3_14
       + c_2_7·b_1_33·a_3_0 + c_2_7·a_1_0·b_1_35 + c_4_27·a_1_02·b_1_32
       + c_4_26·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_14 + c_2_7·c_4_27·b_1_22
       + c_2_7·c_4_26·b_1_1·b_1_3 + c_2_7·c_4_26·b_1_12 + c_2_72·b_1_2·b_3_13
       + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_1·b_3_13 + c_2_72·b_1_1·b_3_11 + c_2_72·b_1_14
       + c_2_7·c_4_27·a_1_0·b_1_3 + c_2_7·c_4_27·a_1_0·b_1_1 + c_2_7·c_4_26·a_1_0·b_1_1
       + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_15 + c_2_72·a_1_0·b_3_11
       + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_27·a_1_02 + c_2_72·a_1_0·a_3_0
       + c_2_72·a_1_02·b_1_32 + c_2_73·a_1_02
  48. b_3_12·b_5_44 + b_1_25·b_3_13 + b_1_13·b_5_43 + b_1_18 + c_4_27·b_1_2·b_3_12
       + c_4_27·b_1_24 + c_4_27·b_1_1·b_3_11 + c_4_27·b_1_14 + c_4_26·b_1_2·b_3_13
       + c_4_26·b_1_24 + c_4_26·b_1_1·b_3_11 + c_4_26·b_1_14 + c_2_7·b_1_23·b_3_13
       + c_2_7·b_1_1·b_5_43 + c_2_7·b_1_1·b_1_32·b_3_14 + c_2_7·b_1_13·b_3_13
       + c_4_27·b_1_3·a_3_0 + c_4_27·a_1_0·b_3_11 + c_4_26·a_1_0·b_3_15 + c_2_7·a_3_0·b_3_14
       + c_2_7·b_1_33·a_3_0 + c_2_7·a_1_0·b_1_32·b_3_14 + c_2_7·a_1_0·b_1_35
       + c_4_27·a_1_0·a_3_0 + c_4_26·a_1_0·a_3_0 + c_4_26·a_1_02·b_1_32
       + c_2_7·a_1_02·b_1_3·b_3_15 + c_2_7·c_4_26·b_1_1·b_1_3 + c_2_7·c_4_26·b_1_12
       + c_2_72·b_1_2·b_3_13 + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_24 + c_2_72·b_1_1·b_3_13
       + c_2_72·b_1_1·b_1_33 + c_2_72·b_1_14 + c_2_7·c_4_27·a_1_0·b_1_3
       + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_15 + c_2_72·a_1_0·b_3_14
       + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_26·a_1_02 + c_2_72·a_1_0·a_3_0
       + c_2_72·a_1_02·b_1_32 + c_2_73·b_1_1·b_1_3 + c_2_73·a_1_0·b_1_3
       + c_2_73·a_1_0·b_1_1
  49. b_3_13·b_5_44 + b_3_13·b_5_43 + b_3_11·b_5_44 + b_1_23·b_5_43 + b_1_13·b_5_43
       + b_1_15·b_3_13 + b_1_18 + a_3_0·b_5_43 + a_1_02·b_1_33·b_3_15 + c_4_27·b_1_2·b_3_13
       + c_4_27·b_1_1·b_3_14 + c_4_26·b_1_1·b_3_13 + c_4_26·b_1_1·b_3_11
       + c_2_7·b_1_33·b_3_15 + c_2_7·b_1_23·b_3_13 + c_2_7·b_1_1·b_5_43
       + c_2_7·b_1_1·b_1_32·b_3_14 + c_2_7·b_1_13·b_3_13 + c_4_27·a_1_0·b_3_15
       + c_4_27·a_1_0·b_3_14 + c_4_27·a_1_0·b_3_11 + c_4_26·b_1_3·a_3_0 + c_4_26·a_1_0·b_3_15
       + c_4_26·a_1_0·b_3_14 + c_2_7·a_3_0·b_3_14 + c_2_7·b_1_33·a_3_0
       + c_4_26·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_15 + c_2_7·a_1_02·b_1_3·b_3_14
       + c_2_7·a_1_02·b_1_34 + c_2_7·c_4_27·b_1_32 + c_2_7·c_4_27·b_1_1·b_1_3
       + c_2_7·c_4_26·b_1_12 + c_2_72·b_1_3·b_3_15 + c_2_72·b_1_34
       + c_2_72·b_1_2·b_3_13 + c_2_72·b_1_24 + c_2_72·b_1_1·b_3_14 + c_2_72·b_1_1·b_3_13
       + c_2_72·b_1_1·b_3_11 + c_2_7·c_4_26·a_1_0·b_1_3 + c_2_72·b_1_3·a_3_0
       + c_2_72·a_1_0·b_3_11 + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_26·a_1_02
       + c_2_73·b_1_32 + c_2_73·b_1_22 + c_2_73·b_1_1·b_1_3 + c_2_73·b_1_12
       + c_2_73·a_1_0·b_1_3 + c_2_73·a_1_0·b_1_1 + c_2_73·a_1_02
  50. a_3_0·b_5_44 + c_2_7·b_1_1·b_1_32·b_3_14 + c_4_27·b_1_3·a_3_0 + c_4_27·a_1_0·b_3_11
       + c_4_26·a_1_0·b_3_15 + c_4_26·a_1_0·b_3_11 + c_2_7·a_3_0·b_3_14 + c_2_7·a_1_0·b_1_35
       + c_4_26·a_1_0·a_3_0 + c_4_26·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_15
       + c_2_72·b_1_1·b_1_33 + c_2_7·c_4_27·a_1_0·b_1_3 + c_2_7·c_4_27·a_1_0·b_1_1
       + c_2_72·a_1_0·b_3_15 + c_2_7·c_4_27·a_1_02 + c_2_7·c_4_26·a_1_02
       + c_2_72·a_1_02·b_1_32 + c_2_73·a_1_0·b_1_3 + c_2_73·a_1_0·b_1_1
  51. b_3_14·b_5_44 + b_3_13·b_5_43 + b_3_11·b_5_44 + b_1_23·b_5_43 + b_1_25·b_3_13
       + b_1_25·b_3_12 + b_1_15·b_3_11 + a_3_0·b_5_43 + b_1_32·a_3_0·b_3_14 + b_1_35·a_3_0
       + a_1_0·b_1_34·b_3_14 + c_4_27·b_1_3·b_3_14 + c_4_27·b_1_24 + c_4_26·b_1_3·b_3_15
       + c_4_26·b_1_2·b_3_13 + c_4_26·b_1_24 + c_4_26·b_1_1·b_3_14 + c_4_26·b_1_1·b_3_13
       + c_4_26·b_1_1·b_3_11 + c_4_26·b_1_1·b_1_33 + c_2_7·b_1_36 + c_2_7·b_1_23·b_3_12
       + c_2_7·b_1_1·b_5_43 + c_2_7·b_1_13·b_3_11 + c_2_7·b_1_16 + c_4_27·a_1_0·b_3_11
       + c_4_26·a_1_0·b_3_15 + c_4_26·a_1_0·b_3_14 + c_4_26·a_1_0·b_3_11
       + c_4_26·a_1_0·b_1_33 + c_2_7·a_1_0·b_1_35 + c_4_27·a_1_0·a_3_0
       + c_4_27·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_15 + c_2_7·a_1_02·b_1_34
       + c_2_7·c_4_26·b_1_12 + c_2_72·b_1_3·b_3_14 + c_2_72·b_1_2·b_3_13
       + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_1·b_3_14 + c_2_72·b_1_1·b_3_13 + c_2_72·b_1_14
       + c_2_7·c_4_27·a_1_0·b_1_3 + c_2_7·c_4_26·a_1_0·b_1_3 + c_2_72·b_1_3·a_3_0
       + c_2_72·a_1_0·b_3_15 + c_2_72·a_1_02·b_1_32 + c_2_73·b_1_22
       + c_2_73·b_1_1·b_1_3 + c_2_73·b_1_12 + c_2_73·a_1_0·b_1_3
  52. b_3_15·b_5_44 + b_3_13·b_5_43 + b_3_12·b_5_43 + b_3_11·b_5_43 + b_1_25·b_3_13
       + b_1_25·b_3_12 + b_1_28 + b_1_15·b_3_11 + b_1_18 + a_3_0·b_5_43
       + a_1_02·b_1_33·b_3_15 + c_4_27·b_1_3·b_3_15 + c_4_27·b_1_2·b_3_13
       + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_24 + c_4_27·b_1_1·b_3_14 + c_4_27·b_1_1·b_3_11
       + c_4_26·b_1_24 + c_4_26·b_1_1·b_3_13 + c_4_26·b_1_1·b_3_11 + c_4_26·b_1_14
       + c_2_7·b_1_33·b_3_14 + c_2_7·b_1_23·b_3_13 + c_2_7·b_1_26 + c_2_7·b_1_13·b_3_13
       + c_2_7·b_1_16 + c_4_27·a_1_0·b_3_14 + c_4_26·b_1_3·a_3_0 + c_4_26·a_1_0·b_3_15
       + c_4_26·a_1_0·b_3_14 + c_2_7·a_3_0·b_3_14 + c_2_7·b_1_33·a_3_0
       + c_2_7·a_1_0·b_1_32·b_3_15 + c_2_7·a_1_0·b_1_35 + c_2_7·a_1_02·b_1_3·b_3_15
       + c_2_7·a_1_02·b_1_3·b_3_14 + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_1·b_1_3
       + c_2_72·b_1_3·b_3_15 + c_2_72·b_1_3·b_3_14 + c_2_72·b_1_34 + c_2_72·b_1_24
       + c_2_72·b_1_1·b_3_14 + c_2_72·b_1_1·b_3_11 + c_2_72·b_1_1·b_1_33
       + c_2_72·b_1_14 + c_2_7·c_4_27·a_1_0·b_1_3 + c_2_7·c_4_27·a_1_0·b_1_1
       + c_2_7·c_4_26·a_1_0·b_1_1 + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_11
       + c_2_7·c_4_27·a_1_02 + c_2_7·c_4_26·a_1_02 + c_2_72·a_1_0·a_3_0
       + c_2_73·b_1_32 + c_2_73·b_1_12 + c_2_73·a_1_0·b_1_1 + c_2_73·a_1_02
  53. b_3_13·b_5_43 + b_3_12·b_5_43 + b_3_11·b_5_44 + b_3_11·b_5_43 + b_1_23·b_5_43
       + b_1_25·b_3_12 + b_1_28 + b_1_15·b_3_13 + b_1_32·a_3_0·b_3_14
       + a_1_0·b_1_34·b_3_15 + a_1_02·b_1_33·b_3_15 + a_1_02·b_1_33·b_3_14
       + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_24 + c_4_26·b_1_2·b_3_13 + c_4_26·b_1_1·b_3_13
       + c_4_26·b_1_1·b_3_11 + c_2_7·b_1_3·b_5_44 + c_2_7·b_1_23·b_3_13 + c_2_7·b_1_1·b_5_43
       + c_2_7·b_1_1·b_1_32·b_3_14 + c_2_7·b_1_1·b_1_35 + c_2_7·b_1_13·b_3_13
       + c_2_7·b_1_16 + c_4_27·b_1_3·a_3_0 + c_4_27·a_1_0·b_3_15 + c_4_27·a_1_0·b_3_14
       + c_4_26·b_1_3·a_3_0 + c_4_26·a_1_0·b_3_14 + c_4_26·a_1_0·b_3_11
       + c_4_26·a_1_0·b_1_33 + c_2_7·a_3_0·b_3_14 + c_2_7·a_1_0·b_1_35
       + c_4_26·a_1_0·a_3_0 + c_4_26·a_1_02·b_1_32 + c_2_7·a_1_02·b_1_3·b_3_15
       + c_2_7·a_1_02·b_1_34 + c_2_7·c_4_27·b_1_1·b_1_3 + c_2_7·c_4_27·b_1_12
       + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_1·b_1_3 + c_2_72·b_1_2·b_3_12
       + c_2_72·b_1_24 + c_2_72·b_1_1·b_1_33 + c_2_7·c_4_27·a_1_0·b_1_1
       + c_2_7·c_4_26·a_1_0·b_1_1 + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_14
       + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_27·a_1_02 + c_2_7·c_4_26·a_1_02
       + c_2_72·a_1_02·b_1_32 + c_2_73·a_1_0·b_1_3 + c_2_73·a_1_02
  54. b_3_13·b_5_43 + b_3_12·b_5_43 + b_1_23·b_5_43 + b_1_25·b_3_12 + b_1_28
       + b_1_15·b_3_13 + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_24 + c_4_26·b_1_2·b_3_13
       + c_4_26·b_1_1·b_3_13 + c_4_26·b_1_1·b_3_11 + c_2_7·b_1_33·b_3_15
       + c_2_7·b_1_23·b_3_13 + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_1·b_5_43
       + c_2_7·b_1_1·b_1_35 + c_2_7·b_1_13·b_3_13 + c_2_7·b_1_13·b_3_11
       + c_4_27·b_1_3·a_3_0 + c_4_27·a_1_0·b_3_15 + c_4_27·a_1_0·b_3_14 + c_2_7·a_3_0·b_3_14
       + c_2_7·a_1_0·b_5_44 + c_2_7·a_1_0·b_1_32·b_3_15 + c_2_7·a_1_0·b_1_32·b_3_14
       + c_2_7·a_1_0·b_1_35 + c_4_27·a_1_0·a_3_0 + c_2_7·a_1_02·b_1_3·b_3_15
       + c_2_7·a_1_02·b_1_3·b_3_14 + c_2_7·a_1_02·b_1_34 + c_2_7·c_4_27·b_1_32
       + c_2_7·c_4_27·b_1_22 + c_2_7·c_4_27·b_1_1·b_1_3 + c_2_7·c_4_26·b_1_22
       + c_2_7·c_4_26·b_1_1·b_1_3 + c_2_72·b_1_3·b_3_15 + c_2_72·b_1_34
       + c_2_72·b_1_2·b_3_13 + c_2_72·b_1_1·b_3_14 + c_2_72·b_1_1·b_1_33
       + c_2_72·b_1_14 + c_2_7·c_4_26·a_1_0·b_1_3 + c_2_7·c_4_26·a_1_0·b_1_1
       + c_2_72·b_1_3·a_3_0 + c_2_72·a_1_0·b_3_15 + c_2_72·a_1_0·b_3_14
       + c_2_72·a_1_0·b_1_33 + c_2_7·c_4_27·a_1_02 + c_2_72·a_1_0·a_3_0
       + c_2_72·a_1_02·b_1_32 + c_2_73·b_1_32 + c_2_73·b_1_22 + c_2_73·b_1_1·b_1_3
       + c_2_73·b_1_12 + c_2_73·a_1_0·b_1_3 + c_2_73·a_1_02
  55. b_5_432 + b_1_27·b_3_13 + b_1_17·b_3_11 + a_1_0·b_1_36·b_3_15
       + c_4_27·b_1_23·b_3_13 + c_4_27·b_1_13·b_3_11 + c_4_26·b_1_23·b_3_13
       + c_4_26·b_1_26 + c_4_26·b_1_13·b_3_13 + c_2_7·b_1_38 + c_2_7·b_1_28
       + c_2_7·a_1_0·b_1_37 + c_4_27·a_1_02·b_1_34 + c_4_26·a_1_02·b_1_34
       + c_2_7·a_1_02·b_1_33·b_3_15 + c_2_7·a_1_02·b_1_36 + c_4_272·b_1_32
       + c_4_26·c_4_27·b_1_22 + c_4_262·b_1_12 + c_2_7·c_4_27·b_1_24
       + c_2_7·c_4_26·b_1_24 + c_2_7·c_4_26·b_1_14 + c_2_72·b_1_23·b_3_13
       + c_2_72·b_1_26 + c_2_72·b_1_13·b_3_13 + c_2_72·b_1_16
       + c_2_72·a_1_0·b_1_32·b_3_15 + c_4_272·a_1_02 + c_4_26·c_4_27·a_1_02
       + c_4_262·a_1_02 + c_2_7·c_4_26·a_1_02·b_1_32 + c_2_72·a_1_02·b_1_3·b_3_15
       + c_2_72·c_4_26·b_1_22 + c_2_72·c_4_26·b_1_12 + c_2_73·b_1_34
       + c_2_73·b_1_24 + c_2_73·b_1_14 + c_2_73·a_1_0·b_1_33
       + c_2_72·c_4_27·a_1_02 + c_2_72·c_4_26·a_1_02 + c_2_74·b_1_22
       + c_2_74·b_1_12 + c_2_74·a_1_02
  56. b_5_442 + b_1_210 + b_1_17·b_3_13 + b_1_17·b_3_11 + b_1_110
       + a_1_02·b_1_33·b_5_44 + a_1_02·b_1_35·b_3_15 + c_4_27·b_1_23·b_3_13
       + c_4_27·b_1_13·b_3_11 + c_4_26·b_1_23·b_3_13 + c_4_26·b_1_13·b_3_13
       + c_4_26·b_1_16 + c_2_7·b_1_35·b_3_15 + c_2_7·b_1_18 + c_4_26·a_1_0·b_1_32·b_3_15
       + c_2_7·b_1_35·a_3_0 + c_2_7·a_1_0·b_1_37 + c_4_27·a_1_02·b_1_3·b_3_15
       + c_4_27·a_1_02·b_1_34 + c_4_26·a_1_02·b_1_3·b_3_15
       + c_2_7·a_1_02·b_1_33·b_3_14 + c_4_272·b_1_32 + c_4_272·b_1_22
       + c_4_272·b_1_12 + c_4_26·c_4_27·b_1_22 + c_4_262·b_1_12
       + c_2_7·c_4_27·b_1_24 + c_2_7·c_4_26·b_1_34 + c_2_7·c_4_26·b_1_24
       + c_2_7·c_4_26·b_1_14 + c_2_72·b_1_33·b_3_15 + c_2_72·b_1_36
       + c_2_72·b_1_23·b_3_13 + c_2_72·b_1_26 + c_2_72·b_1_13·b_3_13 + c_2_72·b_1_16
       + c_2_7·c_4_26·a_1_0·b_1_33 + c_2_72·b_1_33·a_3_0 + c_2_72·a_1_0·b_1_32·b_3_15
       + c_4_272·a_1_02 + c_4_262·a_1_02 + c_2_7·c_4_27·a_1_02·b_1_32
       + c_2_72·a_1_02·b_1_3·b_3_15 + c_2_72·a_1_02·b_1_34 + c_2_72·c_4_27·b_1_22
       + c_2_72·c_4_27·b_1_12 + c_2_72·c_4_26·b_1_32 + c_2_73·b_1_24
       + c_2_73·b_1_14 + c_2_73·a_1_0·b_1_33 + c_2_72·c_4_26·a_1_02
       + c_2_74·b_1_22
  57. b_5_43·b_5_44 + b_1_27·b_3_13 + b_1_210 + b_1_17·b_3_11 + b_1_110
       + b_1_34·a_3_0·b_3_14 + a_1_0·b_1_34·b_5_44 + a_1_0·b_1_36·b_3_15
       + a_1_02·b_1_33·b_5_44 + a_1_02·b_1_35·b_3_15 + c_4_27·b_1_3·b_5_44
       + c_4_27·b_1_33·b_3_15 + c_4_27·b_1_2·b_5_43 + c_4_27·b_1_23·b_3_13 + c_4_27·b_1_26
       + c_4_27·b_1_1·b_5_43 + c_4_27·b_1_13·b_3_11 + c_4_27·b_1_16 + c_4_26·b_1_26
       + c_2_7·b_1_33·b_5_44 + c_2_7·b_1_35·b_3_14 + c_2_7·b_1_23·b_5_43
       + c_2_7·b_1_1·b_1_34·b_3_14 + c_2_7·b_1_1·b_1_37 + c_2_7·b_1_13·b_5_43
       + c_2_7·b_1_18 + c_4_27·a_3_0·b_3_14 + c_4_27·b_1_33·a_3_0 + c_4_27·a_1_0·b_1_35
       + c_4_26·a_3_0·b_3_14 + c_4_26·b_1_33·a_3_0 + c_4_26·a_1_0·b_5_44
       + c_4_26·a_1_0·b_1_32·b_3_15 + c_4_26·a_1_0·b_1_32·b_3_14 + c_4_26·a_1_0·b_1_35
       + c_2_7·a_1_0·b_1_34·b_3_15 + c_2_7·a_1_0·b_1_34·b_3_14 + c_2_7·a_1_0·b_1_37
       + c_4_27·a_1_02·b_1_3·b_3_15 + c_4_27·a_1_02·b_1_3·b_3_14
       + c_4_26·a_1_02·b_1_3·b_3_15 + c_4_26·a_1_02·b_1_3·b_3_14 + c_4_26·a_1_02·b_1_34
       + c_2_7·a_1_02·b_1_3·b_5_44 + c_2_7·a_1_02·b_1_33·b_3_15
       + c_2_7·a_1_02·b_1_33·b_3_14 + c_2_7·a_1_02·b_1_36 + c_4_272·b_1_1·b_1_3
       + c_4_26·c_4_27·b_1_22 + c_4_26·c_4_27·b_1_1·b_1_3 + c_4_262·b_1_12
       + c_2_7·c_4_27·b_1_3·b_3_15 + c_2_7·c_4_27·b_1_2·b_3_12 + c_2_7·c_4_27·b_1_1·b_3_14
       + c_2_7·c_4_27·b_1_1·b_3_13 + c_2_7·c_4_27·b_1_1·b_3_11 + c_2_7·c_4_27·b_1_1·b_1_33
       + c_2_7·c_4_27·b_1_14 + c_2_7·c_4_26·b_1_2·b_3_13 + c_2_7·c_4_26·b_1_1·b_3_14
       + c_2_7·c_4_26·b_1_14 + c_2_72·b_1_3·b_5_44 + c_2_72·b_1_33·b_3_15
       + c_2_72·b_1_36 + c_2_72·b_1_2·b_5_43 + c_2_72·b_1_26 + c_2_72·b_1_16
       + c_4_272·a_1_0·b_1_1 + c_4_26·c_4_27·a_1_0·b_1_3 + c_4_262·a_1_0·b_1_3
       + c_2_7·c_4_27·a_1_0·b_3_11 + c_2_7·c_4_26·a_1_0·b_3_14 + c_2_7·c_4_26·a_1_0·b_1_33
       + c_2_72·b_1_33·a_3_0 + c_2_72·a_1_0·b_5_44 + c_2_72·a_1_0·b_1_35
       + c_4_262·a_1_02 + c_2_7·c_4_27·a_1_0·a_3_0 + c_2_7·c_4_26·a_1_02·b_1_32
       + c_2_72·a_1_02·b_1_3·b_3_14 + c_2_72·a_1_02·b_1_34 + c_2_72·c_4_27·b_1_22
       + c_2_72·c_4_27·b_1_12 + c_2_73·b_1_3·b_3_15 + c_2_73·b_1_3·b_3_14
       + c_2_73·b_1_2·b_3_13 + c_2_73·b_1_1·b_3_13 + c_2_73·b_1_1·b_1_33
       + c_2_72·c_4_27·a_1_0·b_1_3 + c_2_73·a_1_0·b_3_14 + c_2_73·a_1_0·b_1_33
       + c_2_72·c_4_27·a_1_02 + c_2_72·c_4_26·a_1_02 + c_2_74·b_1_32
       + c_2_74·a_1_0·b_1_3 + c_2_74·a_1_0·b_1_1


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 10.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_7, a Duflot regular element of degree 2
    2. c_4_26, a Duflot regular element of degree 4
    3. c_4_27, a Duflot regular element of degree 4
    4. b_1_32 + b_1_22, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 5, 8].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_12, an element of degree 2
  6. a_3_00, an element of degree 3
  7. b_3_110, an element of degree 3
  8. b_3_120, an element of degree 3
  9. b_3_130, an element of degree 3
  10. b_3_140, an element of degree 3
  11. b_3_150, an element of degree 3
  12. c_4_26c_1_24 + c_1_14, an element of degree 4
  13. c_4_27c_1_24 + c_1_14 + c_1_04, an element of degree 4
  14. b_5_430, an element of degree 5
  15. b_5_440, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. c_2_7c_1_12, an element of degree 2
  6. a_3_00, an element of degree 3
  7. b_3_11c_1_12·c_1_3, an element of degree 3
  8. b_3_120, an element of degree 3
  9. b_3_13c_1_12·c_1_3, an element of degree 3
  10. b_3_14c_1_22·c_1_3 + c_1_12·c_1_3, an element of degree 3
  11. b_3_15c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  12. c_4_26c_1_24 + c_1_1·c_1_33 + c_1_14, an element of degree 4
  13. c_4_27c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  14. b_5_43c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_12·c_1_33 + c_1_13·c_1_32
       + c_1_14·c_1_3 + c_1_02·c_1_33 + c_1_04·c_1_3, an element of degree 5
  15. b_5_44c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33
       + c_1_12·c_1_22·c_1_3 + c_1_02·c_1_33 + c_1_04·c_1_3, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_2c_1_3, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_1·c_1_3 + c_1_12, an element of degree 2
  6. a_3_00, an element of degree 3
  7. b_3_11c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  8. b_3_12c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  9. b_3_13c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3
       + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  10. b_3_14c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  11. b_3_15c_1_33 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  12. c_4_26c_1_34 + c_1_2·c_1_33 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33
       + c_1_02·c_1_32, an element of degree 4
  13. c_4_27c_1_34 + c_1_2·c_1_33 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33
       + c_1_04, an element of degree 4
  14. b_5_43c_1_35 + c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_1·c_1_2·c_1_33
       + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_12·c_1_32
       + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3
       + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3, an element of degree 5
  15. b_5_44c_1_35 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
       + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3
       + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_33
       + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_1c_1_3, an element of degree 1
  3. b_1_2c_1_3, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_1·c_1_3 + c_1_12, an element of degree 2
  6. a_3_00, an element of degree 3
  7. b_3_11c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_12c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  9. b_3_13c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3
       + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  10. b_3_14c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32
       + c_1_02·c_1_3, an element of degree 3
  11. b_3_15c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  12. c_4_26c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33
       + c_1_02·c_1_32, an element of degree 4
  13. c_4_27c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  14. b_5_43c_1_35 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_33
       + c_1_0·c_1_12·c_1_32 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3
       + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3, an element of degree 5
  15. b_5_44c_1_35 + c_1_12·c_1_33 + c_1_14·c_1_3 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_12·c_1_32
       + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_32
       + c_1_02·c_1_12·c_1_3, an element of degree 5


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009